The Impact of Micro-Nanoparticles on Morphology, Thermal, Barrier, Mechanical, and Thermomechanical Properties of PLA/PCL Blends for Application in Personal Hygiene: A Review
Abstract
1. General Introduction
1.1. Poly (Lactic Acid) (PLA) Background
1.2. Poly (ε-Caprolactone) (PCL) Background
1.3. Polymer Blending
2. Filler Types, Properties, and Their Versatile Uses
3. Morphology
3.1. Factors That Influence the Morphology of Polymers, Their Blends, and Polymer Blend Micro-/Nanocomposites
3.1.1. Evaluation of Morphology of PLA, PCL, and Their Blends
3.1.2. Morphologies of PLA/PCL Blend Micro-Nanocomposites: Effect and Prediction of Filler Localisation on Polymer Blends During Processing
4. Thermal and Thermomechanical Properties
4.1. Melting and Crystallisation of Pure PLA, PCL, Their Blends, and Blend Micro-Nanocomposites
4.2. Dynamic Mechanical Analysis (DMA) of Pure PLA, PCL, Their Blends, and Polymer Blend Micro-Nanocomposites
4.3. Thermal Degradation of Pure PLA, PCL, Their Blends, and Blend Composites
5. Mechanical Properties
5.1. Effect of Varying Blend Composition on PLA/PCL Blends’ Mechanical Properties
5.2. Effect of Micro/Nanofillers on Mechanical Properties of Polymer Blend Micro-Nanocomposites
5.3. Effect of Hybrid Fillers and/or Fillers with a Compatibiliser on the Mechanical Properties of PLA/PCL Blends
5.4. Effect of Surface Modification of Fillers on the Mechanical Properties of the PLA/PCL Blend Micro-Nanocomposites
6. Barrier Properties of Neat PLA, PCL, PLA/PCL Blends, and PLA/PCL/Micro-Nanocomposites
7. Applications Based on PLA/PCL/Micro-Nanofiller Composites
8. Biocompatibility and Biodegradability of PLA/PCL Blends
9. Conclusions and Future Prospects
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, B.P.S.; Reddy, M.A.; Paul, P.; Das, L.; Darshan, J.C.; Kurian, B.P.; Ghosh, S.; Ravindra, B.N. Importance of understanding the need of personal hygiene: A comprehensive review. Int. J. Res. Pharm. Pharm. Sci. 2020, 5, 56–61. [Google Scholar]
- Karadagli, F.; Theofanidis, F.; Eren, B. Consumers’ evaluation of flushable products with respect to post-disposal effects in wastewater infrastructures. J. Clean. Prod. 2021, 278, 123680. [Google Scholar] [CrossRef]
- Haque, M.O.; Mondal, M.I. Cellulose-based hydrogel for personal hygiene applications. In Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series; Mondal, M., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Brian, O.O.; Mendes, A.R.M.; McCarron, S.; Healy, M.G.; Morrison, L. The role of wet wipes and sanitary towels as a source of white microplastic fibers in the marine environment. Water Res. 2020, 182, 116021. [Google Scholar] [CrossRef]
- Alaswad, S.O.; Mahmoud, A.S.; Arunachalam, P. Recent advances in biodegradable polymers and their biological applications: A brief review. Polymers 2022, 14, 4924. [Google Scholar] [CrossRef]
- Webb, H.K.; Arnott, J.; Crawford, R.J.; Ivanova, E.P. Plastic degradation and its environmental implications with specific reference to poly(ethylene terephthalate). Polymers 2013, 5, 1–18. [Google Scholar] [CrossRef]
- Raphela, T.; Manqele, N.; Erasmus, M. The impact of improper waste disposal on human health and the environment: A case of uMgungundlovu district in KwaZulu-Natal Province, South Africa. Front. Sustain. 2024, 5, 1386047. [Google Scholar] [CrossRef]
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ. Sci. Pollut. Res. Int. 2022, 29, 58514–58536. [Google Scholar] [CrossRef]
- Mahajan, R. Environment and health impact of solid waste management in developing countries: A review. Curr. World. Environ. 2023, 18, 18–29. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks: Fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Durukan, S.; Karadagli, F. Physical characteristics, fiber compositions, and tensile properties of nonwoven wipes and toilet papers in relevance to what is flushable. Sci. Total Environ. 2019, 697, 134135. [Google Scholar] [CrossRef]
- Maldonado, C.S.; Weir, A.; Rumbeiha, W.K. A comprehensive review of treatments for hydrogen sulfide poisoning: Past, present, and future. Toxicol. Mech. Methods 2023, 33, 183–196. [Google Scholar] [CrossRef]
