Electrochemical Synthesis of Aminated Polyaniline/Multi-Walled Carbon Nanotube Composite for Selective Dopamine Detection in Artificial Urine
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Electrochemical Synthesis of PABA/f-CNT Composite
2.4. Electrochemical Selective Dopamine Detection
3. Results and Discussion
3.1. Characterization of PABA/f-CNT Electrode
3.2. Electrochemical Selective Dopamine Detection
3.3. Artificial Urine Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Min, J.; Sempionatto, J.R.; Teymourian, H.; Wang, J.; Gao, W. Wearable Electrochemical Biosensors in North America. Biosens. Bioelectron. 2021, 172, 112750. [Google Scholar] [CrossRef]
- Algov, I.; Feiertag, A.; Shikler, R.; Alfonta, L. Sensitive Enzymatic Determination of Neurotransmitters in Artificial Sweat. Biosens. Bioelectron. 2022, 210, 114264. [Google Scholar] [CrossRef]
- Snider, S.R.; Kuchel, O. Dopamine: An Important Neurohormone of the Sympathoadrenal System. Significance of Increased Peripheral Dopamine Release for the Human Stress Response and Hypertension. Endocr. Rev. 1983, 4, 291–309. [Google Scholar] [CrossRef]
- Ohshiro, K.; Sasaki, Y.; Minami, T. An Extended-Gate-Type Organic Transistor-Based Enzymatic Sensor for Dopamine Detection in Human Urine. Talanta Open 2023, 7, 100190. [Google Scholar] [CrossRef]
- Li, J.; Zhao, J.; Wei, X. A Sensitive and Selective Sensor for Dopamine Determination Based on a Molecularly Imprinted Electropolymer of O-Aminophenol. Sens. Actuators B 2009, 140, 663–669. [Google Scholar] [CrossRef]
- Suriyaprakash, J.; Huang, Y.; Hu, Z.; Wang, H.; Zhan, Y.; Zhou, Y.; Thangavelu, I.; Wu, L. Laser Scribing Turns Plasticwaste into a Biosensor via the Restructuration of Nanocarbon Composites for Noninvasive Dopamine Detection. Biosensors 2023, 13, 810. [Google Scholar] [CrossRef]
- Dobryakova, E.; Genova, H.M.; DeLuca, J.; Wylie, G.R. The Dopamine Imbalance Hypothesis of Fatigue in Multiple Sclerosis and Other Neurological Disorders. Front. Neurol. 2015, 6, 52. [Google Scholar] [CrossRef]
- Albrecht, D.S.; MacKie, P.J.; Kareken, D.A.; Hutchins, G.D.; Chumin, E.J.; Christian, B.T.; Yoder, K.K. Differential Dopamine Function in Fibromyalgia. Brain Imaging Behav. 2016, 10, 829–839. [Google Scholar] [CrossRef]
- Feng, Z.Y.; Liu, R.; Jiang, J.C.; Meng, L.Y. Villous 3D Nanoconfined Flexible Carbon Fibers-Based Electrode Toward Dopamine Electrochemical Detection. Diam. Relat. Mat. 2024, 141, 110695. [Google Scholar] [CrossRef]
- Silva, L.I.B.; Ferreira, F.D.P.; Freitas, A.C.; Rocha-Santos, T.A.P.; Duarte, A.C. Optical Fiber Biosensor Coupled to Chromatographic Separation for Screening of Dopamine, Norepinephrine and Epinephrine in Human Urine and Plasma. Talanta 2009, 80, 853–857. [Google Scholar] [CrossRef]
- Maráková, K.; Piešťanský, J.; Zelinková, Z.; Mikuš, P. Simultaneous Determination of Twelve Biogenic Amines in Human Urine as Potential Biomarkers of Inflammatory Bowel Diseases by Capillary Electrophoresis—Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2020, 186, 113294. [Google Scholar] [CrossRef]
