Advances and Applications of Bionic Design and Functional Integration in Underwater Soft Grippers
Abstract
1. Introduction
- Inspired by biological structure: The design inspiration of soft robots generally derives from the structure and behavior of organic species, particularly soft animals; examples include octopuses, jellyfish, and fins [14,15,16,17,18,19]. These animals demonstrate great flexibility, adaptability, and movement, providing a source of inspiration for soft robot design. To concretize their flexibility, adaptability, and movement modes, Table 1 outlines the core biological features of these species and how they inform soft robot design.
- Application of biomimetic materials: Soft robots commonly employ biomimetic materials, such as silicone [20,21,22], hydrogel [23,24], SMA [25,26,27], etc. These materials have the softness and deformability of biological tissues, so that robots can better adapt to complex situations and execute different jobs.
- Imitation of motion modes: The motion modes of soft robots are frequently inspired by the motion modes of creatures, such as the soft extension of octopus arms [28] and the crawl of inchworms [29,30]. By replicating the movement of biological creatures, soft robots may attain more flexible and efficient mobility.
- Biosensing and control: Sensing and control systems of soft robots typically learn from the perception and feedback processes of creatures, such as the lateral line system of fish [31] and human skin [32,33]. These sensory technologies may let the robot detect the surroundings and behave appropriately, boosting its flexibility and intelligence.
- Integrated perception-execution design: The aim of this design is to allow the soft robot to recognize the target items in the environment and operate these things precisely, with high efficiency, accuracy, and flexibility. This design approach may increase the performance and application range of soft robots.
- Application of biodynamics: Motion planning and control of soft robots are commonly based on the dynamics concept of animals [34]. For example, motion control algorithms of underwater robots are built by replicating the swimming manner of underwater creatures to provide effective underwater maneuvering and navigation [35].
Characteristic | Sea Anemone | Octopus | Jellyfish |
---|---|---|---|
Physical characteristics | The slender tentacles can move with the flow of water, and the body can contract to complete the act of swallowing. | The tentacles can move in a 360-degree circle. The tentacle muscles are well-developed, allowing for switching between rigidity and flexibility. | The tentacles can quickly retract to one-tenth of their original length, and they can also adjust their positions and change the direction of movement. |
Grabbing strategy | Using stinging cells as biological toxic injectors, mucus as a physical adhesive, and combining them with the directional contraction of the tentacle muscles to complete the control of the prey. | By wrapping the prey with its tentacles and using suckers to firmly attach and hold prey in place. | Using its tentacles to quickly wrap around an object, and by means of its spicules, hook and contract the tentacles to capture its prey. |
2. Structural Design of Bionic Underwater Soft Grippers
2.1. Octopus-Inspired Underwater Soft Gripper
2.2. Jellyfish-Inspired Underwater Soft Gripper
2.3. Sea Anemone-Inspired Underwater Soft Gripper
2.4. Other Bionic Soft Grippers
3. Underwater Tactile Sensing System
3.1. Integrated Design for Underwater Sensing and Grasping
3.2. Tactile Sensors Based on Electrical Signals
Sensor Technology | Signal | Advantage | Disadvantage | Underwater Working Condition | Reference |
---|---|---|---|---|---|
Tactile sensors based on electrical signals | Capacitance value, resistance value, charge value | High sensitivity, large dynamic range, high frequency response | Sensitive to noise, poor repeatability, hysteresis, high power consumption, complex measurement circuit | Easily influenced by the dielectric constant and conductivity of water | [94,95,96,97,98,99,100,101,102,103] |
Tactile sensors based on magnetic fields | Magnetic field intensity | High sensitivity, strong adaptability, multi-touch | High complexity and easily interfered with by external magnetic fields | Susceptible to water conductivity | [53,104,105,106,107] |
Tactile sensors based on vision | — | High resolution, versatility, flexibility and fast response | High computational complexity and easily affected by the environment | Easily affected by water flow and pressure | [32,108,109,110,111,112,113,114,115,116,117,118,119,120] |
Other tactile sensors | — | Fast response speed, high resolution, and high sensitivity | Vulnerable to environmental impacts, complex manufacturing, high cost | — | [121,122,123,124,125,126,127,128,129] |
3.3. Tactile Sensors Based on Magnetic Fields
3.4. Tactile Sensors Based on Vision
3.5. Other Tactile Sensors
4. Application Fields for Underwater Soft Grippers
- (1)
- Marine research and exploration [13]: Due to the great flexibility, safety, and powerful adaptation of the underwater soft gripper, the soft gripper is considerably better than the rigid gripper when gripping underwater animals of varied forms [134,135]. In the exploration of the ocean, the underwater soft gripper can sense the geometric aspects of the gripped items, so that the kinds of objects can be identified and categorized in the process of grasping, and the efficiency of the operation can be increased. Figure 6a shows underwater soft grippers in marine research. Their flexibility, safety, and adaptability make them better than rigid ones for grasping various underwater animals, aiding identification via sensing object geometry.
- (2)
- Environmental protection [136]: In recent years, with the development of the ocean and the expansion of the human footprint, there is more and more garbage in the ocean [137]. Part of the garbage is deposited in the seabed, and a soft gripper can have better collection efficiency for garbage with different shapes [138]. Most of the soft underwater robots are propelled by an air pressure or line drive [138], which may decrease environmental contamination and indirect harm to the subsurface environment while operating underwater. Figure 6b depicts an underwater soft robot with a flexible gripper retrieving seabed waste (e.g., plastic bottles), enabling efficient marine debris collection via shape-adaptive grasping.
- (3)
- Underwater archeology [139]: The size and structure of the soft robot may be built to be extremely tiny, and because of its great flexibility, it can penetrate confined spaces to grip things without destroying the site. Figure 6c illustrates a soft gripper retrieving a fragile ancient pot underwater, enabling gentle, damage-free artifact collection at archeological sites via its flexibility.
- (4)
- Underwater rescue: In underwater rescue operations, it is frequently essential to cope with many challenging conditions, such as rescuing trapped persons and moving objects. The flexibility and adaptability of soft grippers make them better suited to tackle these problems and execute accurate clamping and operation to increase rescue efficiency and success rates.