- Taib, N.A.A.B.; Rahman, M.R.; Huda, D.; Kuok, K.K.; Hamdan, S.; Bakri, M.K.N.; Julaihi, M.R.M.B.; Khan, A. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym. Bull. 2023, 80, 1179–1213. [Google Scholar] [CrossRef]
- Samuel, H.S.; Ekpan, F.-D.M.; Ori, M.O. Biodegradable, recyclable, and renewable polymers as alternatives to traditional petroleum-based plastics. Asian J. Environ. Res. 2024, 1, 152–165. [Google Scholar] [CrossRef]
- Shah, T.V.; Vasava, D.V. A glimpse of biodegradable polymers and their biomedical applications. e-Polymers 2019, 19, 385–410. [Google Scholar] [CrossRef]
- Samir, A.; Ashour, F.H.; Hakim, A.A.A.; Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. npj Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Cakmak, O.K. Biodegradable polymers—A review on properties, processing and degradation mechanism. Circ. Econ. Sustain. 2024, 4, 339–362. [Google Scholar] [CrossRef]
- Colnik, M.; Knez-Hrncic, M.; Skerget, M.; Knez, Z. Biodegradable polymers, current trends of research and their applications, a review. Chem. Ind. Chem. Eng. Q. 2020, 26, 401–418. [Google Scholar] [CrossRef]
- Patwary, M.A.S.; Surid, S.M.; Gafur, M.A. Properties and applications of biodegradable polymers. J. Res. Updat. Polym. Sci. 2020, 9, 32–41. [Google Scholar] [CrossRef]
- Satchanska, G.; Davidova, S.; Petrov, P.D. Natural and synthetic polymers for biomedical and environmental applications. Polymers 2024, 16, 1159. [Google Scholar] [CrossRef]
- Kumar, K.; Umapathi, R.; Ghoreishian, S.M.; Tiwari, J.N.; Hwang, S.K.; Huh, Y.S.; Venkatesu, P.; Shetti, N.P.; Aminabhavi, T.J. Microplastics and biobased polymers to combat plastics waste. Chemosphere 2023, 341, 140000. [Google Scholar] [CrossRef]
- Nampoothiri, K.M.; Nair, N.R.; John, R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501. [Google Scholar] [CrossRef] [PubMed]
- Swetha, T.A.; Ananthi, V.; Bora, A.; Sengottuvelan, N.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A review on biodegradable polylactic acid (PLA) production from fermentative food waste—Its applications and degradation. Int. J. Biol. Macromol. 2023, 234, 123703. [Google Scholar] [CrossRef] [PubMed]
- Mofokeng, J.P. Preparation and Characterization of Completely Biodegradable Polymer-Titania Nanocomposites. Ph.D. Thesis, University of the Free State (Qwaqwa campus), Bloemfontein, South Africa, 2015. [Google Scholar]
- Solechan, S.; Suprihanto, A.; Widyanto, S.A.; Triyono, J.; Fitriyana, D.F.; Siregar, J.P.; Cionita, T. Investigating the effect of PCL concentrations on the characterizations of PLA polymeric blends for biomaterial applications. Materials 2022, 15, 7396. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Hu, H.; Wang, X.; Yu, X.; Zhou, W.; Peng, S. Super tough poly(lactic acid) blends: A comprehensive review. RSC Adv. 2020, 10, 13316. [Google Scholar] [CrossRef]
- Li, T.-T.; Zheng, H.; Huang, S.-Y.; Pei, X.; Lin, Q.; Tian, S.; Ma, Z.; Lin, J.-H. Preparation and property evaluations of PCL/PLA composite films. J. Polym. Res. 2021, 28, 156. [Google Scholar] [CrossRef]
- Khouri, N.G.; Bahu, J.O.; Blanco-LIamero, C.; Severino, P.; Concha, V.O.C.; Souto, E.B. Polylactic acid (PLA): Properties, synthesis, and biomedical applications—A review of the literature. J. Mol. Struct. 2024, 1309, 138243. [Google Scholar] [CrossRef]
- Nofar, M.; Sacligil, D.; Carreau, P.J.; Kamal, M.R.; Heuzey, M.C. Poly (lactic acid) blends: Processing, properties and applications. Int. J. Biol. Macromol. 2019, 125, 307–360. [Google Scholar] [CrossRef]
- Shalem, A.; Yehezkeli, O.; Fishman, A. Enzymatic degradation of polylactic acid (PLA). Appl. Microbiol. Biotechnol. 2024, 108, 413. [Google Scholar] [CrossRef]
- Mallick, S.; Ahmad, Z.; Touati, F.; Bhadra, J.; Shakoor, R.A.; Al-Thani, N.J. PLA-TiO2 nanocomposites: Thermal, morphological, structural, and humidity sensing properties. Ceram. Int. 2018, 44, 16507–16513. [Google Scholar] [CrossRef]
- Ali, W.; Ali, H.; Gillani, S.; Zinck, P.; Souissi, S. Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: A review. Environ. Chem. Lett. 2023, 21, 1761–1786. [Google Scholar] [CrossRef]