- Ratlam, C.; Phanichphant, S.; Sriwichai, S. Development of Dopamine Biosensor Based on Polyaniline/Carbon Quantum Dots Composite. J. Polym. Res. 2020, 27, 183. [Google Scholar] [CrossRef]
- Sriwichai, S.; Phanichphant, S. Fabrication and Characterization of Electrospun Poly(3-Aminobenzylamine)/Functionalized Multi-Walled Carbon Nanotubes Composite Film for Electrochemical Glucose Biosensor. Express Polym. Lett. 2022, 16, 439–450. [Google Scholar] [CrossRef]
- Panapimonlawat, T.; Phanichphant, S.; Sriwichai, S. Electrochemical Dopamine Biosensor Based on Poly(3-Aminobenzylamine) Layer-By-Layer Self-Assembled Multilayer Thin Film. Polymers 2021, 13, 1488. [Google Scholar] [CrossRef]
- Kaewda, C.; Sriwichai, S. Label-free Electrochemical Dopamine Biosensor Based on Electrospun Nanofibers of Polyaniline/Carbon Nanotube Composites. Biosensors 2024, 14, 349. [Google Scholar] [CrossRef]
- Dube, A.; Malode, S.J.; Alodhayb, A.N.; Mondal, K.; Shetti, N.P. Conducting Polymer-Based Electrochemical Sensors: Progress, Challenges, and Future Perspectives. Talanta Open 2025, 11, 100395. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Ramanavicius, A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers 2020, 13, 49. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Shi, W.; Jiang, M.; Tian, L.; Su, M.; Wu, J.; Liu, Q.; Yu, C.; Gu, H. Pt Nanoparticle Decorated Carbon Nanotubes Nanocomposite Based Sensing Platform for the Monitoring of Cell-Secreted Dopamine. Sens. Actuators B 2021, 330, 129311. [Google Scholar] [CrossRef]
- Stern, E.; Wagner, R.; Sigworth, F.J.; Breaker, R.; Fahmy, T.M.; Reed, M.A. Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors. Nano Lett. 2007, 7, 3405–3409. [Google Scholar] [CrossRef]
- Kaisti, M. Detection Principles of Biological and Chemical FET Sensors. Biosens. Bioelectron. 2017, 98, 437–448. [Google Scholar] [CrossRef]
- Prodromidis, M.I. Impedimetric Immunosensors—A review. Electrochim. Acta 2010, 55, 4227–4233. [Google Scholar] [CrossRef]
- Tsai, M.-Y.; Creedon, N.; Brightbill, E.; Pavlidis, S.; Brown, B.; Gray, D.W.; Shields, N.; Sayers, R.; Mooney, M.H.; O’Riordan, A.; et al. Direct Correlation Between Potentiometric and Impedance Biosensing of Antibody-Antigen Interactions Using An Integrated System. Appl. Phys. Lett. 2017, 111, 073701. [Google Scholar] [CrossRef]
- Zhang, H.M.; Li, N.Q.; Zhu, Z.W. Electrocatalytic Response of Dopamine at a DL-Homocysteine Self-Assembled Gold Electrode. Microchem. J. 2000, 64, 277–282. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.Z.; Yuan, Z.B. Study on the Electrochemical Behavior of Dopamine with Poly(sulfosalicylic acid) Modified Glassy Carbon Electrode. Anal. Chim. Acta 2001, 441, 117–122. [Google Scholar] [CrossRef]
- Awuzie, C.I. Conducting Polymers. Mater. Today Proc. 2017, 4, 5721–5726. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar] [CrossRef]
- Zhao, F.; Shi, Y.; Pan, L.; Yu, G. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications. Acc. Chem. Res. 2017, 50, 1734–1743. [Google Scholar] [CrossRef]
- Le, T.H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef]
- Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A.M. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev. 2018, 118, 6766–6843. [Google Scholar] [CrossRef]
- Varol, H.S.; Herberger, T.; Kirsch, M.; Mikolei, J.; Veith, L.; Kannan-Sampathkumar, V.; Brand, R.D.; Synatschke, C.V.; Weil, T.; Andrieu-Brunsen, A. Electropolymerization of Polydopamine at Electrode-Supported Insulating Mesoporous Films. Chem. Mat. 2023, 35, 9192–9207. [Google Scholar] [CrossRef]
- Zhang, M.; Nautiyal, A.; Du, H.; Wei, Z.; Zhang, X.; Wang, R. Electropolymerization of Polyaniline as High-Performance Binder Free Electrodes for Flexible Supercapacitor. Electrochim. Acta 2021, 376, 138037. [Google Scholar] [CrossRef]
- Bhattacharyya, A.S. Conducting Polymers in Biosensing: A Review. Chem. Phys. Impact 2024, 8, 100642. [Google Scholar] [CrossRef]
- Ahmed, Y.M.; Eldin, M.A.; Galal, A.; Atta, N.F. Electrochemical Sensor Based on PEDOT/CNTs-Graphene Oxide for Simultaneous Determination of Hazardous Hydroquinone, Catechol, and Nitrite in Real Water Samples. Sci. Rep. 2024, 14, 5654. [Google Scholar] [CrossRef]
- Cymann-Sachajdak, A.; Graczyk-Zajac, M.; Trykowski, G.; Wilamowska-Zawłocka, M. Understanding the Capacitance of Thin Composite Films Based on Conducting Polymer and Carbon Nanostructures in Aqueous Electrolytes. Electrochim. Acta 2021, 383, 138356. [Google Scholar] [CrossRef]
- Amiri, M.; Golmohammadi, F.; Safari, M.; Sadeq, T.W. Electrochemical Synthesis of Polypyrrole Composite with Modified Gold Nanoparticles for Electrochemical Detection of Ascorbic Acid, Dopamine and Acetaminophen in Different Pharmaceutical Samples. Polym. Bull. 2024, 81, 9775–9793. [Google Scholar] [CrossRef]
- Alahmadi, N.; El-Said, W.A. Electrochemical Sensing of Dopamine Using Polypyrrole/Molybdenum Oxide Bilayer-Modified ITO Electrode. Biosensors 2023, 13, 578. [Google Scholar] [CrossRef] [PubMed]
- Shirodkar, N.; Cheng, S.; Seidel, G.D. Enhancement of Mode I Fracture Toughness Properties of Epoxy Reinforced with Graphene Nanoplatelets and Carbon Nanotubes. Compos. Part B Eng. 2021, 224, 109177. [Google Scholar] [CrossRef]
- Quan, D.; Mischo, C.; Binsfeld, L.; Ivankovic, A.; Murphy, N. Fracture Behaviour of Carbon Fibre/Epoxy Composites Interleaved By MWCNT- and Graphene Nanoplatelet-Doped Thermoplastic Veils. Compos. Struct. 2020, 235, 111767. [Google Scholar] [CrossRef]
- Demski, S.; Dydek, K.; Bartnicka, K.; Majchrowicz, K.; Kozera, R.; Boczkowska, A. Introduction of SWCNTs as a Method of Improvement of Electrical and Mechanical Properties of CFRPs Based on Thermoplastic Acrylic Resin. Polymers 2023, 15, 506. [Google Scholar] [CrossRef]
- Wang, X.; Tang, F.; Cao, Q.; Qi, X.; Zhang, H.P.; Lin, Z. Comparative Study of Three Carbon Additives: Carbon Nanotubes, Graphene, and Fullerene-C60, for Synthesizing Enhanced Polymer Nanocomposites. Nanomaterials 2020, 10, 838. [Google Scholar] [CrossRef]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, X.; Ge, C.; Zhou, W.; Zhu, Y.; Xu, B. Branched Carbon Nanotube/Carbon Nanofiber Composite for Supercapacitor Electrodes. Mater. Lett. 2019, 246, 174–177. [Google Scholar] [CrossRef]
- Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon Nanotubes—The Route Toward Applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Elaskalany, M.; Behdinan, K. Effect of Carbon Nanotube Type and Length on the Electrical Conductivity of Carbon Nanotube Polymer Nanocomposites. Mater. Res. Express 2023, 10, 105010. [Google Scholar] [CrossRef]
- Ahuja, P.; Ujjain, S.K.; Arora, I.; Samim, M. Hierarchically Grown Nio-Decorated Polyaniline-Reduced Graphene Oxide Composite for Ultrafast Sunlight-Driven Photocatalysis. ACS Omega 2018, 3, 7846–7855. [Google Scholar] [CrossRef]
- Deng, J.; Wang, T.; Guo, J.; Liu, P. Electrochemical Capacity Fading of Polyaniline Electrode in Supercapacitor: An XPS Analysis. Prog. Nat. Sci. Mater. Int. 2017, 27, 257–260. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, A.; Peng, F.; Yu, H.; Yang, J. Mechanism Study on Adsorption of Acidified Multiwalled Carbon Nanotubes to Pb(II). J. Colloid Interface Sci. 2007, 316, 277–283. [Google Scholar] [CrossRef]
- Marmisollé, W.A.; Gregurec, D.; Moya, S.; Azzaroni, O. Polyanilines with Pendant Amino Groups as Electrochemically Active Copolymers at Neutral pH. ChemElectroChem 2015, 2, 2011–2019. [Google Scholar] [CrossRef]
- Fenoy, G.E.; Giussi, J.M.; Bilderling, C.; Maza, E.M.; Pietrasanta, L.I.; Knoll, W.; Marmisollé, W.A.; Azzaroni, O. Reversible Modulation of the Redox Activity in Conducting Polymer Nanofilms Induced by Hydrophobic Collapse of a Surface-Grafted Polyelectrolyte. J. Colloid Interface Sci. 2018, 518, 92–101. [Google Scholar] [CrossRef]
- Baba, A.; Mannen, T.; Ohdaira, Y.; Shinbo, K.; Kato, K.; Kaneko, F.; Fukuda, N.; Ushijima, H. Detection of Adrenaline on Poly(3-Aminobenzylamine) Ultrathin Film by Electrochemical-Surface Plasmon Resonance Spectroscopy. Langmuir 2010, 26, 18476–18482. [Google Scholar] [CrossRef]
- Shrestha, B.K.; Ahmad, R.; Mousa, H.M.; Kim, I.-G.; Kim, J.I.; Neupane, M.P.; Park, C.H.; Kim, C.S. High-Performance Glucose Biosensor Based on Chitosan-Glucose Oxidase Immobilized Polypyrrole/Nafion/Functionalized Multi-Walled Carbon Nanotubes Bio-Nanohybrid Film. J. Colloid Interface Sci. 2016, 482, 39–47. [Google Scholar] [CrossRef]
- Gopal, J.; Muthu, M.; Sivanesan, I. A Comprehensive Compilation of Graphene/Fullerene Polymer Nanocomposites for Electrochemical Energy Storage. Polymers 2023, 15, 701. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy-A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef] [PubMed]
- Megalamani, M.B.; Nandibewoor, S.T. A Novel Electrochemical Strategy Using a Newly Developed Carbon-Based Sensor for the Detection of Antihypertensive Drug: Hydralazine Hydrochloride. Diam. Relat. Mat. 2024, 142, 110795. [Google Scholar] [CrossRef]
- Mondal, R.; Mukherjee, N.; Ahmed, S.F. Ultrafast, Selective, and ppb Level In Vitro Electrochemical Sensing of Dopamine in a Simulated Interfering Environment: Comparative Study on the Effect of Carrier Type of Electrode Materials. ACS Appl. Electron. Mater. 2024, 6, 6012–6035. [Google Scholar] [CrossRef]