- (5)
- Underwater engineering and maintenance: Underwater soft grippers may be utilized for undersea oil and gas pipeline repair [140], the installation and maintenance of offshore engineering equipment, and other operations. They can grasp and control soft pipes, cables, valves, and more, providing engineers with the flexibility to perform accurate operations and repairs in underwater conditions. Figure 6d shows a soft gripper precisely operating a valve in an underwater pipeline, utilizing flexibility for adaptive manipulation in a confined space.
Application Field | Adaptability | Driving Mode | Stability | Clamping Range | Reference |
---|---|---|---|---|---|
Marine research and exploration | Tolerates uncertainty of sample size, shape, and stiffness. | Hydraulic drive | The sample can be safely grasped in 100–170 m of water. | It wraps around objects as small as 12 mm in diameter. | [13] |
Work can be performed in a working area with an aperture of 14 cm. | Pneumatic drive | It can work continuously underwater for more than 6 h. | — | [134] | |
It can realize the non-destructive grasp of gel-like marine organisms. | Pneumatic drive | The parts will not be damaged by seawater immersion during the service life cycle, and the soft-grip materials have good low temperature properties. | It can grab marine gelatinous creatures of all shapes and sizes. | [135] | |
Environmental protection | Modular design; it can meet the requirements of various object clamping scenes. | Wire drive | It has good mechanical properties and can hold heavier objects. | — | [138] |
Underwater archeology | An experiment involving grasping 107 kinds of objects has been successfully completed, and tasks can be completed in different environments. | Wire drive | It can withstand a pressure of 50 bar and can be used normally after being subjected to pressure. | It can hold objects as small as a coin. | [139] |
Underwater engineering and maintenance | Two-way rotation degrees of freedom; can adjust the clamping angle to adapt to different target attitudes. | Pneumatic drive | The sensor feedback closed-loop system can be adjusted in real time according to the grasping state, reducing the risk of sliding. | It can grasp objects with a diameter of 12.5–75 mm, commonly used small tools can be used for better grip. | [140] |
5. Discussion
- Although many bionic soft grippers have been designed, the structure of biomimetic soft grippers for jellyfish and sea anemones is less, and for biomimetic soft grippers such as sea anemones, the capture characteristics, movement characteristics, and structural structure of sea anemones have not been integrated with the underwater gripper to develop a gripper solution suitable for underwater environments.
- Although many studies have shown that the application of a tactile sensor provides a new idea for the realization of the perception of a soft gripper, there is a lack of research on the integrated structural design of the combination of a tactile sensor and an underwater gripper so as to improve the sensing performance and clamping performance of the underwater gripper.
- The use of a tactile sensor in air exhibits distinct benefits. However, there are few investigations on the underwater tactile sensor so far; therefore, there is a dearth of study on the perception algorithm connecting the underwater ambient elements with the tactile sensor perception. As a consequence, it is difficult for the underwater soft gripper to comprehend the complex underwater world via the touch sensor.
- Due to the great complexity of underwater environments, the underwater soft gripper has certain limits for the gripping of underwater items. In terms of material durability and biofouling, materials used for soft gripping, such as silicone or other elastomers, may wear out and degrade over time due to prolonged exposure to salt water, UV radiation, and biological growth (biofouling). These factors can affect the flexibility, strength, and function of the grip.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Hao, Y.; Yang, X.; Wen, L. Soft robotics: Structure, actuation, sensing and control. J. Mech. Eng. 2017, 53, 1–13. [Google Scholar] [CrossRef]
- Wang, H.; Peng, X.; Lin, B. Research development of soft robots. J. South China Univ. Technol. 2020, 48, 94–106. [Google Scholar]
- Liu, Z.; Xu, L.; Sui, X.; Wu, T.; Chen, G. Kinematics, dynamics and control of stiffness-tunable soft robots. Bioinspir. Biomim. 2024, 19, 026003. [Google Scholar] [CrossRef]
- Zhan, X.; Gu, X.; Zhao, H.; Wang, K. Design of a Compliant Robotic Arm Based on Series Elastic Actuator. Robot 2016, 38, 385–394. [Google Scholar]
- Xia, X.; Meng, J.; Qin, J.; Yang, G.; Xuan, P.; Huang, Y.; Fan, W.; Gu, Y.; Lai, F.; Liu, T. 4D-Printed Bionic Soft Robot with Superior Mechanical Properties and Fast Near-Infrared Light Response. ACS Appl. Polym. Mater. 2024, 6, 3170–3178. [Google Scholar] [CrossRef]
- Yang, C.; Wu, B.; Wang, H.; Zhao, Q.; Chen, D. Orthogonal light triggering of dynamic polymer networks toward on-demand shape evolution control. Matter 2025, 2, 102292. [Google Scholar] [CrossRef]
