Drawing-Induced Crimp Formation and Wettability of Four-Lobed Side-by-Side PBT/PET Bicomponent Fibers
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Fiber Preparation
2.2.1. Melt Spinning
2.2.2. Drawing and Heat Setting
2.3. Fiber Testing Methods
3. Results and Discussion
3.1. Fiber Fineness and Cross-Sectional Morphology
3.2. Tensile Mechanical Properties
3.3. Crimp Radius and Crimping Mechanism
3.3.1. Theoretical Basis of Crimp Formation
3.3.2. Draw-Induced Shrinkage Difference
3.3.3. Thermally Induced Shrinkage Difference
3.3.4. Calculation of Shrinkage Difference
3.4. Wettability Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hufenus, R.; Yan, Y.; Dauner, M.; Kikutani, T. Melt-spun fibers for textile applications. Materials 2020, 13, 4298. [Google Scholar] [CrossRef]
- Wan, A.; Xu, T.; Yao, C.; Gao, L. Effect of heat treatment on the mechanical properties of PBT/PET yarn. J. Ind. Text. 2024, 54, 15280837241267002. [Google Scholar] [CrossRef]
- Yu, J.; Li, X.; Ji, H.; Zhang, Y.; Chen, K. Evaluation of the crimp formability of side-by-side PLA/PTT bicomponent fibers. Text. Res. J. 2021, 91, 1865–1875. [Google Scholar] [CrossRef]
- Wang, F.; Gu, F.; Xu, B. Elastic strain of PTT/PET self-crimping fibers. J. Eng. Fibers Fabr. 2013, 8, 50–55. [Google Scholar] [CrossRef]
- Souissi, M.; Khiari, R.; Zaag, M.; Meksi, N.; Dhaouadi, H. Effect of the morphology of polyester filaments on their physical properties and dyeing performances. Polym. Bull. 2021, 78, 2685–2707. [Google Scholar] [CrossRef]
- Wan, A.; Xu, Z.; Yao, C.; Ma, P. Preparation and properties of heat–moisture adaptive elastic seamless sports underwear. Text. Res. J. 2025. [Google Scholar] [CrossRef]
- Gernhardt, M.; Peng, L.; Burgard, M.; Jiang, S.; Förster, B.; Schmalz, H.; Agarwal, S. Tailoring the morphology of responsive bioinspired bicomponent fibers. Macromol. Mater. Eng. 2018, 303, 1700248. [Google Scholar] [CrossRef]
- Timoshenko, S.S. Analysis of bi-metal thermostats. J. Opt. Soc. Am. 1925, 11, 233–255. [Google Scholar] [CrossRef]
- Brand, R.H.; Backer, S. Mechanical principles of natural crimp of fiber. Text. Res. J. 1961, 31, 39–49. [Google Scholar] [CrossRef]
- Denton, M.J. The crimp curvature of bicomponent fibres. J. Text. Inst. 1982, 73, 13–19. [Google Scholar] [CrossRef]
- Khadse, N.; Ruckdashel, R.; Macajoux, S.; Sun, H.; Park, J.H. Temperature-responsive PBT bicomponent fibers for dynamic thermal insulation. Polymers 2022, 14, 2757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, Y.; Li, H.; Li, Y.; Zhang, Y.; Zhao, T.; Zeng, Y. Investigation on the Helix Curvature of Bicomponent Helical Fibers: Numerical Simulation and Experimental Validation. Phys. Fluids 2023, 35, 123104. [Google Scholar] [CrossRef]
- Luo, J. Self-Crimping Structure and Properties of PTT/PET Side-by-Side Bicomponent Fibers. Master’s Thesis, Donghua University, Shanghai, China, 2010. [Google Scholar]