- Wachirahuttapong, S.; Thongpin, C.; Sombatsompop, N. Effect of PCL and compatibility contents on the morphology, crystallization and mechanical properties of PLA/PCL blends. Energy Procedia 2016, 89, 198–206. [Google Scholar] [CrossRef]
- Kim, I.; Viswanathan, K.; Kasi, G.; Sadeghi, K.; Thanakkasaranee, S.; Seo, J. Poly (lactic acid)/ZnO bionanocomposites films with positively charged ZnO as potential antimicrobial food packaging materials. Polymers 2019, 11, 1427. [Google Scholar] [CrossRef]
- Fortelny, I.; Ujcic, A.; Fambri, L.; Slouf, M. Phase structure, compatibility, and toughness of PLA/PCL blends: A review. Front. Mater. 2019, 6, 206. [Google Scholar] [CrossRef]
- de Franca, J.O.C.; da Silva Valadares, D.; Paiva, M.F.; Dias, S.C.L.; Dias, J.A. Polymers Based on PLA from Synthesis Using D, L-Lactic Acid (or Racemic Lactide) and Some Biomedical Applications: A Short Review. Polymers 2022, 14, 2317. [Google Scholar] [CrossRef]
- Farahani, A.; Zarei-Hanzaki, A.; Abedi, H.R.; Tayebi, L.; Mostafavi, E. Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications. J. Funct. Biomater. 2021, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Kharb, J.; Saharan, R. Sustainable Biodegradable Plastics and their Applications: A Mini Review. IOP Conf. Ser. 2022, 1248, 012008. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [PubMed]
- Fortunati, E.; Armentano, I.; Iannoni, A.; Kenny, J.M. Development and thermal behaviour of ternary PLA matrix composites. Polym. Degrad. Stab. 2010, 95, 2200–2206. [Google Scholar] [CrossRef]
- Botlhoko, O.J.; Ramontja, J.; Ray, S.S. A new insight into morphology, thermal, and mechanical properties of melt-processed polylactide/poly(ε-caprolactone) blends. Polym. Degrad. Stab. 2018, 154, 84–95. [Google Scholar] [CrossRef]
- Naser, A.Z.; Deiab, I.; Darras, B.M. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Adv. 2023, 11, 17151. [Google Scholar] [CrossRef]
- Li, X.; Lin, Y.; Liu, M.; Meng, L.; Li, C. A review of research and application of polylactic acid composites. J. Appl. Polym. Sci. 2023, 140, e53477. [Google Scholar] [CrossRef]
- Jiang, J.; He, Z.; Yin, W.; Chen, R.; He, J.; Lang, M. Enhancing the toughness of poly(lactic acid) with a novel, highly flexible and biodegradable polyester: Poly(ethylene adipate-co-terephthalate) terephthalate. J. Polym. Res. 2024, 31, 151. [Google Scholar] [CrossRef]
- Raza, M.A.; Sharma, M.K.; Nagori, K.; Jain, P.; Ghosh, V.; Gupta, U.; Ajazuddin. Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int. J. Pharm. 2024, 666, 124734. [Google Scholar] [CrossRef] [PubMed]
- Meneses, J.; Van de Kemp, T.; Costa-Almeida, R.; Pereira, R.; Magalhaes, F.D.; Castilho, M.; Pinto, A.M. Fabrication of polymer/graphene biocomposites for tissue engineering. Polymers 2022, 14, 1038. [Google Scholar] [CrossRef]
- Bartnikowski, M.; Dargaville, T.R.; Ivanovski, S.; Hutmacher, D.W. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog. Polym. Sci. 2019, 96, 1–20. [Google Scholar] [CrossRef]
- Kayan, G.O.; Kayan, S. Polycaprolactone composites/blends and their applications especially in water treatment. ChemEngineering 2023, 7, 104. [Google Scholar] [CrossRef]
- Li, C.; Liu, X.; Zhang, Y.; Dong, J.; Wang, J.; Yang, Z.; Cheng, H. Fabrication of Sulfonated poly (ether ether ketone)/Sulfonated fully aromatic polyamide composite membranes for direct methanol fuel cells (DMFCs). Energy Technol. 2019, 7, 71–79. [Google Scholar] [CrossRef]
- Yang, J.; Qi, X.; Zhang, N.; Huang, T.; Wang, Y. Carbon nanotubes toughened immiscible polymer blends. Compos. Commun. 2018, 7, 51–64. [Google Scholar] [CrossRef]
- Nyamweya, N.N. Applications of polymer blends in drug delivery. Future J. Pharm. Sci. 2021, 7, 8. [Google Scholar] [CrossRef]
- Vayshbeyn, L.I.; Mastalygina, E.E.; Olkhov, A.A.; Podzorova, M.V. Poly(lactic acid)-based blends: A comprehensive review. Appl. Sci. 2023, 13, 5148. [Google Scholar] [CrossRef]
- Najera, S.; Michel, M.; Kyung-Hwan, J.; Nam-Soo, K. Characterization of 3D printed PLA/PCL/TiO2 composites for cancellous bone. J. Mater. Sci. Eng. 2018, 7, 1. [Google Scholar] [CrossRef]