- Oh, M.; Kim, Y.; Lee, S.; Hwang, G.; Kim, K.; Kim, Y.; Bae, J.; Kim, J.; Lee, J.; Kim, Y.; et al. Lifetime-configurable soft robots via photodegradable silicone elastomer composites. Sci. Adv. 2023, 9, eadh9962. [Google Scholar] [CrossRef]
- Wang, Z.; Freri, N.M.; Wei, X. SpiRobs: Logarithmic spiral-shaped robots for versatile grasping across scales. Device 2025, 3, 100646. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, L.; Lu, G.; Wang, P.; Ran, L.; Peng, B. Untethered soft microrobot driven by a single actuator for agile navigations. Nat. Commun. 2025, 16, 6842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, T.; Hong, J.; Wang, Y. Review of soft-bodied manipulator. J. Mech. Eng. 2017, 53, 19–28. [Google Scholar] [CrossRef]
- Cong, Y.; Gu, C.; Zhang, T.; Gao, Y. Underwater robot sensing technology: A survey. Fundam. Res. 2021, 1, 337–345. [Google Scholar] [CrossRef]
- Fang, Z.G.X.; Chen, X.; Chen, J.; Xie, Z.; Liu, J.; Chen, B.; Yang, H.; Kong, S.; Hao, Y.; Wang, T.; et al. A soft manipulator for efficient delicate grasping in shallow water: Modeling, control, and real-world experiments. Int. J. Robot. Res. 2021, 40, 449–469. [Google Scholar] [CrossRef]
- Galloway, K.C.; Becker, K.P.; Phillips, B.; Kirby, J.; Licht, S.; Tchernov, D.; Wood, R.J.; Gruber, D.F. Soft robotic grippers for biological sampling on deep reefs. Soft Robot. 2016, 3, 23–33. [Google Scholar] [CrossRef]
- Xie, Z.; Domel, A.G.; An, N.; Green, C.; Gong, Z.; Wang, T.; Knubben, E.M.; Weaver, J.C.; Bertoldi, K.; Wen, L. Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Robot. 2020, 7, 639–648. [Google Scholar] [CrossRef]
- Te, L.; Tian, L.; Heng, L.; Boyao, C.; Zhenkun, L.; Yongqing, W. Bionic design and casting forming method of a soft gripper robot. In Proceedings of the 2020 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA), Shanghai, China, 16–18 October 2020; pp. 116–120. [Google Scholar] [CrossRef]
- Qi, Q.; Xiang, C.; Ho, V.A.; Rossiter, J. A sea-anemone-inspired, multifunctional, bistable gripper. Soft Robot. 2022, 9, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qiu, L.; He, Y.; Dai, S. Mechanism motion scheme design and dynamic analysis of biomimetic jellyfish adapt to different application. Mech. Mach. Theory 2024, 194, 105584. [Google Scholar] [CrossRef]
- Yao, J.; Fang, Y.; Yang, X.; Wang, P.; Li, L. Design optimization of soft robotic fingers biologically inspired by the fin ray effect with intrinsic force sensing. Mech. Mach. Theory 2024, 191, 105472. [Google Scholar] [CrossRef]
- Hu, T.; Shen, L.; Lin, L.; Xu, H. Biological inspirations, kinematics modeling, mechanism design and experiments on an undulating robotic fin inspired by gymnarchus niloticus. Mech. Mach. Theory 2009, 44, 633–645. [Google Scholar] [CrossRef]
- Whitesides, G.M. Soft robotics. Angew. Chem. Int. Ed. 2018, 57, 4258–4273. [Google Scholar] [CrossRef]
- Chen, L.; Yang, C.; Wang, H.; Branson, D.T.; Dai, J.S.; Kang, R. Design and modeling of a soft robotic surface with hyperelastic material. Mech. Mach. Theory 2018, 130, 109–122. [Google Scholar] [CrossRef]
- Ke, X.; Dong, Z.; Zhao, P.; Gong, Z.; Li, T.; Zhang, D.; Chen, H.; Jiang, Y. Highly sensitive differential pressure sensor with bristled cantilever configuration using a silicon piezoresistor on polyimide technique. IEEE Sens. J. 2023, 23, 22263–22269. [Google Scholar] [CrossRef]
- Lee, Y.; Song, W.J.; Sun, J.Y. Hydrogel soft robotics. Mater. Today Phys. 2020, 15, 100258. [Google Scholar] [CrossRef]
- Abodurexiti, A.; Maimaitiyiming, X. Self-healing, anti-freezing hydrogels and its application in diversified skin-like electronic sensors. IEEE Sens. J. 2022, 22, 12588–12594. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, X.; Wang, R.; Zhang, H.; Liang, J. Design of an SMA-driven compliant constant-force gripper based on a modified chained pseudo-rigid-body model. Mech. Mach. Theory 2023, 187, 105371. [Google Scholar] [CrossRef]
- Haibin, Y.; Cheng, K.; Junfeng, L.; Guilin, Y. Modeling of grasping force for a soft robotic gripper with variable stiffness. Mech. Mach. Theory 2018, 128, 254–274. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, Y.; Wang, J.; Cao, J. Position prediction of soft finger driven by SMA based on fiber bragg grating sensor. IEEE Sens. J. 2021, 21, 2951–2962. [Google Scholar] [CrossRef]
- Calisti, M.; Giorelli, M.; Levy, G.; Mazzolai, B.; Hochner, B.; Laschi, C.; Dario, P. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspir. Biomim. 2011, 6, 036002. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Su, M.; Zhang, Y.; Li, M.; Zhu, H.; Guan, Y. PISRob: A pneumatic soft robot for locomoting like an inchworm. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 3448–3453. [Google Scholar] [CrossRef]
- Ling, J.; Chen, L.; Feng, Z.; Zhu, Y. Development and test of a high speed pusher-type inchworm piezoelectric actuator with asymmetric driving and clamping configuration. Mech. Mach. Theory 2022, 176, 104997. [Google Scholar] [CrossRef]
- Walker, C.; Haller, M.; Orbaugh, D.; Freeman, S.; Rosset, S.; Anderson, I. Polymer sensors for underwater robot proprioception. Sens. Actuators A Phys. 2023, 351, 114179. [Google Scholar] [CrossRef]
- Lepora, N.F.; Lin, Y.; Money-Coomes, B.; Lloyd, J. DigiTac: A DIGIT-TacTip hybrid tactile sensor for comparing low-cost high-resolution robot touch. IEEE Robot. Autom. Lett. 2022, 7, 9382–9388. [Google Scholar] [CrossRef]
