Novel Egg White Protein–Chitin Nanocrystal Biocomposite Films with Enhanced Functional Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chitin Nanocrystals (ChNCs) Synthesis
2.3. EWP Films Preparation
2.4. Rheological Behavior of Film-Forming Solution
2.5. EWP Films Characterization
2.5.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.5.2. X-Ray Diffraction (XRD)
2.5.3. Thermal Gravimetric Analysis (TGA)
2.5.4. Scanning Electron Microscope (SEM)
2.5.5. Transmission Electron Microscopy (TEM)
2.5.6. Mechanical Properties
2.5.7. Optical Properties
2.5.8. Oxygen Permeability (OP) and Water Vapor Permeability (WVP)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Morphological Properties of EWP Films
3.2. FTIR
3.3. XRD
3.4. TGA
3.5. Rheological Behavior of FFS
3.6. Mechanical Properties
3.7. Optical Properties
3.8. Barrier Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghasemlou, M.; Barrow, C.J.; Adhikari, B. The future of bioplastics in food packaging: An industrial perspective. Food Packag. Shelf Life 2024, 43, 101279. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023, 12, 2422. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Demirkesen, I.; Colussi, R.; Roy, S.; Tabassum, N.; de Oliveira Filho, J.G.; Bist, Y.; Kumar, Y.; Nowacka, M.; Galus, S.; et al. Recent Trends in the Application of Films and Coatings Based on Starch, Cellulose, Chitin, Chitosan, Xanthan, Gellan, Pullulan, Arabic Gum, Alginate, Pectin, and Carrageenan in Food Packaging. Food Front. 2024, 5, 350–391. [Google Scholar] [CrossRef]
- Stoica, M.; Bichescu, C.I.; Crețu, C.M.; Dragomir, M.; Ivan, A.S.; Podaru, G.M.; Stoica, D.; Stuparu-Crețu, M. Review of Bio-Based Biodegradable Polymers: Smart Solutions for Sustainable Food Packaging. Foods 2024, 13, 3027. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Lv, J.; Jiao, H.; Liu, J.; Feng, W.; Sun, C.; Li, X. Preparation and Characterization of Egg White Protein Film Incorporated with Epigallocatechin Gallate and Its Application on Pork Preservation. Food Chem. X 2023, 19, 100791. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cornish, K.; Vodovotz, Y. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environ. Sci. Technol. 2020, 54, 4712–4732. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, R.; Zo, S.M.; Narayanan, K.B.; Purohit, S.D.; Gupta, M.K.; Han, S.S. Recent Development of Protein-Based Biopolymers in Food Packaging Applications: A Review. Polym. Test. 2023, 124, 108097. [Google Scholar] [CrossRef]
- Calva-Estrada, S.J.; Jiménez-Fernández, M.; Lugo-Cervantes, E. Protein-Based Films: Advances in the Development of Biomaterials Applicable to Food Packaging. Food Eng. Rev. 2019, 11, 78–92. [Google Scholar] [CrossRef]
- Nilsuwan, K.; Guerrero, P.; de la Caba, K.; Benjakul, S.; Prodpran, T. Fish Gelatin Films Laminated with Emulsified Gelatin Film or Poly(Lactic) Acid Film: Properties and Their Use as Bags for Storage of Fried Salmon Skin. Food Hydrocoll. 2021, 111, 106199. [Google Scholar] [CrossRef]
- Zubair, M.; Ullah, A. Recent Advances in Protein Derived Bionanocomposites for Food Packaging Applications. Crit. Rev. Food Sci. Nutr. 2020, 60, 406–434. [Google Scholar] [CrossRef] [PubMed]
- Montes-de-Oca-Ávalos, J.M.; Altamura, D.; Herrera, M.L.; Huck-Iriart, C.; Scattarella, F.; Siliqi, D.; Giannini, C.; Candal, R.J. Physical and Structural Properties of Whey Protein Concentrate—Corn Oil—TiO2 Nanocomposite Films for Edible Food-Packaging. Food Packag. Shelf Life 2020, 26, 100590. [Google Scholar] [CrossRef]
- Amjadi, S.; Nazari, M.; Alizadeh, S.A.; Hamishehkar, H. Multifunctional Betanin Nanoliposomes-Incorporated Gelatin/Chitosan Nanofiber/ZnO Nanoparticles Nanocomposite Film for Fresh Beef Preservation. Meat Sci. 2020, 167, 108161. [Google Scholar] [CrossRef]