- Herrero-Herrero, M.; Alberdi-Torres, S.; Gonzalez-Fernandez, M.L.; Vilarino-Feltrer, G.; Rodríguez-Hernandez, J.C.; Valles-Lluch, A.; Villar-Suarez, V. Influence of chemistry and fiber diameter of electrospun PLA, PCL and their blend membranes, intended as cell supports, on their biological behavior. Polym. Test. 2021, 103, 107364. [Google Scholar] [CrossRef]
- Priselac, D.; Poljacek, S.M.; Tomasegovic, T.; Leskovac, M. Blends based on poly(Caprolactone) with addition of poly(Lactic Acid) and coconut fibers: Thermal analysis, ageing behavior and application for embossing process. Polymers 2022, 14, 1792. [Google Scholar] [CrossRef]
- Wei, Q.; Sun, D.; Zhang, K.; Wang, Y.; Guo, Y.; Wang, Y. Research on the miscibility, mechanical properties and printability of polylactic acid/poly (ε-caprolactone) blends: Insights from molecular dynamics simulation and experiments. J. Mater. Sci. 2021, 56, 9754–9768. [Google Scholar] [CrossRef]
- Rao, R.U.; Venkatanarayana, B.; Suman, K.N.S. Enhancements of mechanical properties of PLA/PCL (80/20) blend by reinforcing with MMT nanoclay. Mater. Today 2019, 18, 85–97. [Google Scholar] [CrossRef]
- Fernandez-Tena, A.; Otaegi, I.; Irusta, L.; Sebastian, V.; Guerrica-Echevarria, G.; Muller, A.J.; Aranburu, N. High-Impact PLA in compatibilized PLA/PCL blends: Optimization of blend composition and type and content of compatibilizer. Macromol. Mater. Eng. 2023, 308, 2300213. [Google Scholar] [CrossRef]
- Van de Voorde, K.M.; Pokorski, J.K.; Korley, L.T.J. Exploring morphological effects on the mechanics of blended Poly(lactic acid)/Poly(ε-caprolactone) extruded fibers fabricated using multilayer coextrusion. Macromolecules 2020, 53, 5047–5055. [Google Scholar] [CrossRef]
- Motloung, M.P.; Ojijo, V.; Bandyopadhyay, J.; Ray, S.S. Morphological characteristics and thermal, rheological, and mechanical properties of cellulose nanocrystals-containing biodegradable poly(lactic acid)/poly(ε-caprolactone) blend composites. J. Appl. Polym. Sci. 2020, 137, 48665. [Google Scholar] [CrossRef]
- Chomachayi, M.D.; Jalani-arani, A.; Beltran, F.R.; de la Orden, M.U.; Urreaga, J.M. Biodegradable Nanocomposites Developed from PLA/PCL Blends and Silk Fibroin Nanoparticles: Study on the microstructure, thermal behavior, crystallinity and performance. J. Polym. Environ. 2020, 28, 1252–1264. [Google Scholar] [CrossRef]
- Zytner, P.; Pal, A.K.; Wu, F.; Rodriquez-Uribe, A.; Mohanty, A.K.; Misra, M. Morphology and performance relationship studies on poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(butylene adipate-co-terephthalate)-based biodegradable blends. ACS Omega 2023, 8, 1946–1956. [Google Scholar] [CrossRef]
- Ibrahim, B.A.; Kadum, K.M. Influence of polymer blending on mechanical and thermal properties. Modern Appl. Sci. 2010, 4, 157–161. [Google Scholar] [CrossRef]
- Luyt, A.S.; Antunes, A.; Popelka, A.; Mahmoud, A.; Hassan, M.K.; Kasak, P. Effect of poly(ε-caprolactone) and titanium (IV) dioxide content on the UV and hydrolytic degradation of poly(lactic acid)/poly(ε-caprolactone) blends. J. Appl. Sci. 2021, 138, 51266. [Google Scholar] [CrossRef]
- Negaresh, M.; Javadi, A.; Garmabi, H. Poly(lactic acid)/poly(ε-caprolactone) blends: Separate effects of nanocalcium carbonate and glycidyl methacrylate on interfacial characteristics. J. Thermoplast. Compos. Mater. 2024, 37, 3913–3941. [Google Scholar] [CrossRef]
- Mofokeng, J.P.; Luyt, A.S. Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochim. Acta 2015, 613, 41–53. [Google Scholar] [CrossRef]
- Matxinandiarena, E.; Mugica, A.; Zubitur, M.; Yus, C.; Sebastian, V.; Irusta, S.; Loaeza, A.D.; Santana, O.; Maspoch, M.L.; Puig, C.; et al. The effect of titanium dioxide surface modification on the dispersion, morphology, and mechanical properties of recycled PP/PET/TiO2 PBNANOs. Polymers 2019, 11, 1692. [Google Scholar] [CrossRef] [PubMed]
- Mochane, M.J.; Sefadi, J.S.; Motsoeneng, T.S.; Mokoena, T.E.; Mofokeng, T.G.; Mokhena, T.C. The effect of filler localization on the properties of biopolymer blends, recent advances: A review. Polym. Compos. 2020, 41, 2958–2979. [Google Scholar] [CrossRef]
- Liu, L.; Hui, D.; Lau, D. Two-dimensional nanomaterial-based polymer composites: Fundamentals and applications. Nanotechnol. Rev. 2022, 11, 770–792. [Google Scholar] [CrossRef]