- Xiang, G.; Hua, H.; Gao, Q.; Guo, J.; Zhang, X.; Wang, X. Fabrication and properties of self-crimp side-by-side bicomponent filaments composed of polyethylene terephthalates with different intrinsic viscosity. Fibres Text. East. Eur. 2022, 30, 68–74. [Google Scholar] [CrossRef]
- Abbasi, M.; Kotek, R. Effects of drawing process on crimp formation-ability of side-by-side bicomponent filament yarns produced from recycled, fiber-grade and bottle-grade PET. J. Text. Inst. 2019, 110, 1439–1444. [Google Scholar] [CrossRef]
- Gao, F.; Sun, Y.; Xiao, S.; Chen, W.; Lu, W. Microstructure and properties of polyester composite fibers with different drafting ratios. J. Text. Res. 2022, 43, 34–39. [Google Scholar]
- Rwei, S.P.; Lin, Y.T.; Su, Y.Y. Study of self-crimp polyester fibers. Polym. Eng. Sci. 2005, 45, 838–845. [Google Scholar] [CrossRef]
- Zhu, S.; Meng, X.; Yan, X.; Chen, S. Evidence for bicomponent fibers: A review. e-Polymers 2021, 21, 636–653. [Google Scholar] [CrossRef]
- Naeimirad, M.; Zadhoush, A.; Kotek, R.; Esmaeely Neisiany, R.; Nouri Khorasani, S.; Ramakrishna, S. Recent advances in core/shell bicomponent fibers and nanofibers: A review. J. Appl. Polym. Sci. 2018, 135, 46265. [Google Scholar] [CrossRef]
- Lamberger, Z.; Zainuddin, S.; Scheibel, T.; Lang, G. Polymeric janus fibers. ChemPlusChem 2023, 88, e202200371. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Das, A.; Fangueiro, R.; de Araujo, M. Effect of fibre diameter and cross-sectional shape on moisture transmission through fabrics. Fibers Polym. 2008, 9, 457–462. [Google Scholar] [CrossRef]
- Xu, B.; Xu, B.; Shi, Z.; Lu, C.; Hu, Z.; Cheng, Y.; Zhu, M.; Jiang, L.; Liu, H. Continuous homogeneous thin liquid film on a single cross-shaped profiled fiber with high off-circularity: Toward quick-drying fabrics. Adv. Mater. 2024, 36, e2403316. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Peng, M.; Liu, J.; Liu, Y.; Zhou, W.; Dai, H.; Tan, L.; Yu, J.; Li, G. A novel moisture-wicking and fast-drying functional bicomponent fabric. Fibers Polym. 2025, 26, 447–462. [Google Scholar] [CrossRef]
- Der, O.; Bertola, V. An experimental investigation of oil–water flow in a serpentine channel. Int. J. Multiph. Flow 2020, 129, 103327. [Google Scholar] [CrossRef]
- Wu, Z.; Sundén, B. Liquid–liquid two-phase flow patterns in ultra-shallow straight and serpentine microchannels. Heat Mass Transf. 2019, 55, 1095–1108. [Google Scholar] [CrossRef]
- Liu, Y.L.; Yuan, R.C.; Yu, J.Y.; Liu, L.; Li, X. Preparation and properties of PA6/PBT side-by-side bicomponent elastic fibers. J. Donghua Univ. (Nat. Sci.) 2025, 51, 1–8. [Google Scholar]
- Yu, W.D.; Chu, Y.C. Textile Physics, 1st ed.; Donghua University Press: Shanghai, China, 2002; pp. 85–86. [Google Scholar]
- Möginger, B. The determination of a general time creep compliance relation of linear viscoelastic materials under constant load and its extension to nonlinear viscoelastic behavior for the Burger model. Rheol. Acta 1993, 32, 370–379. [Google Scholar] [CrossRef]
- Wang, N.; Sun, R.J.; Lai, K. Study on the effect of heat treatment on thermal shrinkage of polyester filament yarn. J. Donghua Univ. (Nat. Sci.) 2003, 29, 88–91. [Google Scholar]