- Dey, A.; Pandey, G.; Rawtani, D. Functionalized Nanomaterials Driven Antimicrobial Food Packaging: A Technological Advancement in Food Science. Food Control 2022, 131, 108469. [Google Scholar] [CrossRef]
- González-Arancibia, F.; Mamani, M.; Valdés, C.; Contreras-Matté, C.; Pérez, E.; Aguilera, J.; Rojas, V.; Ramirez-Malule, H.; Andler, R. Biopolymers as Sustainable and Active Packaging Materials: Fundamentals and Mechanisms of Antifungal Activities. Biomolecules 2024, 14, 1224. [Google Scholar] [CrossRef]
- Hu, X.; Lu, C.; Tang, H.; Pouri, H.; Joulin, E.; Zhang, J. Active Food Packaging Made of Biopolymer-Based Composites. Materials 2023, 16, 279. [Google Scholar] [CrossRef]
- Jiang, Y.; Lan, W.; Sameen, D.E.; Ahmed, S.; Qin, W.; Zhang, Q.; Chen, H.; Dai, J.; He, L.; Liu, Y. Preparation and Characterization of Grass Carp Collagen-Chitosan-Lemon Essential Oil Composite Films for Application as Food Packaging. Int. J. Biol. Macromol. 2020, 160, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Koirala, P.; Sagar, N.A.; Thuanthong, A.; Al-Asmari, F.; Jagtap, S.; Nirmal, N. Revolutionizing Seafood Packaging: Advancements in Biopolymer Smart Nano-Packaging for Extended Shelf-Life and Quality Assurance. Food Res. Int. 2025, 203, 115826. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Cheng, Y.; Wang, C.; Liu, H.; Bian, H.; Pan, Y.; Sun, J.; Han, W. Application of Protein-Based Films and Coatings for Food Packaging: A Review. Polymers 2019, 11, 2039. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Jafarzadeh, S.; Forough, M.; Garavand, F.; Alizadeh, S.; Salehabadi, A.; Khaneghah, A.M.; Jafari, S.M. Plant Protein-Based Food Packaging Films; Recent Advances in Fabrication, Characterization, and Applications. Trends Food Sci. Technol. 2022, 120, 154–173. [Google Scholar] [CrossRef]
- Letendre, M.; D’Aprano, G.; Lacroix, M.; Salmieri, S.; St-Gelais, D. Physicochemical Properties and Bacterial Resistance of Biodegradable Milk Protein Films Containing Agar and Pectin. J Agric. Food Chem. 2002, 50, 6017–6022. [Google Scholar] [CrossRef]
- Shams, B.; Bousfield, D.W.; Wujcik, E.K. Antibacterial and Biodegradable Whey Protein/Gelatin Composite Films Reinforced with Lotus Leaf Powder and Garlic Oil for Sustainable Food Packaging. Compos. Part B Eng. 2025, 303, 112549. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, H.; Hu, L. Recent Advances of Proteins, Polysaccharides and Lipids-Based Edible Films/Coatings for Food Packaging Applications: A Review. Food Biophys. 2024, 19, 29–45. [Google Scholar] [CrossRef]
- Shah, Y.A.; Bhatia, S.; Al-Harrasi, A.; Afzaal, M.; Saeed, F.; Anwer, M.K.; Khan, M.R.; Jawad, M.; Akram, N.; Faisal, Z. Mechanical Properties of Protein-Based Food Packaging Materials. Polymers 2023, 15, 1724. [Google Scholar] [CrossRef]
- Etxabide, A.; Kilmartin, P.A.; Maté, J.I.; Gómez-Estaca, J. Characterization of Glucose-Crosslinked Gelatin Films Reinforced with Chitin Nanowhiskers for Active Packaging Development. LWT—Food Sci. Technol. 2022, 154, 112833. [Google Scholar] [CrossRef]
- Alves, L.T.d.O.; Fronza, P.; Gonçalves, I.; da Silva, W.A.; Oliveira, L.S.; Franca, A.S. Development of Polymeric Films Based on Sunflower Seed Proteins and Locust Bean Gum. Polymers 2024, 16, 1905. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.; Wang, Z.; Chu, X.; He, Z.; Zeng, M.; Chen, Q.; Chen, J. A High Moisture Extrusion Technique for Improved Properties in Soy Protein Isolate Films: Impact of Branch Structure of Polysaccharides. Int. J. Biol. Macromol. 2025, 318, 144892. [Google Scholar] [CrossRef] [PubMed]
