Research on the Elastic–Plastic Behaviors of Bicontinuous Polymer Matrix and Carbon Fiber-Reinforced Composites Based on Micromechanical Modelling
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Specimen Preparation
2.3. Characterization
3. Modelling
3.1. Phase Separation Modelling Theory
3.2. Numerical Model of BSEMs
3.3. Numerical Model of CFCEs
4. Results and Discussion
4.1. Experiment Results
4.2. Analyses of the Mechanical Response
4.2.1. Mechanical Response of BSEMs
4.2.2. Mechanical Response of CFCEs
4.3. Plasticity Analysis
4.3.1. Plasticity Analysis of BSEMs
4.3.2. Plasticity Analysis of CFCEs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPCs | structural power composites |
CFs | carbon fibers |
SEs | structural electrolytes |
BSEMs | bicontinuous structural electrolyte matrices |
CFCEs | carbon fiber composite electrodes |
SEM | Scanning Electron Microscope |
FE | finite element |
References
- Xu, Y.; Lu, W.; Xu, G.; Chou, T.-W. Structural supercapacitor composites: A review. Compos. Sci. Technol. 2021, 204, 108636. [Google Scholar] [CrossRef]
- Asp, L.E.; Johansson, M.; Lindbergh, G.; Xu, J.; Zenkert, D. Structural battery composites: A review. Funct. Compos. Struct. 2019, 1, 042001. [Google Scholar] [CrossRef]
- Qi, G.; Cui, Q.; Zhang, B.; Du, S. A carbon fiber lamina electrode based on macroporous epoxy with vertical ion channels for structural battery composites. Compos. Struct. 2023, 304, 116425. [Google Scholar] [CrossRef]
- Ye, J.; Ji, X.; Liu, Z.; Liu, K.; Li, J.; Wang, R.; Wang, J.; Lei, Q. Carbon fiber reinforced structural battery composites: Progress and challenges toward industrial application. Compos. Part B Eng. 2024, 277, 111411. [Google Scholar] [CrossRef]
- Asp, L.E.; Greenhalgh, E.S. Structural power composites. Compos. Sci. Technol. 2014, 101, 41–61. [Google Scholar] [CrossRef]
- Anthony, D.; Greenhalgh, E.; Katafiasz, T.; Kucernak, A.; Linde, P.; Nguyen, S. Structural supercapacitor composite technology demonstrator. In Proceedings of the 20th European Conference on Composite Materials, Lausanne, Switzerland, 26–30 June 2022; pp. 261–307. [Google Scholar]
- Qi, G.; Wu, J.; Yao, B.; Cui, Q.; Ren, L.; Zhang, B.; Du, S. High modulus carbon fiber based composite structural supercapacitors towards reducing internal resistance and improving multifunctional performance. Compos. Sci. Technol. 2024, 254, 110670. [Google Scholar] [CrossRef]
- Qi, G.; Wu, Y.; Ding, Y.; Zhang, B. Multifunctional performances of structural battery composite full-cells based on carbon fiber anode and LiFePO4 loaded carbon fiber cathode. Polym. Test. 2024, 137, 108523. [Google Scholar] [CrossRef]
- Han, Y.; So, B.J.; Kim, H.J.; Kim, J.H.; Lee, J.H.; Shin, G.; Baek, J.Y.; Kim, H.; Lee, M.W.; Moon, S.K.; et al. Current collectors of carbon fiber reinforced polymer for stackable energy storage composites. Energy Storage Mater. 2024, 64, 103070. [Google Scholar] [CrossRef]
- Ma, L.; Luo, X.; Cai, N.; Xue, Y.; Zhu, S.; Fu, Z.; Yu, F. Facile fabrication of hierarchical porous resins via high internal phase emulsion and polymeric porogen. Appl. Surf. Sci. 2014, 305, 186–193. [Google Scholar] [CrossRef]
- Schulze, M.W.; McIntosh, L.D.; Hillmyer, M.A.; Lodge, T.P. High-Modulus, High-Conductivity Nanostructured Polymer Electrolyte Membranes via Polymerization-Induced Phase Separation. Nano Lett. 2014, 14, 122–126. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar] [CrossRef]
