Investigation of the Variants of Independent Elastic Constants of Rigid Polyurethane Foams with Symmetry Elements
Abstract
1. Introduction
2. Theoretical Part
2.1. Orthotropic PU Foams
ε22 = s2211σ11 + s2222σ22 + s2233σ33,
ε33 = s3311σ11 + s3322σ22 + s3333σ33,
ε23 = 2s2323σ23,
ε13 = 2s1313σ13, and
ε12 = 2s1212σ12.
2.2. Symmetry to the Rotation Angle
2.3. Transtropic PU Foams
2.4. Isotropic PU Foams
3. Materials and Experimental Methods
4. Numerical Calculations
4.1. The Elastic Constants
τ12 = τ21 = τ, and τ13 = τ31 = τ23 = τ32 = τ′.
ν′ = ½(ν31 + ν32), ν″ = ½(ν13 + ν23),
G′ = ½(G13 + G23), but
G = G12, and E′ = E3.
4.2. The Stresses of Complex Loading
τ = τ12lim1, and τ′ = ½(τ13lim1 + τ23lim1).
5. Results and Discussion
6. Conclusions
- (1)
- Symmetry elements of rigid PU foams were considered in connection with characteristics of production moulds and technologies. The variants of independent elastic constants were determined for orthotropic, orthotropic with a rotational symmetry, and isotropic PU foams.
- (2)
- Nine variants of independent elastic constants were identified for transtropic PU foams and corresponding equations of the generalised Hooke’s law were derived for the components of response strain.
- (3)
- Correspondence of the experimentally determined elastic constants of rigid PU foams with constants of perfectly transtropic material was assessed, based on analysis of satisfying of the transtropy equations and of measurement uncertainties.
- (4)
- The variants of independent constants were outlined, providing the best conformity with the set of average strains, which characterises in certain meaning the set of strains of perfectly transtropic PU foams. The non-uniform distribution of density and anisotropy degree in the PU foam blocks are suggested as the main reason for the experimental constants not fully corresponding to those of a transtropic material.
- (5)
- The variant of independent elastic constants, which is the most appropriate for experimental determination or mathematical modelling, has to be selected in practice. All nine variants comprise the shear modulus G13, therefore the height of the moulded PU foam blocks has to be sufficient for such a length of shear samples, which ensures prevalence of shear over bending.
- (6)
- No limitations specific to PU foams were implemented; therefore, the variants of independent elastic constants are valid for other materials with symmetry elements like other plastic foams, fibreglass–plastic composites, veneer, wood, etc. Further research may be directed towards determining variants of independent elastic constants using the elastic potential.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gama, N.V.; Ferreira, A.; Barros-Timmons, A. Polyurethane Foams: Past, Present, and Future. Materials 2018, 11, 1841. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-T.; Ramesh, N.S. Polymeric Foams: Mechanisms and Materials; CRC Press: New York, NY, USA, 2004; 328p. [Google Scholar]
- Hilyard, N.C. (Ed.) Mechanics of Cellular Plastics; MacMillan: New York, NY, USA, 1982; 360p. [Google Scholar]
- Klempner, D.; Frisch, K.C. (Eds.) Handbook of Polymeric Foams and Foam Technology; Hanser Publishers: Munich, Germany, 1991; 413p. [Google Scholar]
- Annin, B.D.; Ostrosablin, N.I. Anisotropy of elastic properties of materials (Aнизoтрoпия упругих свoйств материалoв). Prik. Mekh. Tekn. Fiz. (In Russian). 2008, 49, 131. [Google Scholar]
- Moakher, M. Fourth-order cartesian tensors: Old and new facts, notions and applications. Q. J. Mech. Appl. Math. 2008, 61, 181. [Google Scholar] [CrossRef]
- Jackovich, D.; O’Toole, B.; Hawkins, M.C.; Sapochak, L. Temperature & Mold Size Effects on Physical and Mechanical Properties in a Polyurethane Foam. J. Cell. Plast. 2005, 41, 153. [Google Scholar]
- Hawkins, M.C.; O’Toole, B.; Jackovich, D. Cell Morphology and Mechanical Properties of Rigid Polyurethane Foam. J. Cell. Plast. 2005, 41, 267. [Google Scholar] [CrossRef]
- Kirpļuks, M. Development of Renewable Feedstock Based Rigid Polyurethane Foam and Nanoclay Composites. Ph.D. Thesis, Riga Technical University, RTU Press, Riga, Latvia, 2020. Available online: https://ortus.rtu.lv/science/en/publications/31088 (accessed on 28 June 2025).