- La Fuente Arias, C.I.; Kubo, M.T.K.-N.; Tadini, C.C.; Augusto, P.E.D. Bio-Based Multilayer Films: A Review of the Principal Methods of Production and Challenges. Crit. Rev. Food Sci. Nutr. 2023, 63, 2260–2276. [Google Scholar] [CrossRef] [PubMed]
- Avila, L.B.; Schnorr, C.; Silva, L.F.O.; Morais, M.M.; Moraes, C.C.; da Rosa, G.S.; Dotto, G.L.; Lima, É.C.; Naushad, M. Trends in Bioactive Multilayer Films: Perspectives in the Use of Polysaccharides, Proteins, and Carbohydrates with Natural Additives for Application in Food Packaging. Foods 2023, 12, 1692. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Ali, R.R.; Majid, R.A.; Mohamad, Z. Properties Enhancement of Packaging Materials Based on Gelatin. Environ. Qual. Manage. 2023, 33, 277–284. [Google Scholar] [CrossRef]
- Hernandez-Izquierdo, V.M.; Krochta, J.M. Thermoplastic Processing of Proteins for Film Formation—A Review. J. Food Sci. 2008, 73, 30–39. [Google Scholar] [CrossRef]
- Abdalrazeq, M.; Aref, D.; Mariniello, L.; Giosafatto, C.V.L. Microbial Transglutaminase-Mediated Modification of Heat-Denatured Whey Proteins for the Preparation of Bio-Based Materials. Coatings 2025, 15, 66. [Google Scholar] [CrossRef]
- Kocatepe, M.; Ertan, K.; Sahin, S.; Sumnu, G. Effects of Transglutaminase and Thyme Oil Addition on the Properties of Faba Bean Protein-Based Active Films. Int. J. Biol. Macromol. 2025, 312, 144178. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Shao, Y.; Chen, J.; Li, Z.; Chang, W.; Hu, Y.; Li, S.; Jiang, H.; Luan, G. Cold Plasma-Assisted Transglutaminase Cross-Linking: Effects on the Structure and Film-Forming Properties of Soybean Protein Fractions. Innov. Food Sci. Emerg. Technol. 2025, 100, 103946. [Google Scholar] [CrossRef]
- Alavarse, A.C.; Frachini, E.C.G.; da Silva, R.L.C.G.; Lima, V.H.; Shavandi, A.; Petri, D.F.S. Crosslinkers for Polysaccharides and Proteins: Synthesis Conditions, Mechanisms, and Crosslinking Efficiency, a Review. Int. J. Biol. Macromol. 2022, 202, 558–596. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Al-Harrasi, A.; Al-Azri, M.S.; Ullah, S.; Makeen, H.A.; Meraya, A.M.; Albratty, M.; Najmi, A.; Anwer, M.K. Gallic Acid Crosslinked Gelatin and Casein Based Composite Films for Food Packaging Applications. Polymers 2022, 14, 4065. [Google Scholar] [CrossRef]
- Jia, F.; Huang, Y.; Hou, Y.; Hu, S.Q. Characterization and Formation Mechanisms of High Tensile Strength Gliadin Films Prepared by Bi-Crosslinking and Blending. Food Packag. Shelf Life 2023, 37, 101082. [Google Scholar] [CrossRef]
- Perez-Puyana, V.M.; Cortés-Triviño, E.; Jiménez-Rosado, M.; Romero, A.; Martínez, I. Pea Protein-Based Bioplastics Crosslinked with Genipin: Analysis of the Crosslinking Evolution. J. Polym. Environ. 2024, 32, 31–44. [Google Scholar] [CrossRef]
- Sakkara, S.; Venkatesh, K.; Reddy, R.; Nagananda, G.S.; Meghwal, M.; Patil, J.H.; Reddy, N. Characterization of Crosslinked Macrotyloma Uniflorum(Horsegram) Protein Films for Packaging and Medical Applications. Polym. Test. 2020, 91, 106794. [Google Scholar] [CrossRef]
- De Azeredo, H.M.C. Nanocomposites for Food Packaging Applications. Food Res. Int. 2009, 42, 1240–1253. [Google Scholar] [CrossRef]
- Kaur, G.; Sharma, S.; Mir, S.A.; Dar, B.N. Nanobiocomposite Films: A “Greener Alternate” for Food Packaging. Food Bioprocess Technol. 2021, 14, 1013–1027. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Roy, S.; Ghosh, T.; Biswas, D.; Rhim, J.W. Antimicrobial Nanofillers Reinforced Biopolymer Composite Films for Active Food Packaging Applications—A Review. Sustain. Mater. Technol. 2022, 32, e00353. [Google Scholar] [CrossRef]