- Johannisson, W.; Ihrner, N.; Zenkert, D.; Johansson, M.; Carlstedt, D.; Asp, L.E.; Sieland, F. Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries. Compos. Sci. Technol. 2018, 168, 81–87. [Google Scholar] [CrossRef]
- Ehlers, W. Toward finite theories of liquid-saturated elasto-plastic porous media. Int. J. Plast. 1991, 7, 433–475. [Google Scholar] [CrossRef]
- Shirshova, N.; Bismarck, A.; Carreyette, S.; Fontana, Q.P.V.; Greenhalgh, E.S.; Jacobsson, P.; Johansson, P.; Marczewski, M.J.; Kalinka, G.; Kucernak, A.R.J.; et al. Structural supercapacitor electrolytes based on bicontinuous ionic liquid–epoxy resin systems. J. Mater. Chem. A 2013, 1, 15300–15309. [Google Scholar] [CrossRef]
- Bae, S.-H.; Jeon, C.; Oh, S.; Kim, C.-G.; Seo, M.; Oh, I.-K. Load-bearing supercapacitor based on bicontinuous PEO-b-P(S-co-DVB) structural electrolyte integrated with conductive nanowire-carbon fiber electrodes. Carbon 2018, 139, 10–20. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, H.; Zhou, L. Phase-microstructure-mechanical properties relationship of carbon fiber reinforced ionic liquid epoxy composites. Compos. Sci. Technol. 2021, 207, 108711. [Google Scholar] [CrossRef]
- Dong, G.-H.; Mao, Y.-Q.; Guo, F.-L.; Li, Y.-Q.; Huang, P.; Fu, S.-Y. Structural battery composites with remarkable energy storage capabilities via system structural design. Compos. Struct. 2023, 306, 116615. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Y.; Islam, M.S.; Cheng, X.; Brown, S.A.; Han, Z.; Rider, A.N.; Wang, C.H. Carbon fiber reinforced Zn-MnO2 structural composite batteries. Compos. Sci. Technol. 2021, 209, 108787. [Google Scholar] [CrossRef]
- Pernice, M.F.; Qi, G.; Senokos, E.; Anthony, D.B.; Nguyen, S.; Valkova, M.; Greenhalgh, E.S.; Shaffer, M.S.P.; Kucernak, A.R.J. Mechanical, electrochemical and multifunctional performance of a CFRP/carbon aerogel structural supercapacitor and its corresponding monofunctional equivalents. Multifunct. Mater. 2022, 5, 025002. [Google Scholar] [CrossRef]
- Ding, Y.; Qi, G.; Cui, Q.; Yang, J.; Zhang, B.; Du, S. High-Performance Multifunctional Structural Supercapacitors Based on In Situ and Ex Situ Activated-Carbon-Coated Carbon Fiber Electrodes. Energy Fuels 2022, 36, 2171–2178. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Wang, J.; Han, Q.; Liu, C. Achieving mechanically sturdy properties and high energy density for Zn-ion structural batteries based on carbon-fiber-reinforced composites. Compos. Sci. Technol. 2022, 218, 109156. [Google Scholar] [CrossRef]
- Qi, G.; Zhang, B.; Du, S. Estimation of interfacial toughness using bilayer fiber bundle compact tension (BFBCT) specimens. Compos. Sci. Technol. 2018, 161, 1–7. [Google Scholar] [CrossRef]
- Bargmann, S.; Klusemann, B.; Markmann, J.; Schnabel, J.E.; Schneider, K.; Soyarslan, C.; Wilmers, J. Generation of 3D representative volume elements for heterogeneous materials: A review. Prog. Mater. Sci. 2018, 96, 322–384. [Google Scholar] [CrossRef]
- Soyarslan, C.; Bargmann, S.; Pradas, M.; Weissmüller, J. 3D stochastic bicontinuous microstructures: Generation, topology and elasticity. Acta Mater. 2018, 149, 326–340. [Google Scholar] [CrossRef]