- Duygulu, N.E. Functionalization of PLA nanofibers with PCL blending and TiO2 nanoparticle addition. Mater. Res. Express 2024, 11, 075403. [Google Scholar] [CrossRef]
- Chafidz, A. Enhancing thermal and mechanical properties of polypropylene using masterbatches of nanoclay and nano-CaCO3: A review. Commun. Sci. Technol. 2018, 3, 19–26. [Google Scholar] [CrossRef]
- Chu, Z.; Zhao, T.; Li, L.; Fan, J.; Qin, Y. Characterization of antimicrobial poly(Lactic Acid)/nano-composite films with silver and zinc oxide nanoparticles. Materials 2017, 10, 659. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, Y.; Liu, H.; Ying, J.; Liu, C.; Shen, C. Effects of interface interaction and microphase dispersion on the mechanical properties of PCL/PLA/MMT nanocomposites visualized by nanomechanical mapping. Compos. Sci. Technol. 2020, 190, 108048. [Google Scholar] [CrossRef]
- Alomayri, T.; Raza, A.; Shaikh, F. Effect of nano SiO2 on mechanical properties of micro-steel fibers reinforced geopolymer composite. Ceram. Int. 2021, 47, 33444–33453. [Google Scholar] [CrossRef]
- Ahmadzadeh, Y.; Babaei, A.; Goudarzi, A. Assessment of localization and degradation of ZnO nano-particles in the PLA/PCL biocompatible blend through a comprehensive rheological characterization. Polym. Degrad. Stab. 2018, 158, 136–147. [Google Scholar] [CrossRef]
- Olmos, D.; Gonzalez-Benito, J. Polymeric materials with antibacterial activity: A Review. Polymers 2021, 13, 613. [Google Scholar] [CrossRef] [PubMed]
- Diez-Pascual, A.M. Carbon-based polymer nanocomposites for high-performance applications. Polymers 2020, 12, 872. [Google Scholar] [CrossRef]
- Di Liberto, E.A.; Dintcheva, N.T. Biobased films based on chitosan and microcrystalline cellulose for Sustainable packaging applications. Polymers 2024, 16, 568. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Hussin, M.H.; Chuin, C.T.H.; Sabar, S.; Fazita, M.R.N.; Taiwo, O.F.A.; Hassan, T.M.; Haafiz, M.K.M. Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review. Int. J. Biol. Macromol. 2016, 93, 789–804. [Google Scholar] [CrossRef]
- Afolabi, O.A.; Ndou, N. Synergy of hybrid fillers for emerging composite and nanocomposite materials—A Review. Polymers 2024, 16, 1907. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Nguyen, T.D.; Yu, D.T.; Dinh, D.P.; Nguyen, A.H.; Ly, T.N.L.; Dao, P.H.; Nguyen, T.L.; Bach, L.G.; Thai, H. Modification of titanium dioxide nanoparticles with 3-(trimethoxysilyl) propyl methacrylate silane coupling agent. J. Chem. 2020, 2020, 1381407–1381416. [Google Scholar] [CrossRef]
- Mallakpour, S.; Naghdi, M. Polymer/SiO2 nanocomposites: Production and applications. Prog. Mater. Sci. 2018, 97, 409–447. [Google Scholar] [CrossRef]
- Patel, D.K.; Dutta, S.D.; Lim, K.-T. Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv. 2019, 9, 19143. [Google Scholar] [CrossRef]
- Deshmukh, R.K.; Hakim, L.; Akhila, K.; Ramakanth, D.; Gaikwad, K.K. Nano clays and its composites for food packaging applications. Int. Nano Lett. 2023, 13, 131–153. [Google Scholar] [CrossRef]
- Raha, S.; Ahmaruzzaman, M. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef] [PubMed]
- Cimen, C.G.; Dundar, M.A.; Kars, M.D.; Avcı, A. Enhancement of PCL/PLA electrospun nanocomposite fibers comprising silver nanoparticles encapsulated with Thymus Vulgaris L. Molecules for Antibacterial and Anticancer Activities. ACS Biomater. Sci. Eng. 2022, 8, 3717–3732. [Google Scholar] [CrossRef]
- Boyjoo, Y.; Pareek, V.K.; Liu, J. Synthesis of micro and nano-sized calcium carbonate particles and their applications. J. Mater. Chem. A 2014, 2, 14270. [Google Scholar] [CrossRef]
- Ougizawa, T.; Inoue, T. Morphology of polymer blends. In Polymer Blends Handbook; Springer: Dordrecht, The Netherlands, 2014; pp. 875–918. [Google Scholar] [CrossRef]
- Resch, J.; Dreier, J.; Bonten, C.; Kreutzbruck, M. Miscibility and phase separation in PMMA/SAN blends investigated by nanoscale AFM-IR. Polymers 2021, 13, 3809. [Google Scholar] [CrossRef]
- Mokoena, L.S.; Mofokeng, J.P. A Review on graphene (GN) and graphene oxide (GO) based biodegradable polymer composites and their usage as selective adsorbents for heavy metals in water. Materials 2023, 16, 252. [Google Scholar] [CrossRef]