- Tabassum, Z.; Mohan, A.; Mamidi, N.; Khosla, A.; Kumar, A.; Solanki, P.R.; Malik, T.; Girdhar, M. Recent Trends in Nanocomposite Packaging Films Utilising Waste Generated Biopolymers: Industrial Symbiosis and Its Implication in Sustainability. IET Nanobiotechnol. 2023, 17, 127–153. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gong, C.; Qin, Y.; Hu, Y.; Jiao, A.; Jin, Z.; Qiu, C.; Wang, J. Bioactive and functional biodegradable packaging films reinforced with nanoparticles. J. Food Eng. 2022, 312, 110752. [Google Scholar] [CrossRef]
- Das, D.; Panesar, P.S.; Saini, C.S. Effect of Montmorillonite (MMT) on the properties of soybean meal protein isolate-based nanocomposite film loaded with debittered kinnow peel powder. Food Res. Int. 2024, 185, 114292. [Google Scholar] [CrossRef]
- Hoyos Merlano, N.T.; Guz, L.; Borroni, V.; Candal, R.J.; Herrera, M.L. Effects of the geometry of reinforcement on physical properties of sodium caseinate/TiO2 nanocomposite films for applications in food packaging. Biopolymers 2023, 114, e23531. [Google Scholar] [CrossRef]
- Rodríguez Pineda, L.M.; Siliqi, D.; Borroni, V.; Guz, L.; Scattarella, F.; Giannini, C.; Candal, R.J.; Altamura, D.; Herrera, M.L. The effect of nanoreinforcement geometry on the physical and structural properties of whey protein concentrate/omega-3 rich oil/TiO2 nanocomposite films. Sustain. Food Technol. 2025, 3, 743–758. [Google Scholar] [CrossRef]
- De Azeredo, H.M.C. Antimicrobial Activity of Nanomaterials for Food Packaging Applications. In Nano-Antimicrobials: Progress and Prospects; Cioffi, N., Rai, M., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2014; pp. 375–394. [Google Scholar] [CrossRef]
- Liao, J.; Zhou, Y.; Hou, B.; Zhang, J.; Huang, H. Nano-chitin: Preparation strategies and food biopolymer film reinforcement and applications. Carbohydr. Polym. 2023, 305, 120553. [Google Scholar] [CrossRef] [PubMed]
- Wardana, A.A.; Wigati, L.P.; Marcellino, V.; Kusuma, G.; Yan, X.R.; Nkede, F.N.; Jothi, J.S.; Hang, N.P.T.; Tanaka, F.; Tanaka, F.; et al. The incorporation of chitosan nanoparticles enhances the barrier properties and antifungal activity of chitosan-based nanocomposite coating films. Int. J. Biol. Macromol. 2024, 280, 135840. [Google Scholar] [CrossRef]
- Liu, Z.; Upadhyay, P.; Ullah, A. Enhanced properties of novel canola meal nanocomposite packaging films reinforced with cellulose nanocrystals and glycidyl methacrylate. Food Packag. Shelf Life 2025, 49, 101511. [Google Scholar] [CrossRef]
- Fernández-Marín, R.; Morales, A.; Erdocia, X.; Iturrondobeitia, M.; Labidi, J.; Lizundia, E. Chitosan-Chitin Nanocrystal Films from Lobster and Spider Crab: Properties and Environmental Sustainability. ACS Sustain. Chem. Eng. 2024, 12, 10363–10375. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Berton, P.; Rogers, R.D. Advances in Functional Chitin Materials: A Review. ACS Sustain. Chem. Eng. 2019, 7, 6444–6457. [Google Scholar] [CrossRef]
- Muñoz-Núñez, C.; Fernández-García, M.; Muñoz-Bonilla, A. Chitin Nanocrystals: Environmentally Friendly Materials for the Development of Bioactive Films. Coatings 2022, 12, 144. [Google Scholar] [CrossRef]
- Amjadi, S.; Emaminia, S.; Heyat Davudian, S.; Pourmohammad, S.; Hamishehkar, H.; Roufegarinejad, L. Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles. Carbohydr. Polym. 2019, 216, 376–384. [Google Scholar] [CrossRef]
- Farokhi, N.M.; Milani, J.M.; Amiri, Z.R. Fabrication of Nanocomposite Gelatin-Based Film by the Pickering Emulsion Containing Nanoparticles of Chitin. J. Food Eng. 2024, 367, 111885. [Google Scholar] [CrossRef]
- Sahraee, S.; Milani, J.M.; Ghanbarzadeh, B.; Hamishehkar, H. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. Int. J. Biol. Macromol. 2017, 97, 373–381. [Google Scholar] [CrossRef]
- Sahraee, S.; Ghanbarzadeh, B.; Milani, J.M.; Hamishehkar, H. Development of Gelatin Bionanocomposite Films Containing Chitin and ZnO Nanoparticles. Food Bioproc. Technol. 2017, 10, 1441–1453. [Google Scholar] [CrossRef]