- Soyarslan, C.; Pradas, M.; Bargmann, S. Effective elastic properties of 3D stochastic bicontinuous composites. Mech. Mater. 2019, 137, 103098. [Google Scholar] [CrossRef]
- Bansal, R.K.; Kubis, A.; Hull, R.; Fitz-Gerald, J.M. High-resolution three-dimensional reconstruction: A combined scanning electron microscope and focused ion-beam approach. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2006, 24, 554–561. [Google Scholar] [CrossRef]
- Groeber, M.A.; Haley, B.K.; Uchic, M.D.; Dimiduk, D.M.; Ghosh, S. 3D reconstruction and characterization of polycrystalline microstructures using a FIB–SEM system. Mater. Charact. 2006, 57, 259–273. [Google Scholar] [CrossRef]
- Kawasaki, K.; Nagai, T.; Nakashima, K. Vertex models for two-dimensional grain growth. Philos. Mag. Part B 1989, 60, 399–421. [Google Scholar] [CrossRef]
- Bos, C.; Mecozzi, M.G.; Sietsma, J. A microstructure model for recrystallisation and phase transformation during the dual-phase steel annealing cycle. Comput. Mater. Sci. 2010, 48, 692–699. [Google Scholar] [CrossRef]
- Carolan, D.; Chong, H.M.; Ivankovic, A.; Kinloch, A.J.; Taylor, A.C. Co-continuous polymer systems: A numerical investigation. Comput. Mater. Sci. 2015, 98, 24–33. [Google Scholar] [CrossRef]
- Abazari, R.; Rezazadeh, H.; Akinyemi, L.; Inc, M. Numerical simulation of a binary alloy of 2D Cahn–Hilliard model for phase separation. Comput. Appl. Math. 2022, 41, 389. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, B.; Feng, M.; Qi, G.; Tian, F.; Feng, Q.; Yang, J.; Wang, S. Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites. Compos. Sci. Technol. 2017, 147, 62–70. [Google Scholar] [CrossRef]
- Cahn, J.W.; Hilliard, J.E. Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem. Phys. 1958, 28, 258–267. [Google Scholar] [CrossRef]
- Wu, K.-J.; Tse, E.C.M.; Shang, C.; Guo, Z. Nucleation and growth in solution synthesis of nanostructures–From fundamentals to advanced applications. Prog. Mater. Sci. 2022, 123, 100821. [Google Scholar] [CrossRef]
- Park, J.M.; Mauri, R.; Anderson, P.D. Phase separation of viscous ternary liquid mixtures. Chem. Eng. Sci. 2012, 80, 270–278. [Google Scholar] [CrossRef]
- Bertozzi, A.; Esedoglu, S.; Gillette, A. Inpainting of Binary Images Using the Cahn-Hilliard Equation. IEEE Trans. Image Process. 2007, 16, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Biner, S.B. Programming Phase-Field Modeling; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Tu, V.; Asp, L.E.; Shirshova, N.; Larsson, F.; Runesson, K.; Jänicke, R. Performance of bicontinuous structural electrolytes. Multifunct. Mater. 2020, 3, 025001. [Google Scholar] [CrossRef]
- Qi, G.; Zhang, B.; Du, S.; Yu, Y. Estimation of aramid fiber/epoxy interfacial properties by fiber bundle tests and multiscale modeling considering the fiber skin/core structure. Compos. Struct. 2017, 167, 1–10. [Google Scholar] [CrossRef]
- Byun, J.; Jee, C.; Seo, I.; Joun, M. Characterization of double strain-hardening behavior using a new flow of extremum curvature strain of Voce strain-hardening model. J. Mech. Sci. Technol. 2022, 36, 4115–4126. [Google Scholar] [CrossRef]
- Donadon, M.V.; Falzon, B.G.; Iannucci, L.; Hodgkinson, J.M. A 3-D micromechanical model for predicting the elastic behaviour of woven laminates. Compos. Sci. Technol. 2007, 67, 2467–2477. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Fei, S.; Wang, H.; Dong, H.; Ke, Y. Generation of random fiber distributions in fiber reinforced composites based on Delaunay triangulation. Mater. Des. 2021, 206, 109812. [Google Scholar] [CrossRef]