- Sun, S.; He, S.; Han, Y.; Long, Y.; He, Z. Soft bionic skin with touch-slip and thermal perception using double-layer distributed FBG sensing array. IEEE Sens. J. 2022, 22, 4096–4105. [Google Scholar] [CrossRef]
- Kim, S.; Laschi, C.; Trimmer, B. Soft robotics: A bioinspired evolution in robotics. Trends Biotechnol. 2013, 31, 287–294. [Google Scholar] [CrossRef]
- Li, G.; Chen, X.; Zhou, F.; Liang, Y.; Xiao, Y.; Cao, X.; Zhang, Z.; Zhang, M.; Wu, B.; Yin, S.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 66–71. [Google Scholar] [CrossRef]
- Youssef, S.M.; Soliman, M.; Saleh, M.A.; Mousa, M.A.; Elsamanty, M.; Radwan, A.G. Underwater soft robotics: A review of bioinspiration in design, actuation, modeling, and control. Micromachines 2022, 13, 110. [Google Scholar] [CrossRef]
- Kang, M.; Han, Y.J.; Han, M.W. A shape memory alloy-based soft actuator mimicking an elephant’s trunk. Polymers 2023, 15, 1126. [Google Scholar] [CrossRef]
- Sun, Y.; Han, F.; Zhang, D.; Zhao, X.; Ye, D. An underwater soft claw based on bionic principle. In Proceedings of the 2021 International Conference on Robotics and Biomimetics (ROBIO 2021), Sanya, China, 27–31 December 2021; pp. 973–977. [Google Scholar] [CrossRef]
- Li, H.; Zhou, P.; Zhang, S.; Yao, J.; Zhao, Y. A high-load bioinspired soft gripper with force booster fingers. Mech. Mach. Theory 2022, 177, 105048. [Google Scholar] [CrossRef]
- Zi, P.; Xu, K.; Tian, Y.; Ding, X. A mechanical adhesive gripper inspired by beetle claw for a rock climbing robot. Mech. Mach. Theory 2023, 181, 105168. [Google Scholar] [CrossRef]
- Cammarata, A.; Maddio, P.D.; Sinatra, R.; Tian, Y.; Zhao, Y.; Xi, F. Elastostatic analysis of a module-based shape morphing snake-like robot. Mech. Mach. Theory 2024, 194, 105580. [Google Scholar] [CrossRef]
- Virgala, I.; Kelemen, M.; Prada, E.; Sukop, M.; Kot, T.; Bobovský, Z.; Varga, M.; Ferenčík, P. A snake robot for locomotion in a pipe using trapezium-like travelling wave. Mech. Mach. Theory 2021, 158, 104221. [Google Scholar] [CrossRef]
- Zhang, X.; Maddipatla, D.; Bose, A.K.; Hajian, S.; Narakathu, B.B.; Williams, J.D.; Mitchell, M.F.; Atashbar, M.Z. Printed carbon nanotubes-based flexible resistive humidity sensor. IEEE Sens. J. 2020, 20, 12592–12601. [Google Scholar] [CrossRef]
- Hailiang, M.; Yixiao, S.; Junjie, P.; Guanjun, B. Flexible tactile sensor arrays with capacitive and resistive dual mode transduction. IEEE Sens. J. 2024, 24, 15892–15899. [Google Scholar] [CrossRef]
- Yan, Y.; Hu, Z.; Yang, Z.; Yuan, W.; Song, C.; Pan, J.; Shen, Y. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 2021, 6, eabc8801. [Google Scholar] [CrossRef]
- Beccai, L.; Roccella, S.; Ascari, L.; Valdastri, P.; Sieber, A.; Carrozza, M.C.; Dario, P. Development and experimental analysis of a soft compliant tactile microsensor for anthropomorphic artificial hand. IEEE/ASME Trans. Mechatron. 2008, 13, 158–168. [Google Scholar] [CrossRef]
- Tsouti, V.; Mitrakos, V.; Broutas, P.; Chatzandroulis, S. Modeling and Development of a Flexible Carbon Black-Based Capacitive Strain Sensor. IEEE Sens. J. 2016, 16, 3059–3067. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S.; Lee, J.; Choi, B. Improved capacitive pressure sensors based on liquid alloy and silicone elastomer. IEEE Sens. J. 2015, 15, 4180–4181. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, Y.; Yin, Z. Detection of normal and shear force with piezoresistive tactile sensor. Transducer Microsyst. Technol. 2018, 37, 4–6. [Google Scholar]
- Cavaliere, M.; McVeigh, O.; Jaeger, H.A.; Hinds, S.; O’Donoghue, K.; Cantillon-Murphy, P. Inductive sensor design for electromagnetic tracking in image guided interventions. IEEE Sens. J. 2020, 20, 8623–8630. [Google Scholar] [CrossRef]
- Liu, Z.J.; Yu, Y.S.; Zhang, X.Y.; Chen, C.; Zhu, C.C.; Meng, A.H.; Jing, S.M.; Sun, H.B. An optical microfiber taper magnetic field sensor with temperature compensation. IEEE Sens. J. 2015, 15, 4853–4856. [Google Scholar] [CrossRef]
- Yi, Y.; Song, A.; Li, H.; Leng, M. Design of micro capacitance detection circuit for capacitive tactile sensor. Instrum. Tech. Sens. 2020, 5, 6–10. [Google Scholar]
- Chi, C.; Sun, X.; Xue, N.; Li, T.; Liu, C. Recent progress in technologies for tactile sensors. Sensors 2018, 18, 948. [Google Scholar] [CrossRef]
- Xiong, P.; Yin, Y.; Tong, X.; Liu, J.; Liu, G.; Zhu, H. Robot interactive object classification based on novel multimodal tactile sensor. Meas. Control. Technol. 2023, 42, 2–7. [Google Scholar]
- Aggarwal, A.; Kirchner, F. Object recognition and localization: The role of tactile sensors. Sensors 2014, 14, 3227–3266. [Google Scholar] [CrossRef]
- Aggarwal, A.; Kampmann, P.; Lemburg, J.; Kirchner, F. Haptic object recognition in underwater and deep-sea environments. J. Field Robot. 2015, 32, 167–185. [Google Scholar] [CrossRef]
- Hirose, S.; Umetani, Y. The development of soft gripper for the versatile robot hand. Mech. Mach. Theory 1978, 13, 351–359. [Google Scholar] [CrossRef]
- Suzumori, K.; Iikura, S.; Tanaka, H. Development of flexible microactuator and its applications to robotic mechanisms. In Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991; Volume 2, pp. 1622–1627. [Google Scholar]