- Vahedikia, N.; Garavand, F.; Tajeddin, B.; Cacciotti, I.; Jafari, S.M.; Omidi, T.; Zahedi, Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids Surf. B Biointerfaces 2019, 177, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Xin, S.; Xiao, L.; Dong, X.; Li, X.; Wang, Y.; Hu, X.; Sameen, D.E.; Qin, W.; Zhu, B. Preparation of chitosan/curcumin nanoparticles based zein and potato starch composite films for schizothorax prenati fillet preservation. Int. J. Biol. Macromol. 2020, 164, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Saini, C.S. Utilization of peel of white pomelo for the development of pectin based biodegradable composite films blended with casein and egg albumen. Food Chem. Adv. 2022, 1, 100054. [Google Scholar] [CrossRef]
- Deng, W.; Xu, Q.; Hu, X.; Sheng, L. Structure and properties of egg white protein films modified by high-intensity ultrasound: An effective strategy. Food Res. Int. 2022, 157, 111264. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Y.Q. An insight on egg white: From most common functional food to biomaterial application. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1045–1058. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhao, Y.; Chi, Y. Changes in the gel characteristics of two hen egg white powders modified by dry heating and the maillard reaction during long-term storage. LWT—Food Sci. Technol. 2019, 109, 123–129. [Google Scholar] [CrossRef]
- Baquero-Aznar, V.; Salvador, M.L.; Fernández-Cuello, Á.; Clavería, I.; González-Buesa, J. Role of egg white protein gelling capacity on the processability and properties of compression-moulded films. Future Foods 2025, 11, 100616. [Google Scholar] [CrossRef]
- Diañez, I.; Martínez, I.; Partal, P. Synergistic effect of combined nanoparticles to elaborate exfoliated egg-white protein-based nanobiocomposites. Compos. Part B Eng. 2016, 88, 36–43. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; Gavara, R.; Catalá, R.; Hernández-Muñoz, P. The Potential of Proteins for Producing Food Packaging Materials: A Review. Packag. Technol. Sci. 2016, 29, 203–224. [Google Scholar] [CrossRef]
- Peng, N.; Gu, L.; Li, J.; Chang, C.; Li, X.; Su, Y.; Yang, Y. Films Based on Egg White Protein and Succinylated Casein Cross-Linked with Transglutaminase. Food Bioproc. Technol. 2017, 10, 1422–1430. [Google Scholar] [CrossRef]
- Diañez, I.; Martínez, I.; Gómez, P.A. Effect of plasticiser on the morphology, mechanical properties and permeability of albumen-based nanobiocomposites. Food Packag. Shelf Life 2020, 24, 100499. [Google Scholar] [CrossRef]
- Giménez, B.; Gómez-Guillén, M.C.; López-Caballero, M.E.; Gómez-Estaca, J.; Montero, P. Role of sepiolite in the release of active compounds from gelatin-egg white films. Food Hydrocoll. 2012, 27, 475–486. [Google Scholar] [CrossRef]
- Calvo, V.; Martínez-Barón, C.; Vázquez-Conejo, B.; Dominguez-Alfaro, A.; Paleo, A.J.; Villacampa, B.; Ansón-Casaos, A.; Maser, W.K.; Benito, A.M.; González-Domínguez, J.M. Carbon Nanomaterials-Based Inks and Electrodes Using Chitin Nanocrystals. ACS Sustain. Chem. Eng. 2024, 12, 15980–15990. [Google Scholar] [CrossRef]
- Narkevicius, A.; Steiner, L.M.; Parker, R.M.; Ogawa, Y.; Frka-Petesic, B.; Vignolini, S. Controlling the Self-Assembly Behavior of Aqueous Chitin Nanocrystal Suspensions. Biomacromolecules 2019, 20, 2830–2838. [Google Scholar] [CrossRef]
- ASTM D0882:2018; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D3985:2017; Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM F1249:2020; Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor. ASTM International: West Conshohocken, PA, USA, 2020.