- Qi, G.; Du, S.; Zhang, B.; Tang, Z.; Yu, Y. Evaluation of carbon fiber/epoxy interfacial strength in transverse fiber bundle composite: Experiment and multiscale failure modeling. Compos. Sci. Technol. 2014, 105, 1–8. [Google Scholar] [CrossRef]
- Qi, G.; Du, S.; Zhang, B.; Yu, Y. A new approach to assessing carbon fiber/epoxy interfacial shear strength by tensile test of 45° fiber bundle composites: Experiment, modeling and applicability. Compos. Sci. Technol. 2016, 129, 214–221. [Google Scholar] [CrossRef]
- Deng, S.; Wang, Y.; Zhuang, G.; Zhong, X.; Wei, Z.; Yao, Z.; Wang, J.-G. Micromechanical simulation of the pore size effect on the structural stability of brittle porous materials with bicontinuous morphology. Phys. Chem. Chem. Phys. 2019, 21, 12895–12904. [Google Scholar] [CrossRef]
- Duan, S.; Cattaruzza, M.; Tu, V.; Auenhammer, R.M.; Jänicke, R.; Johansson, M.K.G.; Liu, F.; Asp, L.E. Three-dimensional reconstruction and computational analysis of a structural battery composite electrolyte. Commun. Mater. 2023, 4, 49. [Google Scholar] [CrossRef]
- Wang, L.; Lau, J.; Thomas, E.L.; Boyce, M.C. Co-Continuous Composite Materials for Stiffness, Strength, and Energy Dissipation. Adv. Mater. 2011, 23, 1524–1529. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M. Mechanics of Composite Materials; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
T700 | Parameters | Structural Epoxy Solid Phase | Parameters |
---|---|---|---|
Longitudinal tensile modulus | 230.00 | Tensile modulus | 2.83 |
Transverse tensile modulus | 23.10 | Poisson’s ratio | 0.35 |
Longitudinal shear modulus | 8.96 | Tensile strength | 53.40 |
Transverse shear modulus | 8.27 | Density | 1.20 |
Longitudinal (main) Poisson’s ratio | 0.20 | Maximum tensile strain | 9.20% |
Transverse (Secondary) Poisson’s ratio | 0.40 | ||
Density | 1.80 | ||
Fiber radius | 3.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, B.; Ren, L.; Qi, G.; Zhao, Y.; Xu, Z.; Chen, L.; Wang, D.; Zhang, R. Research on the Elastic–Plastic Behaviors of Bicontinuous Polymer Matrix and Carbon Fiber-Reinforced Composites Based on Micromechanical Modelling. Polymers 2025, 17, 2517. https://doi.org/10.3390/polym17182517
Yao B, Ren L, Qi G, Zhao Y, Xu Z, Chen L, Wang D, Zhang R. Research on the Elastic–Plastic Behaviors of Bicontinuous Polymer Matrix and Carbon Fiber-Reinforced Composites Based on Micromechanical Modelling. Polymers. 2025; 17(18):2517. https://doi.org/10.3390/polym17182517
Chicago/Turabian StyleYao, Bin, Liang Ren, Guocheng Qi, Yukun Zhao, Zhen Xu, Long Chen, Dongmei Wang, and Rui Zhang. 2025. "Research on the Elastic–Plastic Behaviors of Bicontinuous Polymer Matrix and Carbon Fiber-Reinforced Composites Based on Micromechanical Modelling" Polymers 17, no. 18: 2517. https://doi.org/10.3390/polym17182517
APA StyleYao, B., Ren, L., Qi, G., Zhao, Y., Xu, Z., Chen, L., Wang, D., & Zhang, R. (2025). Research on the Elastic–Plastic Behaviors of Bicontinuous Polymer Matrix and Carbon Fiber-Reinforced Composites Based on Micromechanical Modelling. Polymers, 17(18), 2517. https://doi.org/10.3390/polym17182517