- Paul, J.; Moniruzzaman, M.; Kim, J. Framing of Poly(Arylene-Ethynylene) Around Carbon Nanotubes and Iodine Doping for the Electrochemical Detection of Dopamine. Biosensors 2023, 13, 308. [Google Scholar] [CrossRef]
- Xu, G.; Jarjes, Z.A.; Desprez, V.; Kilmartin, P.A.; Travas-Sejdic, J. Sensitive, Selective, Disposable Electrochemical Dopamine 48Sensor Based on PEDOT-Modified Laser Scribed Graphene. Biosens. Bioelectron. 2018, 107, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Pang, Y.; Tang, J. Polyaniline Nanofiber Modified Platinum Electrode Used to Determination of Dopamine by Square Wave Voltammetry Technique. Int. J. Electrochem. Sci. 2015, 10, 8353–8360. [Google Scholar] [CrossRef]
- Fu, Y.; Sheng, Q.; Zheng, J. The Novel Sulfonated Polyaniline-Decorated Carbon Nanosphere Nanocomposites for Electrochemical Sensing of Dopamine. New J. Chem. 2017, 41, 15439–15446. [Google Scholar] [CrossRef]
- Kan, X.; Zhou, H.; Li, C.; Zhu, A.; Xing, Z.; Zhao, Z. Imprinted Electrochemical Sensor for Dopamine Recognition and Determination Based on a Carbon Nanotube/Polypyrrole Film. Electrochim. Acta 2012, 63, 69–75. [Google Scholar]
Electrode | Linear Range (µM) | Sensitivity (µA·cm−2·µM−1) | LOD (µM) | References |
---|---|---|---|---|
PANI/CQDs | 10–90 | 0.00802 | 0.1013 | [12] |
Electrospun PABA/f-CNTs | 0.05–0.5 | 7.269 | 0.1554 | [15] |
I2-CMP-CNT-4 | 1–10 | - | 1.7 | [56] |
PEDOT-LSG | 1–150 | 0.220 | 0.33 | [57] |
PANI-NF/Pt | 62.5–603 | - | 33.30 | [58] |
SPANI/CNSs | 0.50–1780 | 1.139 | 0.0152 | [59] |
PPy/CNTs | 0.625–100 | - | 0.06 | [60] |
Electropolymerized PABA/f-CNTs | 0.05–0.4 and 0.5–1 | 1.97 and 0.15 | 0.119 | This work |
Film | Added Concentration (nM) | Measured Concentration (nM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
PABA | 350 | 353 | 101 | 0.71 |
550 | 571 | 103.9 | 1.10 | |
750 | 750 | 100 | 0.87 | |
PABA/f-CNTs | 50 | 47 | 94.4 | 2.08 |
150 | 147 | 98.2 | 1.19 | |
250 | 247 | 98.9 | 1.75 | |
350 | 349 | 99.9 | 1.67 | |
550 | 551 | 100.3 | 0.24 | |
750 | 750 | 100 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriwichai, S.; Thongnoppakhun, P. Electrochemical Synthesis of Aminated Polyaniline/Multi-Walled Carbon Nanotube Composite for Selective Dopamine Detection in Artificial Urine. Polymers 2025, 17, 2539. https://doi.org/10.3390/polym17182539
Sriwichai S, Thongnoppakhun P. Electrochemical Synthesis of Aminated Polyaniline/Multi-Walled Carbon Nanotube Composite for Selective Dopamine Detection in Artificial Urine. Polymers. 2025; 17(18):2539. https://doi.org/10.3390/polym17182539
Chicago/Turabian StyleSriwichai, Saengrawee, and Pimmada Thongnoppakhun. 2025. "Electrochemical Synthesis of Aminated Polyaniline/Multi-Walled Carbon Nanotube Composite for Selective Dopamine Detection in Artificial Urine" Polymers 17, no. 18: 2539. https://doi.org/10.3390/polym17182539
APA StyleSriwichai, S., & Thongnoppakhun, P. (2025). Electrochemical Synthesis of Aminated Polyaniline/Multi-Walled Carbon Nanotube Composite for Selective Dopamine Detection in Artificial Urine. Polymers, 17(18), 2539. https://doi.org/10.3390/polym17182539