- Liang, K.; Zhou, Y.; Ji, Y. Full biodegradable elastomeric nanocomposites fabricated by chitin nanocrystal and poly(caprolactone-diol citrate) elastomer. J. Bioact. Compat. Polym. 2019, 34, 453–463. [Google Scholar] [CrossRef]
- Herrera, N.; Salaberria, A.M.; Mathew, A.P.; Oksman, K. Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: Effects on mechanical, thermal and optical properties. Compos. Part A Appl. Sci. Manuf. 2016, 83, 89–97. [Google Scholar] [CrossRef]
- Chang, P.R.; Jian, R.; Yu, J.; Ma, X. Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr. Polym. 2010, 80, 420–425. [Google Scholar] [CrossRef]
- Colijn, I.; Yanat, M.; Terhaerdt, G.; Molenveld, K.; Boeriu, C.G.; Schroën, K. Chitin Nanocrystal Hydrophobicity Adjustment by Fatty Acid Esterification for Improved Polylactic Acid Nanocomposites. Polymers 2022, 14, 2619. [Google Scholar] [CrossRef] [PubMed]
- Ngasotter, S.; Xavier, K.A.M.; Porayil, L.; Balange, A.; Nayak, B.B.; Eapen, S.; Adarsh, K.J.; Sreekala, M.S.; Sharma, R.; Ninan, G. Optimized High-Yield Synthesis of Chitin Nanocrystals from Shrimp Shell Chitin by Steam Explosion. Carbohydr. Polym. 2023, 316, 121040. [Google Scholar] [CrossRef]
- Oun, A.A.; Rhim, J.W. Effect of oxidized chitin nanocrystals isolated by ammonium persulfate method on the properties of carboxymethyl cellulose-based films. Carbohydr. Polym. 2017, 175, 712–720. [Google Scholar] [CrossRef]
- Singh, S.; Patel, M.; Schwendemann, D.; Zaccone, M.; Geng, S.; Maspoch, M.L.; Oksman, K. Effect of Chitin Nanocrystals on Crystallization and Properties of Poly(Lactic Acid)-Based Nanocomposites. Polymers 2020, 12, 726. [Google Scholar] [CrossRef] [PubMed]
- Corvaglia, S.; Rodriguez, S.; Bardi, G.; Torres, F.G.; Lopez, D. Chitin whiskers reinforced carrageenan films as low adhesion cell substrates. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 574–580. [Google Scholar] [CrossRef]
- Salaberria, A.M.; Labidi, J.; Fernandes, S.C.M. Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chem. Eng. J. 2014, 256, 356–364. [Google Scholar] [CrossRef]
- Salaberria, A.M.; Diaz, R.H.; Labidi, J.; Fernandes, S.C.M. Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocoll. 2015, 46, 93–102. [Google Scholar] [CrossRef]
- Wu, C.; Sun, J.; Zheng, P.; Kang, X.; Chen, M.; Li, Y.; Ge, Y.; Hu, Y.; Pang, J. Preparation of an intelligent film based on chitosan/oxidized chitin nanocrystals incorporating black rice bran anthocyanins for seafood spoilage monitoring. Carbohydr. Polym. 2019, 222, 115006. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Feng, Y.; Cao, X.; Luo, B.; Liu, M. Chitin Nanocrystals as an Eco-Friendly and Strong Anisotropic Adhesive. ACS Appl. Mater. Interfaces 2021, 13, 11356–11368. [Google Scholar] [CrossRef]
- Ngasotter, S.; Xavier, K.A.M.; Sagarnaik, C.; Sasikala, R.; Mohan, C.O.; Jaganath, B.; Ninan, G. Evaluating the Reinforcing Potential of Steam-Exploded Chitin Nanocrystals in Chitosan-Based Biodegradable Nanocomposite Films for Food Packaging Applications. Carbohydr. Polym. 2025, 348, 122841. [Google Scholar] [CrossRef]
- Rubentheren, V.; Ward, T.A.; Chee, C.Y.; Tang, C.K. Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr. Polym. 2015, 115, 379–387. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, S.; Yu, J.; Yang, J.; Xiong, L.; Sun, Q. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydr. Polym. 2016, 147, 372–378. [Google Scholar] [CrossRef]