- Shahinpoor, M. Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles—A review. Electrochim. Acta 2003, 48, 2343–2353. [Google Scholar] [CrossRef]
- Mangan, E.V.; Kingsley, D.A.; Quinn, R.D.; Sutton, G.P.; Mansour, J.M.; Chiel, H.J. A biologically inspired gripping device. Ind. Rob. 2005, 32, 49–54. [Google Scholar] [CrossRef]
- Dollar, A.M.; Howe, R.D. The highly adaptive SDM hand: Design and performance evaluation. Int. J. Rob. Res. 2010, 29, 585–597. [Google Scholar] [CrossRef]
- Phillips, B.T.; Becker, K.P.; Kurumaya, S.; Galloway, K.C.; Whittredge, G.; Vogt, D.M.; Teeple, C.B.; Rosen, M.H.; Pieribone, V.A.; Gruber, D.F.; et al. A Dexterous, glove-based teleoperable low-power soft robotic arm for delicate deep-sea biological exploration. Sci. Rep. 2018, 8, 14779. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ge, S.; Wan, F.; Liu, Y.; Song, C. Scalable tactile sensing for an omni-adaptive soft robot finger. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020; pp. 572–577. [Google Scholar] [CrossRef]
- Li, S.; Ye, L.; Yu, H.; Yin, X.; Xia, C.; Ding, W.; Wang, X.; Liang, B. JamTac: A tactile jamming gripper for searching and grasping in low-visibility environments. Soft Robot. 2023, 10, 988–1000. [Google Scholar] [CrossRef]
- Hochner, B. Quick guide octopuses primer the planar polarity pathway. Curr. Biol. 2008, 18, 897–898. [Google Scholar] [CrossRef] [PubMed]
- Mazzolai, B.; Mondini, A.; Tramacere, F.; Riccomi, G.; Sadeghi, A.; Giordano, G.; Dottore, E.D.; Scaccia, M.; Zampato, M.; Carminati, S. Octopus-Inspired soft arm with suction cups for enhanced grasping tasks in confined environments. Adv. Intell. Syst. 2019, 1, 1900041. [Google Scholar] [CrossRef]
- Tomokazu, T.; Kikuchi, S.; Suzuki, M.; Aoyagi, S. Vacuum gripper imitated octopus sucker-effect of liquid membrane for absorption. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 2929–2936. [Google Scholar] [CrossRef]
- Bezha, K.; Ito, K. Soft manipulator inspired by octopi: Object grasping in all anatomical planes using a tendon-driven continuum arm. Artif. Life Robot. 2023, 28, 96–105. [Google Scholar] [CrossRef]
- Ye, T.; Wang, Y.; Xu, S.; Wang, Y.; Li, J. Modeling and motion control of an octopus-like flexible manipulator actuated by shape memory alloy wires. J. Intell. Mater. Syst. Struct. 2022, 33, 3–16. [Google Scholar] [CrossRef]
- Pi, J.; Liu, J.; Zhou, K.; Qian, M.; Qian, M. An octopus-inspired bionic flexible gripper for apple grasping institute of agricultural facilities and equipment, jiangsu academy of agricultural sciences, key laboratory of protected agriculture engineering in the middle and lower reaches of yangtze riv. Agriculture 2021, 11, 1014. [Google Scholar] [CrossRef]
- Song, J.; Feng, Y.; Hong, Z.; Zeng, S.; Brannan, A.C.; Song, X.; Tan, J. Octopus-Inspired adaptable soft grippers based on 4d printing: Numerical modeling, inverse design, and experimental validation. Adv. Intell. Syst. 2023, 5, 2200384. [Google Scholar] [CrossRef]
- Wu, M.; Zheng, X.; Liu, R.; Hou, N.; Afridi, W.H.; Afridi, R.H.; Guo, X.; Wu, J.; Wang, C.; Xi, G. Glowing sucker octopus (stauroteuthis syrtensis)-inspired soft robotic gripper for underwater self-adaptive grasping and sensing. Adv. Sci. 2022, 9, 2104382. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yin, J. Design of multifunctional soft doming actuator for soft machines. Adv. Mater. Technol. 2018, 3, 1800069. [Google Scholar] [CrossRef]
- Zang, H.; Liao, B.; Lang, X.; Zhao, Z.L.; Yuan, W.; Feng, X.Q. Bionic torus as a self-adaptive soft grasper in robots. Appl. Phys. Lett. 2020, 116, 023701. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Liu, H.; Guo, Q.; Yu, H.; Yuan, Z.; Yang, W. Bionic sea anemone actuator with a double-layered gripper driven by multiple physical fields. ACS Appl. Polym. Mater. 2023, 5, 5582–5591. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, T.; Ren, Z.; Gong, Z.; Wang, H.; Yang, X.; Guan, S.; Wen, L. Modeling and experiments of a soft robotic gripper in amphibious environments. Int. J. Adv. Robot. Syst. 2017, 14, 172988141770714. [Google Scholar] [CrossRef]
- Guan, Q.; Sun, J.; Liu, Y.; Wereley, N.M.; Leng, J. Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk. Soft Robot. 2020, 7, 597–614. [Google Scholar] [CrossRef] [PubMed]
- Glick, P.; Suresh, S.A.; Ruffatto, D.; Cutkosky, M.; Tolley, M.T.; Parness, A. A soft robotic gripper with gecko-inspired adhesive. IEEE Robot. Autom. Lett. 2018, 3, 903–910. [Google Scholar] [CrossRef]
- Herrero-Pérez, D.; Martínez-Barberá, H. Soft gripper design and fabrication for underwater grasping. Appl. Sci. 2022, 12, 10694. [Google Scholar] [CrossRef]
- Capalbo, C.E.; Tomaino, D.; Bruno, F.; Rizzo, D.; Phillips, B.; Licht, S. A soft robotic gripper with neutrally buoyant jamming pads for gentle yet secure grasping of underwater objects. IEEE J. Ocean. Eng. 2022, 47, 975–983. [Google Scholar] [CrossRef]
- Nie, S.; Liu, X.; Ji, H.; Ma, Z.; Yin, F. Simulation and experiment study on deformation characteristics of the water hydraulic flexible actuator used for the underwater gripper. IEEE Access 2020, 8, 191447–191459. [Google Scholar] [CrossRef]