- Toh, H.W.; Toong, D.W.Y.; Ng, J.C.K.; Ow, V.; Lu, S.; Tan, L.P.; Wong, P.E.H.; Venkatraman, S.; Huang, Y.; Ang, H.Y. Polymer blends and polymer composites for cardiovascular implants. Eur. Polym. J. 2021, 146, 110249. [Google Scholar] [CrossRef]
- Yazie, N.; Worku, D.; Gabbiye, N.; Alemayehu, A.; Getahun, Z.; Dagnew, M. Development of polymer blend electrolytes for battery systems: Recent progress, challenges, and future outlook. Mater. Renew. Sustain. Energy 2023, 12, 73–94. [Google Scholar] [CrossRef]
- Banerjee, R.; Ray, S.S. Role of rheology in morphology development and advanced processing of thermoplastic polymer materials: A review. ACS Omega 2023, 8, 27969–28001. [Google Scholar] [CrossRef]
- Barwinkel, S.; Seidel, A.; Hobeika, S.; Hufen, R.; Morl, M.; Altstadt, V. Morphology formation in PC/ABS blends during thermal processing and the effect of the viscosity ratio of blend partners. Materials 2016, 9, 659. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A. Compatibilization of biopolymer blends: A review. Adv. Ind. Eng. Polym. Res. 2024, 7, 373–404. [Google Scholar] [CrossRef]
- Dorigato, A.; Fredi, G. Effect of nanofillers addition on the compatibilization of polymer blends. Adv. Ind. Eng. Polym. Res. 2024, 7, 405–427. [Google Scholar] [CrossRef]
- Arribada, R.G.; Behar-Cohen, F.; de Barros, A.L.B.; Silva-Cunha, A. The use of polymer blends in the treatment of ocular diseases. Pharmaceutics 2022, 14, 1431. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cheng, H.; Han, C.; Yu, Y.; Shi, H.; Zhang, Y.; Yao, S. Miscibility, crystallization, mechanical, and rheological properties of poly (L-lactic acid)/poly(vinyl acetate) blends. Colloid Polym. Sci. 2022, 300, 763–774. [Google Scholar] [CrossRef]
- Sirocic, A.P.; Hrnjak-Murgic, Z.; Jelencic, J. The surface energy as an indicator of the miscibility of SAN/EDPM polymer blends. J. Adhes. Sci. Technol. 2013, 27, 2615–2628. [Google Scholar] [CrossRef]
- Matta, A.K.; Rao, R.U.; Suman, K.N.S.; Rambabu, V. Preparation and characterization of biodegradable PLA/PCL polymeric blends. Procedia Mater. Sci. 2014, 6, 1266–1270. [Google Scholar] [CrossRef]
- Mukwada, L.T. Preparation and Characterization of Biodegradable Polymer Nanocomposites with Magnesium Hydroxide (Mg(OH)2) and Functionalized Titania (f-TiO2) Nanoparticles as Fillers. Master’s Thesis, University of the Free State (Qwaqwa campus), Bloemfontein, South Africa, 2018. [Google Scholar]
- Bulatovic, V.O.; Mandic, V.; Grgic, D.K.; Ivancic, A. Biodegradable polymer blends based on thermoplastic starch. J. Polym. Environ. 2021, 29, 492–508. [Google Scholar] [CrossRef]
- Shojaei, S.; Nikuei, M.; Goodarzi, V.; Hakani, M.; Khonakdar, H.A.; Saeb, M.R. Disclosing the role of surface and bulk erosion on the viscoelastic behaviour of biodegradable poly(ε-caprolactone)/poly(lactic acid)/hydroxyapatite nanocomposites. J. Appl. Polym. Sci. 2018, 136, 47151. [Google Scholar] [CrossRef]
- Matumba, K.I.; Mokhena, T.C.; Ojijo, V.; Sadiku, E.R.; Ray, S.S. Morphological characteristics, properties, and applications of polylactide/poly(ε-caprolactone) blends and their composites—A review. Macromol. Mater. Eng. 2024, 309, 1438–7492. [Google Scholar] [CrossRef]
- Eryildiz, M.; Karakus, A.; Eksi, M.A. Development of characterization of PLA/PCL blend filaments and 3D printed scaffolds. J. Mater. Eng. Perform. 2024, 34, 14043–14054. [Google Scholar] [CrossRef]
- Finotti, P.F.M.; Costa, L.C.; Capote, T.S.O.; Scarel-Caminaga, R.M. Immiscible poly(lactic acid)/poly(ε-caprolactone) for temporary implants: Compatibility and Cytotoxicity. J. Mech. Behav. Biomed. Mater. 2017, 68, 155–162. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Y.; Zhang, M.; Zhou, W. Phase behaviour and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. Eur. Polym. J. 2008, 44, 2171–2183. [Google Scholar] [CrossRef]
- Marano, S.; Laudadio, E.; Minnelli, C.; Stipa, P. Tailoring the barrier properties of PLA: A state-of-the-art review for food packaging applications. Polymers 2022, 14, 1626. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.-T.; Wu, C.-J.; Tsou, C.-H.; Chai, W.-L.; Chow, J.-D.; Huang, C.-Y.; Chen, K.-N.; Wu, C.-S. Study on the crystallization, miscibility, morphology, properties of poly(lactic)/poly(ε-caprolactone) blends. Polymer-Plast. Technol. Eng. 2009, 48, 571–578. [Google Scholar] [CrossRef]