- Zhang, Y. Study on Component Compatibility in PBT/PET Blends. Master’s Thesis, Donghua University, Shanghai, China, 2006. [Google Scholar]
Item | PET Component Parameters | PBT Component Parameters | |
---|---|---|---|
Extruder barrel temperatures | Zone 1 (°C) | 270 | 250 |
Zone 2 (°C) | 290 | 270 | |
Zone 3 (°C) | 293 | 278 | |
Zone 4 (°C) | 293 | 285 | |
Melt temperature upstream of the gear pump (°C) | 293 | 285 | |
Melt temperature downstream of the gear pump (°C) | 293 | 285 | |
Spinneret block temperature (°C) | 290 | 290 | |
Ambient temperature (°C) | 25 | 25 | |
Polymer throughput rate (g·min−1·hole−1) | 1.09 | 1.05 | |
Take-up speed (m/min) | 1000 | 1000 |
Draw Ratio | Roll 1 Speed (m/min) | Roll 2 Speed (m/min) | Roll 3 Speed (m/min) | Roll 4 Speed (m/min) | Roll 5 Speed (m/min) | Roll 6 Speed (m/min) | Take-Up Speed (m/min) |
---|---|---|---|---|---|---|---|
1.6 | 10 | 10 | 10 | 16 | 16 | 16 | 16 |
2.2 | 10 | 10 | 10 | 22 | 22 | 22 | 22 |
2.8 | 10 | 10 | 10 | 28 | 28 | 28 | 28 |
3.4 | 10 | 10 | 10 | 34 | 34 | 34 | 34 |
4.0 | 10 | 10 | 10 | 40 | 40 | 40 | 40 |
Initial Fineness (dtex) | Draw Ratio | Fineness (dtex) |
---|---|---|
394.10 | 1.6 | 266.83 |
2.2 | 212.22 | |
2.8 | 142.88 | |
3.4 | 110.33 | |
4 | 95.94 |
Fiber Type | E1 (cN/dtex) | 95% CI | E2 (cN/dtex) | 95% CI | (cN·s/dtex) | 95% CI | (cN·s/dtex) | 95% CI | R2 |
---|---|---|---|---|---|---|---|---|---|
PET | 8.3868 | [6.43, 10.35] | 1.9066 | [1.76, 2.05] | 26.0542 | [21.75, 30.36] | 373.8221 | [364.26, 383.38] | 0.9788 |
PBT | 4.2353 | [3.40, 5.07] | 1.5352 | [1.49, 1.58] | 17.7848 | [16.66, 18.91] | 218.1426 | [215.59, 220.69] | 0.9892 |
Draw Ratio | Δε (%) |
---|---|
1.6 | 0.048 |
2.2 | 0.075 |
2.8 | 0.233 |
3.4 | 0.641 |
4 | 1.119 |
Fiber Cross-Section | Number of Measurements | Mean Contact Angle (°) | Standard Deviation | 95% Confidence Interval for the Mean (°) | |
---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||
Circle | 8 | 74.84 | 2.23 | 72.98 | 76.70 |
Four-lobed | 8 | 71.28 | 1.96 | 69.64 | 72.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Feng, P.; Hu, Z.; Wang, J.; Xu, Q.; Yang, C. Drawing-Induced Crimp Formation and Wettability of Four-Lobed Side-by-Side PBT/PET Bicomponent Fibers. Polymers 2025, 17, 2529. https://doi.org/10.3390/polym17182529
Xu X, Feng P, Hu Z, Wang J, Xu Q, Yang C. Drawing-Induced Crimp Formation and Wettability of Four-Lobed Side-by-Side PBT/PET Bicomponent Fibers. Polymers. 2025; 17(18):2529. https://doi.org/10.3390/polym17182529
Chicago/Turabian StyleXu, Xinkang, Pei Feng, Zexu Hu, Jiazheng Wang, Qianchun Xu, and Chongchang Yang. 2025. "Drawing-Induced Crimp Formation and Wettability of Four-Lobed Side-by-Side PBT/PET Bicomponent Fibers" Polymers 17, no. 18: 2529. https://doi.org/10.3390/polym17182529
APA StyleXu, X., Feng, P., Hu, Z., Wang, J., Xu, Q., & Yang, C. (2025). Drawing-Induced Crimp Formation and Wettability of Four-Lobed Side-by-Side PBT/PET Bicomponent Fibers. Polymers, 17(18), 2529. https://doi.org/10.3390/polym17182529