- Li, H.; Yao, J.; Wei, C.; Zhou, P.; Xu, Y.; Zhao, Y. An untethered soft robotic gripper with high payload-to-weight ratio. Mech. Mach. Theory 2021, 158, 104226. [Google Scholar] [CrossRef]
- Costello, J.H.; Colin, S.P.; Dabiri, J.O.; Gemmell, B.J.; Lucas, K.N.; Sutherland, K.R. The hydrodynamics of jellyfish swimming. Ann. Rev. Mar. Sci. 2021, 13, 375–396. [Google Scholar] [CrossRef]
- Qiu, L.; He, Y.; Li, Y.; Yu, Y. Design and parameter optimization of a biomimetic jellyfish origami mechanism (BJOM) based on waterbomb tessellations. Mech. Mach. Theory 2023, 184, 105291. [Google Scholar] [CrossRef]
- Siddall, M.E. Invertebrates.—R.C. Brusca and G. J. Brusca. 2003. sinauer associates, sunderland, massachusetts. xix + 936 pp. ISBN 0–87893–097–3. $109.95(cloth). Syst. Biol. 2004, 53, 664–666. [Google Scholar] [CrossRef]
- Shirreffs, D.A. Anemone nemorosa L. J. Ecol. 1985, 73, 1005. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, K.; Wu, X.; Zhang, Q.; Li, K. Dynamic analysis of elastic projecting robot inspired by chameleon tongue. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 2088–2094. [Google Scholar]
- Sendra, S.; Lloret, J.; Jimenez, J.M.; Parra, L. Underwater acoustic modems. IEEE Sens. J. 2016, 16, 4063–4071. [Google Scholar] [CrossRef]
- Wu, S.; Xie, L.; Lin, H.; Tan, Q.; Chen, X.; He, S. Fiber acoustic sensor with stable operating-point based on a photo-thermal cavity. IEEE Sens. J. 2022, 22, 1321–1326. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Wang, X.; Luo, X. Underwater moving object detection using superficial electromagnetic flow velometer array based artificial lateral line system. IEEE Sens. J. 2024, 24, 12104–12121. [Google Scholar] [CrossRef]
- Manduzio, G.A.; Forti, N.; Sabatini, R.; Battistelli, G.; Chisci, L. Underwater source localization via spectral element acoustic field estimation. IEEE Sens. J. 2023, 23, 26375–26389. [Google Scholar] [CrossRef]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 2020, 29, 4376–4389. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Xie, G.; Wen, L.; Zhang, J. A bio-inspired electrocommunication system for small underwater robots. Bioinspir. Biomim. 2017, 12, 036002. [Google Scholar] [CrossRef]
- Shashank, A.; Tiwana, M.I.; Redmond, S.J.; Lovell, N.H. Design, simulation and fabrication of a low cost capacitive tactile shear sensor for a robotic hand. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine (EMBC 2009), Minneapolis, MN, USA, 2–6 September 2009; pp. 4132–4135. [Google Scholar]
- Wen, C.C.; Fang, W. Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane. Sens. Actuators A Phys. 2008, 145–146, 14–22. [Google Scholar] [CrossRef]
- Li, C.; Wu, P.M.; Lee, S.; Gorton, A.; Schulz, M.J.; Ahn, C.H. Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J. Microelectromech. Syst. 2008, 17, 334–341. [Google Scholar]
- Ahmadi, R.; Packirisamy, M.; Dargahi, J.; Cecere, R. Discretely loaded beam-type optical fiber tactile sensor for tissue manipulation and palpation in minimally invasive robotic surgery. IEEE Sens. J. 2012, 12, 22–32. [Google Scholar] [CrossRef]
- Hisayasu, S.; Kubo, K.; Uehara, H.; Shimizu, H.; Takao, H. Nano-tactile scanner with dust-proof and drip-proof structure for high-resolution measurement of skin surface textures. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Sydney, Australia, 24–27 July 2023; pp. 1–4. [Google Scholar]
- Zhang, J.; Li, H.; Liu, Q.; Li, H.; Li, S. Underwater tactile force sensor based on MEMS and BP network calibration realization. Instrum. Tech. Sens. 2022, 12. [Google Scholar]
- Wang, H.; Zhou, D.; Cao, J. Development of a skin-like tactile sensor array for curved surface. IEEE Sens. J. 2014, 14, 55–61. [Google Scholar] [CrossRef]
- Cross, L.B.; Subad, R.A.S.I.; Saikot, M.M.H.; Park, K. Waterproof design of soft multi-directional force sensor for underwater robotic applications. Appl. Mech. 2022, 3, 705–723. [Google Scholar] [CrossRef]
- Pagoli, A.; Chapelle, F.; Corrales-Ramon, J.A.; Mezouar, Y.; Lapusta, Y. Large-area and low-cost force/tactile capacitive sensor for soft robotic applications. Sensors 2022, 22, 4083. [Google Scholar] [CrossRef]
- Neto, M.; Ribeiro, P.; Nunes, R.; Jamone, L.; Bernardino, A.; Cardoso, S. A soft tactile sensor based on magnetics and hybrid flexible-rigid electronics. Sensors 2021, 21, 5098. [Google Scholar] [CrossRef]
- Ledermann, C.; Wirges, S.; Oertel, D.; Mende, M.; Woern, H. Tactile sensor on a magnetic basis using novel 3D Hall sensor—First prototypes and results. In Proceedings of the 2013 IEEE 17th International Conference on Intelligent Engineering Systems (INES), San Jose, Costa Rica, 19–21 June 2013; pp. 55–60. [Google Scholar]
- Alfadhel, A.; Kosel, J. Magnetic nanocomposite cilia tactile sensor. Adv. Mater. 2015, 27, 7888–7892. [Google Scholar] [CrossRef]
- Alfadhel, A.; Khan, M.A.; De Freitas, S.C.; Kosel, J. Magnetic tactile sensor for braille reading. IEEE Sens. J. 2016, 16, 8700–8705. [Google Scholar] [CrossRef]
- Wattanasarn, S.; Noda, K.; Matsumoto, K.; Shimoyama, I. 3D flexible tactile sensor using electromagnetic induction coils. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, Paris, France, 29 January–2 February 2012; pp. 488–491. [Google Scholar]