- Deseta, M.L.; Sponton, O.E.; Finos, M.B.; Cuffia, F.; Torres-Nicolini, A.; Álvarez, V.A.; Santiago, L.G.; Perez, A.A. Development of Antifungal Films from Nanocomplexes Based on Egg White Protein Nanogels and Phenolic Compounds. Food Biophys. 2023, 18, 273–288. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Chi, Y.; Ma, Z.; Geng, X.; Chi, Y. Effect of dry heating on egg white powder influencing water mobility and intermolecular interactions of its gels. J. Sci. Food Agric. 2021, 101, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Qing, M.; Zang, J.; Shan, A.; Zhang, H.; Chi, Y.; Chi, Y.; Gao, X. Molecular interactions in the dry heat-facilitated hydrothermal gel formation of egg white protein. Food Res. Int. 2022, 162, 112058. [Google Scholar] [CrossRef] [PubMed]
- Rouilly, A.; Mériaux, A.; Geneau, C.; Silvestre, F.; Rigal, L. Film extrusion of sunflower protein isolate. Polym. Eng. Sci. 2006, 46, 1635–1640. [Google Scholar] [CrossRef]
- Li-Chan, E.C.Y.; Powrie, W.D.; Nakai, S. The chemistry of eggs and egg products. In Egg Science and Technology, 4th ed.; Stadelman, W.J., Cotterill, O.J., Eds.; Haworth Press: Binghamton, NY, USA, 2007; pp. 105–176. [Google Scholar]
- Strixner, T.; Kulozik, U. Egg proteins. In Handbook of Food Proteins; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Sawston, UK, 2011; pp. 150–209. [Google Scholar] [CrossRef]
- Baraki, S.Y.; Zhang, Y.; Li, X.; Ding, L.; Debeli, D.K.; Macharia, D.K.; Wang, B.; Feng, X.; Mao, Z.; Sui, X. Regenerated chitin reinforced polyhydroxybutyrate composites via Pickering emulsion template with improved rheological, thermal, and mechanical properties. Compos. Commun. 2021, 25, 100655. [Google Scholar] [CrossRef]
- Zaccone, M.; Patel, M.K.; De Brauwer, L.; Nair, R.; Montalbano, M.L.; Monti, M.; Oksman, K. Influence of Chitin Nanocrystals on the Crystallinity and Mechanical Properties of Poly(Hydroxybutyrate) Biopolymer. Polymers 2022, 14, 562. [Google Scholar] [CrossRef]
- Di Lorenzo, E.; Pasquino, R.; Grizzuti, N.; Di Maio, E. Rheology in novel egg cooking methods. Phys. Fluids 2025, 37, 023145. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, L.; Sui, X. Incorporating chitin nanocrystal yields stronger soy protein gel: Insights into linear and nonlinear rheological behaviors by oscillatory shear tests. Food Hydrocoll. 2023, 135, 108177. [Google Scholar] [CrossRef]
- Rasweefali, M.K.; Nayana, A.; Raseel Rahman, M.K.; Habeebrehman, H.; Sabu, S. Influence of chemical concentrations on the physicochemical, structural, functional and color characteristics of chitin isolated from Arabian red shrimp (Aristeus alcocki). Sustain. Chem. Environ. 2025, 10, 100233. [Google Scholar] [CrossRef]
- Baquero, V.; Salvador, M.L.; González-Buesa, J. Effect of shellac coating on the properties of egg white protein (EWP) films for cherry tomato packaging. Acta Hortic. 2024, 1396, 375–384. [Google Scholar] [CrossRef]
- Pranata, M.P.; González-Buesa, J.; Chopra, S.; Kim, K.; Pietri, Y.; Ng, P.K.W.; Matuana, L.M.; Almenar, E. Egg white protein film production through extrusion and calendering processes and its suitability for food packaging applications. Food Bioprocess Technol. 2019, 12, 714–727. [Google Scholar] [CrossRef]