- Przybysz-Romatowska, M.; Haponiuk, J.; Formela, K. Poly(ε-caprolactone)/poly (lactic acid) blends compatibilized by peroxide initiations: Comparison of two strategies. Polymers 2020, 12, 228. [Google Scholar] [CrossRef]
- Ray, S.S.; Salehiyan, R. Chapter 4—Fundamentals of immiscible polymer blends. In Nanostructured Immiscible Polymer Blends; Elsevier: Amsterdam, The Netherlands, 2020; pp. 65–80. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, T.-Y.; Jin, F.-L.; Park, S.-J. Fracture toughness improvement of poly (lactic acid) reinforcement with poly (ε-caprolactone) and surface-modified silicon carbide. Adv. Mater. Sci. Eng. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Ostafinska, A.; Fortelny, I.; Nevoralova, M.; Hodan, J.; Kredatusova, J.; Slouf, M. Synergistic effect in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv. 2015, 5, 98971. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Guo, Z.; Zhao, Y.; Xiu, H.; Bai, H.; Zhang, Q.; Fu, Q. Controlling the selective distribution of hydrophilic silica nanoparticles in polylactide/ethylene-co-vinyl-acetate blends via tailoring the OH surface concentration of silica. Compos. Commun. 2021, 25, 100737. [Google Scholar] [CrossRef]
- Xiu, H.; Bai, H.W.; Huang, C.M.; Xu, C.L.; Li, X.Y.; Fu, Q. Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(L-lactide)/poly(ether)urethane blends. Express Polym. Lett. 2013, 7, 261–271. [Google Scholar] [CrossRef]
- Taguet, A.; Cassaagnau, P.; Lopez-Cuesta, J.-M. Structuration, selective dispersion and compatibilising effect of (nano) fillers in polymer blends. Prog. Polym. Sci. 2014, 39, 1526–1563. [Google Scholar] [CrossRef]
- Ajitha, A.R.; Mathew, L.P.; Thomas, S. Chapter 6—Compatibilisation of polymer blends by micro and nanofillers. In Compatibilisation of Polymer Blends; Elsevier: Amsterdam, The Netherlands, 2019; pp. 179–203. [Google Scholar] [CrossRef]
- Decol, M.; Pachekoski, W.M.; Becker, D. Compatibilisation and ultraviolet blocking of PLA/PCL blends via interfacial localisation of titanium dioxide nanoparticles. J. Appl. Polym. Sci. 2018, 135, 45813. [Google Scholar] [CrossRef]
- Mofokeng, J.P.; Luyt, A.S. Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Polym. Test. 2015, 45, 93–100. [Google Scholar] [CrossRef]
- Poljacek, S.M.; Priselac, D.; Tomasegovic, T.; Elesini, U.S.; Leskoviek, M.; Leskovac, M. Effect of the addition of nano-silica and poly (ε-caprolactone) on the mechanical and thermal properties of poly (lactic acid) blends and possible application in embossing process. Polymers 2022, 14, 4861. [Google Scholar] [CrossRef]
- Menczel, J.D.; Prime, R.B.; Gallagher, P.K. Chapter 1—Fundamentals and Applications. In Thermal Analysis of Polymers; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 1–6. ISBN 978-0-471-76917-0. [Google Scholar]
- Bianzhous, L.; Loucif, A.; Brionne, G.; Zhang, C.; Gallego, P.I.; Le Vesque, J.-B.; Boutarek-Zaourar, N.; Jaha, M. Assessing the influence of DSC parameters on accurate determination of Liquidus and solidus temperatures of a medium carbon low-alloy steel. J. Phase Equilibria Diffus. 2025, 46, 119–132. [Google Scholar] [CrossRef]
- Leyva-Porras, C.; Cruz-Alcantar, P.; Espinosa-Solis, V.; Martinez-Guerra, E.; Pinon-Balderrama, C.I.; Martínez, I.C.; Saavedra-Leos, M.Z. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers 2019, 12, 5. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, D.H. Thermal analysis and statistical evaluation of EPR used in nuclear power plants. In Proceedings of the 2015 IEEE Electrical Insulation Conference (EIC), Seattle, WA, USA, 7–10 June 2015. [Google Scholar] [CrossRef]
- Patrício, T.; Bartolo, P. Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Eng. 2013, 59, 292–297. [Google Scholar] [CrossRef]
- Noroozi, N.; Schafer, L.L.; Hatzikiriakos, S.G. Thermorheological properties of poly (ε-caprolactone)/polylactide blends. Polym. Eng. Sci. 2012, 52, 2348–2359. [Google Scholar] [CrossRef]