- Hao, Y.; Liu, Z.; Liu, J.; Fang, X.; Fang, B.; Nie, S.; Guan, Y.; Sun, F.; Wang, T.; Wen, L. A soft gripper with programmable effective length, tactile and curvature sensory feedback. Smart Mater. Struct. 2020, 29, 035006. [Google Scholar] [CrossRef]
- Thuruthel, T.G.; Shih, B.; Laschi, C.; Tolley, M.T. Soft robot perception using embedded soft sensors and recurrent neural networks. Sci. Robot. 2019, 4, eaav1488. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.P.; Lopes, P.A.; De Almeida, A.T.; Tavakoli, M.; Majidi, C. Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand. J. Micromech. Microeng. 2018, 28, 034001. [Google Scholar] [CrossRef]
- Qu, J.; Mao, B.; Li, Z.; Xu, Y.; Zhou, K.; Cao, X.; Fan, Q.; Xu, M.; Liang, B.; Liu, H.; et al. Recent progress in advanced tactile sensing technologies for soft grippers. Adv. Funct. Mater. 2023, 33, 2306249. [Google Scholar] [CrossRef]
- Maekawa, H.; Tanie, K.; Komoriya, K.; Kaneko, M.; Horiguchi, C.; Sugawara, T. Development of a finger-shaped tactile sensor and its evaluation by active touch. In Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, France, 12–14 May 1992; Volume 2, pp. 1327–1334. [Google Scholar]
- Kamiyama, K.; Kajimoto, H.; Inami, M.; Kawakami, N.; Tachi, S. A vision-based tactile sensor. In Proceedings of the ICAT 2001, Tokyo, Japan, 5–7 December; 2001. [Google Scholar]
- Kamiyama, K.; Kajimoto, H.; Kawakami, N.; Tachi, S. Evaluation of a vision-based tactile sensor. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; pp. 1542–1547. [Google Scholar]
- Vlack, K.; Kajimoto, H.; Kamiyama, K.; Kawakami, N.; Mizota, T.; Tachi, S. GelForce: A traction field tactile sensor for rich human-computer interaction. In Proceedings of the 2004 IEEE Technical Exhibition Based Conference on Robotics and Automation (TExCRA), Tokyo, Japan, 18–19 November 2004; pp. 11–12. [Google Scholar]
- Li, R.; Platt, R.; Yuan, W.; Pas, A.T.; Roscup, N.; Srinivasan, M.A.; Adelson, E. Localization and manipulation of small parts using GelSight tactile sensing. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), Chicago, IL, USA, 14–18 September 2014; Volume 1, pp. 3988–3993. [Google Scholar]
- Lambeta, M.; Chou, P.-W.; Tian, S.; Yang, B.; Maloon, B.; Most, V.R.; Stroud, D.; Santos, R.; Byagowi, A.; Kammerer, G.; et al. DIGIT: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation. IEEE Robot. Autom. Lett. 2020, 5, 3838–3845. [Google Scholar]
- Chorley, C.; Melhuish, C.; Pipe, T.; Rossiter, J. Development of a tactile sensor based on biologically inspired edge encoding. In Proceedings of the 2009 International Conference on Advanced Robotics (ICAR 2009), Munich, Germany, 22–26 June 2009; pp. 1–6. [Google Scholar]
- Stone, E.A.; Lepora, N.F.; Barton, D.A.W. Walking on TacTip toes: A tactile sensing foot for walking robots. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; Volume 3, pp. 9869–9875. [Google Scholar]
- Zheng, H.; Shi, X.; Bao, A.; Jin, Y.; Zhao, P. DotTip: Enhancing Dexterous Robotic Manipulation with a Tactile Fingertip Featuring Curved Perceptual Morphology. IEEE Robot. Autom. Lett. 2025, 10, 772–779. [Google Scholar] [CrossRef]
- Lee, H.K.; Chung, J.; Chang, S.I.; Yoon, E. Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. J. Microelectromech. Syst. 2008, 17, 934–942. [Google Scholar]
- Ke, A.; Huang, J.; Wang, J.; Xiong, C.; He, J. Optimal design of dexterous prosthetic hand with five-joint thumb and fingertip tactile sensors based on novel precision grasp metric. Mech. Mach. Theory 2022, 171, 104759. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Ghayvat, H.; Chen, C.; Zhao, X.; Hosier, S.; Yuan, W.; Pun, S.H.; Chen, W. A simple fabrication, low noise, capacitive tactile sensor for use in inexpensive and smart healthcare systems. IEEE Sens. J. 2022, 22, 9069–9077. [Google Scholar] [CrossRef]
- Carluccio, V.; Fachechi, L.; Mastronardi, V.M.; Natta, L.; Algieri, L.; de Marzo, G.; Rizzi, F. Fabrication, characterization, and signal processing optimization of flexible and wearable piezoelectric tactile sensors. IEEE Sens. J. 2023, 23, 10959–10969. [Google Scholar] [CrossRef]
- Takashima, K.; Horie, S.; Mukai, T.; Ishida, K.; Matsushige, K. Piezoelectric properties of vinylidene fluoride oligomer for use in medical tactile sensor applications. Sens. Actuators A Phys. 2008, 144, 90–96. [Google Scholar] [CrossRef]
- Gao, S.; Weng, L.; Deng, Z.; Wang, B.; Huang, W. Biomimetic tactile sensor array based on magnetostrictive materials. IEEE Sens. J. 2021, 21, 13116–13124. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Wang, M.; Deng, K.; Guo, C.; Li, B.; Cheng, Y.; Sun, H.; Ye, H.; Pan, T.; et al. Structural Electronic Skin for Conformal Tactile Sensing. Adv. Sci. 2023, 10, e2304106. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Song, J.; Li, S.; Elowsky, C.; Zhou, Y.; Ducharme, S.; Chen, Y.M.; Zhou, Q.; Tan, L. Hydrogel microphones for stealthy underwater listening. Nat. Commun. 2016, 7, 12316. [Google Scholar] [CrossRef]
- He, Q.; Zhong, Q.; Sun, Z.; Zhang, H.; Zhao, Z.; Shi, Z.; Liu, X.; Zhao, Z.; Lu, J.; Ye, Y.; et al. Highly stretchable, repeatable, and easy-to-prepare ionogel based on polyvinyl chloride for wearable strain sensors. Nano Energy 2023, 113, 108535. [Google Scholar] [CrossRef]