- Beverte, I.; Cabulis, U.; Andersons, J.; Kirpluks, M.; Skruls, V.; Cabulis, P. Anisotropy and Mechanical Properties of Nanoclay Filled, Medium-Density Rigid Polyurethane Foams Produced in a Sealed Mold, from Renewable Resources. Polymers 2023, 15, 2582. [Google Scholar] [CrossRef] [PubMed]
- Nye, J.F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford University Press: New York, NY, USA, 2002; 352p. [Google Scholar]
- Love, A.E.H. A Treatise on the Mathematical Theory of Elasticity; MJP Publishers: Poole, UK, 2023; 572p. [Google Scholar]
- Lekhnitskii, S.G. Theory of Elasticity of an Aniostropic Body (Теoрия упругoсти анизoтрoпнoгo тела); Наука (Science), Мoсква, USSR: Moscow, Russia, 1977; 415p. (In Russian) [Google Scholar]
- Malmeister, A.K.; Tamuzh, V.P.; Teters, G.A. The Resistance of Rigid Polymer Materials (Сoпрoтивление жестких пoлимерных материалoв); Зинатне (Science), Рига, USSR: Riga, Latvia, 1980; 571p. (In Russian) [Google Scholar]
- Newnham, R. Properties of Materials: Anisotropy, Symmetry, Structure; Oxford University Press: New York, NY, USA, 2005; 392p. [Google Scholar]
- Rotman, J. An introduction to the Theory of Groups; Springer-Verlag: New York, NY, USA, 1995; 532p. [Google Scholar]
- Lyubarskii, G.Y. The Application of Group Theory in Physics; Pergamon Pub.: Oxford, UK, 2013; 392p. [Google Scholar]
- Lagzdins, A.; Tamuzh, V. Stiffness tensors of a higher range (Тензoры упругoсти высших пoрядкoв). Mekhanika Polim. 1965, 6, 40. (In Russian) [Google Scholar]
- Beverte, I. Elastic constants of monotropic plastic foams. 1. Deformation parallel to foam rise direction. A mathematical model. Mech. Compos. Mater. 1997, 33, 505. [Google Scholar] [CrossRef]
- Beverte, I. Calculation of Dependent Elastic Constants of Plastics Foams with a Pronounced Strut-like Structure. Mech. Comp. Mat. 2003, 39, 503. [Google Scholar] [CrossRef]
- Cunningham, A. Modulus anisotropy of low-density cellular plastics: An aggregate model. Polymer 1981, 22, 882–885. [Google Scholar] [CrossRef]
- Chuda-Kowalska, M.; Gajewski, T.; Garbowski, T. Mechanical characterisation of orthotropic elastic parameters of a foam by the mixed experimental-numerical analysis. J. Theor. App. Mech. 2015, 53, 383–394. [Google Scholar] [CrossRef]
- Gahlen, P.; Mainka, R.; Stommel, M. Prediction of anisotropic foam stiffness properties by a Neural Network. Int. J. Mech. Sci. 2023, 249, 108245. [Google Scholar] [CrossRef]
- Yakushin, V.A.; Zhmud, N.P.; Stirna, U.K. Physicomechanical characteristics of spray-on rigid polyurethane foams at normal and low temperatures. Mech. Compos. Mater. 2002, 38, 273. [Google Scholar] [CrossRef]
- Vevere, L.; Sture-Skela, B.; Yakushin, V.; Nemeček, P.; Beneš, H.; Cabulis, U. Phase-Change Materials as Cryo-Shock Absorbers in Rigid Polyurethane Cryogenic Insulation Foams. Polymers 2025, 17, 729. [Google Scholar] [CrossRef] [PubMed]
- Stirna, U.; Cabulis, U.; Beverte, I. Water-Blown Polyisocyanurate Foams from Vegetable Oil Polyols. J. Cell. Plast. 2008, 44, 139–160. [Google Scholar] [CrossRef]
- Beverte, I. An experimental method for the investigation of rigid polyurethane foams in shear. J. Cell. Plast. 2018, 54, 851–884. [Google Scholar] [CrossRef]
- Wolter, K.M. Introduction to Variance Estimation; Springer-Verlag: New York, NY, USA, 2003; 444p. [Google Scholar]
- Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. JCGM 100:2008 GUM 1995 with Minor Corrections, 120p. Available online: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed on 23 July 2025).