- Herrera, N.; Roch, H.; Salaberria, A.M.; Pino-Orellana, M.A.; Labidi, J.; Fernandes, S.C.M.; Radic, D.; Leiva, A.; Oksman, K. Functionalized Blown Films of Plasticized Polylactic Acid/Chitin Nanocomposite: Preparation and Characterization. Mater. Des. 2016, 92, 846–852. [Google Scholar] [CrossRef]
- Shankar, S.; Reddy, J.P.; Rhim, J.W.; Kim, H.Y. Preparation, Characterization, and Antimicrobial Activity of Chitin Nanofibrils Reinforced Carrageenan Nanocomposite Films. Carbohydr. Polym. 2015, 117, 468–475. [Google Scholar] [CrossRef]
- Mirpourian, N.S.; Fathi, M.; Maleky, F. Production of starch edible films using chitin nanocrystals extracted from mushroom. Int. J. Food Sci. Technol. 2024, 59, 9402–9416. [Google Scholar] [CrossRef]
- Broers, L.; van Dongen, S.; de Goederen, V.; Ton, M.; Spaen, J.; Boeriu, C.; Schroën, K. Addition of Chitin Nanoparticles Improves Polylactic Acid Film Properties. Nanotechnol. Adv. Mater. Sci. 2018, 1, 1–8. [Google Scholar] [CrossRef]
- Xu, J.; Manepalli, P.H.; Zhu, L.; Narayan-Sarathy, S.; Alavi, S. Morphological and Performance Characteristics of Nanocomposite Films Based on Poly(Lactic Acid) Compounded with Nanocrystalline Cellulose and Chitin Whiskers Using Melt Extrusion. Cellulose 2020, 27, 7523–7534. [Google Scholar] [CrossRef]
- Xu, J.; Manepalli, P.H.; Zhu, L.; Narayan-Sarathy, S.; Alavi, S. Morphological, Barrier and Mechanical Properties of Films from Poly (Butylene Succinate) Reinforced with Nanocrystalline Cellulose and Chitin Whiskers Using Melt Extrusion. J. Polym. Res. 2019, 26, 188. [Google Scholar] [CrossRef]
Film Sample | L* | a* | b* | Transmittance (%) |
---|---|---|---|---|
EWP | 96.72 ± 0.25 a | −0.66 ± 0.18 a | 3.97 ± 0.26 b | 72.69 ± 3.12 a |
1% L | 96.58 ± 0.37 a | −0.64 ± 0.30 a | 4.06 ± 0.41 b | 72.14 ± 2.29 a |
2% L | 96.53 ± 0.17 a | −0.78 ± 0.09 a | 4.56 ± 0.24 a | 74.28 ± 3.22 a |
2% S | 96.55 ± 0.29 a | −0.57 ± 0.21 a | 4.53 ± 0.21 a | 72.30 ± 3.18 a |
5% S | 96.60 ± 0.43 a | −0.83 ± 0.14 a | 4.76 ± 0.28 a | 70.59 ± 2.74 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baquero-Aznar, V.; Calvo, V.; González-Domínguez, J.M.; Maser, W.K.; Benito, A.M.; Salvador, M.L.; González-Buesa, J. Novel Egg White Protein–Chitin Nanocrystal Biocomposite Films with Enhanced Functional Properties. Polymers 2025, 17, 2538. https://doi.org/10.3390/polym17182538
Baquero-Aznar V, Calvo V, González-Domínguez JM, Maser WK, Benito AM, Salvador ML, González-Buesa J. Novel Egg White Protein–Chitin Nanocrystal Biocomposite Films with Enhanced Functional Properties. Polymers. 2025; 17(18):2538. https://doi.org/10.3390/polym17182538
Chicago/Turabian StyleBaquero-Aznar, Víctor, Víctor Calvo, José Miguel González-Domínguez, Wolfgang K. Maser, Ana M. Benito, María Luisa Salvador, and Jaime González-Buesa. 2025. "Novel Egg White Protein–Chitin Nanocrystal Biocomposite Films with Enhanced Functional Properties" Polymers 17, no. 18: 2538. https://doi.org/10.3390/polym17182538
APA StyleBaquero-Aznar, V., Calvo, V., González-Domínguez, J. M., Maser, W. K., Benito, A. M., Salvador, M. L., & González-Buesa, J. (2025). Novel Egg White Protein–Chitin Nanocrystal Biocomposite Films with Enhanced Functional Properties. Polymers, 17(18), 2538. https://doi.org/10.3390/polym17182538