- Xiang, C.; Li, Z.; Guo, H.; Yun, T.; Jiang, H.; Guan, Y. Development of a novel parallel soft manipulator with sensing capabilities. Smart Mater. Struct. 2023, 32, 015007. [Google Scholar] [CrossRef]
- Sarkar, D.; Kumar, A.; Arora, A. A Soft Glove with Proprioceptive Sensing and Multi-modal Haptic Feedback for VR and Telerobotic Applications. J. Bionic Eng. 2025, 22, 684–702. [Google Scholar] [CrossRef]
- Su, M.; Huang, D.; Guan, Y.; Xiang, C.; Zhu, H.; Liu, Z. Soft tactile sensing for object classification and fine grasping adjustment using a pneumatic hand with an inflatable palm. IEEE Trans. Ind. Electron. 2024, 71, 3873–3883. [Google Scholar] [CrossRef]
- Chuang, C.H.; Weng, H.K.; Chen, J.W.; Shaikh, M.O. Ultrasonic tactile sensor integrated with TFT array for force feedback and shape recognition. Sens. Actuators A Phys. 2018, 271, 348–355. [Google Scholar] [CrossRef]
- Liu, J.; Iacoponi, S.; Laschi, C.; Wen, L.; Calisti, M. Underwater mobile manipulation: A soft arm on a benthic legged robot. IEEE Robot. Autom. Mag. 2020, 27, 12–26. [Google Scholar] [CrossRef]
- Sinatra, N.R.; Teeple, C.B.; Vogt, D.M.; Parker, K.K.; Gruber, D.F.; Wood, R.J. Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci. Robot. 2019, 4, eaax5425. [Google Scholar] [CrossRef] [PubMed]
- Aracri, S.; Giorgio-Serchi, F.; Suaria, G.; Sayed, M.E.; Nemitz, M.P.; Mahon, S.; Stokes, A.A. Soft robots for ocean exploration and offshore operations: A perspective. Soft Robot. 2021, 8, 625–639. [Google Scholar] [CrossRef]
- Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Aitken, J.; Marthouse, R.; Hajbane, S.; Cunsolo, S.; Schwarz, A.; Levivier, A.; et al. Evidence that the great pacific garbage patch is rapidly accumulating plastic. Sci. Rep. 2018, 8, 4666. [Google Scholar] [CrossRef]
- Picardi, G.; De Luca, M.; Chimienti, G.; Cianchetti, M.; Calisti, M. User-driven design and development of an underwater soft gripper for biological sampling and litter collection. J. Mar. Sci. Eng. 2023, 11, 771. [Google Scholar] [CrossRef]
- Mura, D.; Barbarossa, M.; Dinuzzi, G.; Grioli, G.; Caiti, A.; Catalano, M.G. A soft modular end effector for underwater manipulation: A gentle, adaptable grasp for the ocean depths. IEEE Robot. Autom. Mag. 2018, 25, 45–56. [Google Scholar] [CrossRef]
- Cross, L.B.; Subad, R.; Park, K. Multi-modal sensing soft end-effector for underwater applications. Adv. Robot. Mech. Eng. 2022, 3, 377–389. [Google Scholar]
Items | Biological Characteristics | Grasping Mode | Advantage | Disadvantage | Grasping Item Scale | Grasping Force | Driving Mode | References |
---|---|---|---|---|---|---|---|---|
Octopus-inspired underwater soft gripper | The tentacles feature many suckers and a delicate body. | Crimp, adsorption grab | Excellent stability, flexibility, and adaption | High control complexity, high sealing performance requirements | Maximum grab size: 99 mm; minimum grab size 20 mm | Maximum grasping force: 46 N; minimum grasping force: 3.1 N | Pneumatically driven/cable driven | [66,67,68,69,70,71,72] |
Jellyfish-inspired underwater soft gripper | The mouth portions are towards the bottom of the colloidal body, and the tentacles encircling them are radial. | Covering grab | High adaptability, solid grasp | Susceptible to environmental factors | — | Maximum grab weight: 135.3 g; minimum grab weight 59.5 g | Pneumatically driven | [15,73] |
Sea anemone-inspired underwater soft gripper | The cylindrical or conical body has rings of overlapping tentacles loaded with stinging cells. | Swallowing, multi-tentacle grab | Strong environmental adaptation, strong gripping success, easy fine object grasping | Complex, hard for designing and build | Maximum grab size: 10 mm; minimum grab size: 4 mm | The gripped item weighs 1 g | Photo/pneumatically driven | [74,75,76] |
Other bionic soft grippers | — | Curl, multi-finger grasp | Steady grab, can grab delicate things, good anti-interference ability | Poor adaptability and limited durability | Maximum grab size: 200 mm; minimum grab size: 3 mm | The lifting weight can reach up to 20 kg and the minimum weight is 114.31 g | Pneumatically/hydraulically driven | [13,16,38,57,77,78,79,80,81,82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, C.; Sun, H.; Wu, T.; Chen, Y.; Wang, Y.; Zou, T. Advances and Applications of Bionic Design and Functional Integration in Underwater Soft Grippers. Polymers 2025, 17, 2408. https://doi.org/10.3390/polym17172408
Xiang C, Sun H, Wu T, Chen Y, Wang Y, Zou T. Advances and Applications of Bionic Design and Functional Integration in Underwater Soft Grippers. Polymers. 2025; 17(17):2408. https://doi.org/10.3390/polym17172408
Chicago/Turabian StyleXiang, Chaoqun, Hongsen Sun, Teng Wu, Ye Chen, Yanjie Wang, and Tao Zou. 2025. "Advances and Applications of Bionic Design and Functional Integration in Underwater Soft Grippers" Polymers 17, no. 17: 2408. https://doi.org/10.3390/polym17172408
APA StyleXiang, C., Sun, H., Wu, T., Chen, Y., Wang, Y., & Zou, T. (2025). Advances and Applications of Bionic Design and Functional Integration in Underwater Soft Grippers. Polymers, 17(17), 2408. https://doi.org/10.3390/polym17172408