- Evaluation of the Uncertainty of Measurement in Calibration, Date of Approval 5th November 2012. EA-4/02 M: 2022, 78p. Available online: https://www.enac.es/documents/7020/635abf3f-262a-4b3b-952f-10336cdfae9e (accessed on 23 July 2025).
- The Expression of Uncertainty and Confidence in Measurement. United Kingdom Accreditation Service M3003, ed.6, March 2024, 106p. Available online: https://www.ukas.com/wp-content/uploads/2023/05/M3003-The-expression-of-uncertainty-and-confidence-in-measurement.pdf (accessed on 23 July 2025).
n | Variant | n | Variant |
---|---|---|---|
1 | G23, G13, G12, E1, E2, E3, ν21, ν31, ν32 | 5 | G23, G13, G12, E1, E2, E3, ν12, ν31, ν32 |
2 | G23, G13, G12, E1, E2, E3, ν21, ν31, ν23 | 6 | G23, G13, G12, E1, E2, E3, ν12, ν31, ν23 |
3 | G23, G13, G12, E1, E2, E3, ν21, ν13, ν32 | 7 | G23, G13, G12, E1, E2, E3, ν12, ν13, ν32 |
4 | G23, G13, G12, E1, E2, E3, ν21, ν13, ν23 | 8 | G23, G13, G12, E1, E2, E3, ν12, ν13, ν23 |
n | Variant | n | Variant | n | Variant |
---|---|---|---|---|---|
1 | G13, E1, E3, ν12, ν31 | 4 | G13, G12, E3, ν12, ν31 | 7 | G13, G12, E1, E3, ν31 |
2 | G13, E1, E3, ν12, ν13 | 5 | G13, G12, E3, ν12, ν13 | 8 | G13, G12, E1, E3, ν13 |
3 | G13, E1, ν12, ν31, ν13 | 6 | G13, G12, ν12, ν31, ν13 | 9 | G13, G12, E1, ν31, ν13 |
Average Density ρav; kg/m3 | E; MPa | ν | E′; MPa | ν′ | ν″ | G; MPa | G′; MPa | A |
---|---|---|---|---|---|---|---|---|
34 | 4.3 | 0.29 | 10.4 | 0.48 | 0.23 | 1.8 | 2.6 | 2.4 |
55 | 11.3 | 0.36 | 19.4 | 0.51 | 0.22 | 3.9 | 5.0 | 1.7 |
75 | 19.7 | 0.31 | 28.7 | 0.41 | 0.24 | 7.1 | 9.0 | 1.5 |
Average Density ρav; kg/m3 | f1 | f2 | uc(f1) | uc(f2) | Range of f1 Values | Range of f2 Values |
---|---|---|---|---|---|---|
34 | 0.053 | 0.046 | 0.0022 | 0.0026 | 0.051 ≤ f1 ≤ 0.055 | 0.044 ≤ f2 ≤ 0.049 |
55 | 0.019 | 0.026 | 0.0005 | 0.0009 | 0.019 ≤ f1 ≤ 0.020 | 0.025 ≤ f2 ≤ 0.027 |
75 | 0.012 | 0.014 | 0.0006 | 0.0006 | 0.011 ≤ f1 ≤ 0.013 | 0.014 ≤ f2 ≤ 0.015 |
Average Density ρav; kg/m3 | f1 | f2 | U(f1) | U(f2) | Range of f1 Values | Range of f2 Values |
---|---|---|---|---|---|---|
34 | 0.053 | 0.046 | 0.0052 | 0.0069 | 0.048 ≤ f1 ≤ 0.058 | 0.039 ≤ f2 ≤ 0.053 |
55 | 0.019 | 0.026 | 0.0012 | 0.0025 | 0.018 ≤ f1 ≤ 0.021 | 0.024 ≤ f2 ≤ 0.028 |
75 | 0.012 | 0.014 | 0.0014 | 0.0017 | 0.011 ≤ f1 ≤ 0.013 | 0.013 ≤ f2 ≤ 0.016 |
Average Density ρav; kg/m3 | Equations (8) and (11) | Direct Experimental Data | ||||
---|---|---|---|---|---|---|
G; MPa | uc(G) | Range of G Values | G; MPa | uc(G) | Range of G Values | |
34 | 1.7 | 0.05 | 1.6 ≤ G ≤ 1.7 | 1.8 | 0.25 | 1.55 ≤ G ≤ 2.05 |
55 | 4.2 | 0.09 | 4.1 ≤ G ≤ 4.3 | 3.9 | 0.35 | 3.55 ≤ G ≤ 4.25 |
75 | 7.5 | 0.26 | 7.3 ≤ G ≤ 7.8 | 7.1 | 0.30 | 6.80 ≤ G ≤ 7.40 |
Average Density ρav; kg/m3 | Hydrostatic Pressure σHP; MPa | Shear Stress | |
---|---|---|---|
τ′; MPa | τ; MPa | ||
34, 55 and 75 | −0.045 | 0.042 | 0.030 |
Average Strain | ρ = 34 kg/m3 | ρ = 55 kg/m3 | ρ = 75 kg/m3 | |||
---|---|---|---|---|---|---|
εijav | v; % | εijav | v; % | εijav | v; % | |
ε11av | −0.0054 | 14 | −0.0015 | 21 | −0.0010 | 13 |
ε22av | −0.0054 | 13 | −0.0015 | 17 | −0.0010 | 11 |
ε33av | −0.0001 | 111 | −0.0002 | 171 | −0.0003 | 33 |
ε23av | 0.0082 | 0 | 0.0043 | 0 | 0.0024 | 0 |
ε31av | 0.0082 | 0 | 0.0043 | 0 | 0.0024 | 0 |
ε12av | 0.0086 | 4 | 0.0038 | 4 | 0.0021 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagzdiņš, A.; Beverte, I.; Skruls, V.; Andersons, J. Investigation of the Variants of Independent Elastic Constants of Rigid Polyurethane Foams with Symmetry Elements. Polymers 2025, 17, 2431. https://doi.org/10.3390/polym17172431
Lagzdiņš A, Beverte I, Skruls V, Andersons J. Investigation of the Variants of Independent Elastic Constants of Rigid Polyurethane Foams with Symmetry Elements. Polymers. 2025; 17(17):2431. https://doi.org/10.3390/polym17172431
Chicago/Turabian StyleLagzdiņš, Aivars, Ilze Beverte, Vilis Skruls, and Jānis Andersons. 2025. "Investigation of the Variants of Independent Elastic Constants of Rigid Polyurethane Foams with Symmetry Elements" Polymers 17, no. 17: 2431. https://doi.org/10.3390/polym17172431
APA StyleLagzdiņš, A., Beverte, I., Skruls, V., & Andersons, J. (2025). Investigation of the Variants of Independent Elastic Constants of Rigid Polyurethane Foams with Symmetry Elements. Polymers, 17(17), 2431. https://doi.org/10.3390/polym17172431