- Ivanov, E.; Kotsilkova, R.; Georgiev, V.; Batakliev, T.; Angelov, V. Advanced rheological, dynamic mechanical and thermal characterization of phase-separation behavior of PLA/PCL blends. J. Manuf. Mater. Process. 2025, 9, 35. [Google Scholar] [CrossRef]
- Ferri, J.M.; Fenollar, O.; Jorda-Vilaplana, A.; Garcia-Sanoguera, D.; Balart, R. Effect of miscibility on mechanical and thermal properties of poly(lactic acid)-poly(caprolactone) blends. Polym. Int. 2016, 65, 453–463. [Google Scholar] [CrossRef]
- Chen, Y.; Geever, L.M.; Higginbotham, C.L.; Devine, D.M. Analysis of the mechanical properties of solvent cast blends of PLA/PCL. Appl. Mech. Mater. 2014, 679, 50–56. [Google Scholar] [CrossRef]
- Zhu, B.; Bai, T.; Wang, P.; Wang, Y.; Liu, C.; Shen, C. Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability. Int. J. Biol. Macromol. 2020, 153, 1272–1280. [Google Scholar] [CrossRef]
- Gregorova, A.; Machovsky, M.; Wimmer, R. Viscoelastic properties of mineral-filled poly(lactic acid) composites. Int. J. Polym. Sci. 2012, 2012, 252981. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Parida, M.T. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater. 2016, 106, 149–159. [Google Scholar] [CrossRef]
- Pena-Juarez, M.G.; Balderas, B.A.V.; Almendarez-Camarillo, A.; Gutierrez-Castaneda, E.J.; Lopez-Zamora, L.; Gonzalez-Calderon, J.A. Enhancing the photostability and mechanical properties of poly-lactic acid (PLA) composites with glutaric acid functionalized titanium dioxide (TiO2). Polym. Compos. 2024, 45, 14687–14705. [Google Scholar] [CrossRef]
- Jain, S.; Reddy, M.M.; Mohanty, A.K.; Misra, M.; Ghosh, A.K. A new biodegradable flexible composite sheet from poly(lactic acid)/poly(ε-caprolactone) blends and micro-Talc. Macromol. Mater. Eng. 2010, 295, 750–762. [Google Scholar] [CrossRef]
- Matumba, K.L.; Motloung, M.P.; Ojijo, V.; Ray, S.S.; Sadiku, E.R. Investigation of the effects of chain extender on material properties of PLA/PCL and PLA/PEG blends: Comparative study between polycaprolactone and polyethylene glycol. Polymers 2023, 15, 2230. [Google Scholar] [CrossRef]
- Bouakaz, B.S.; Habi, A.; Grohens, Y.; Pillin, I. Organomontmorillonite/graphene-PLA-PCL nanofilled blends: New strategy to enhance the functional properties of PLA/PCL blend. Appl. Clay Sci. 2017, 139, 81–91. [Google Scholar] [CrossRef]
- Mofokeng, J.P.; Kelnar, I.; Luyt, A.S. Effect of layered silicates on the thermal stability of PCL/PLA microfibrillar composites. Polym. Test. 2016, 50, 9–14. [Google Scholar] [CrossRef]
- Bhasney, S.M.; Kumar, A.; Katiyar, V. Microcrystalline cellulose, polylactic acid and polypropylene biocomposites and its morphological, mechanical, thermal and rheological properties. Compos. Part B 2020, 184, 107717. [Google Scholar] [CrossRef]
- Qiu, H.M.; Hou, K.W.; Zhou, J.P.; Liu, W.J.; Wen, J.B.; Gu, Q.F. Preparation of biodegradable PLA/PCL composite filaments: Effect of PLA content on strength. IOP Conf. Ser. 2020, 770, 012059. [Google Scholar] [CrossRef]
- Ang, H.Y.; Toong, D.; Chow, W.S.; Seisilya, W.; Wu, W.; Wong, P.; Venkatraman, S.S.; Foin, N.; Huang, Y. Radiopaque fully degradable nanocomposites for coronary stents. Sci. Rep. 2018, 8, 17409. [Google Scholar] [CrossRef] [PubMed]
- Kalva, S.N.; Zakaria, Y.; Velasquez, C.A.; Koc, M. Tailoring the mechanical and degradation properties of 3DP PLA/PCL scaffolds for biomedical applications. Rev. Adv. Mater. Sci. 2025, 64, 20250098. [Google Scholar] [CrossRef]
- Urquijo, J.; Guerrica-Echevarria, G.; Eguiazabal, J.I. Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. J. Appl. Polym. Sci. 2015, 132, 42641. [Google Scholar] [CrossRef]
- Mandal, S.K.; Kumar, R.; Pradhan, A.R.; Kumar, D.; Kumar, S. Impact of nano fillers on the mechanical and rheological behaviour of polydimethylsiloxane-based nanocomposite elastomer. Ceram. Int. 2025, 51, 18852–18864. [Google Scholar] [CrossRef]
- Gao, C.; Wu, Y.; Xie, H. Fully bio-based composites of poly (lactic acid) reinforced with cellulose-graft-poly-(ε-caprolactone) copolymers. J. Renew. Mater. 2022, 11, 1137–1152. [Google Scholar] [CrossRef]
- Durmaz, B.U.; Aytac, A. The synergistic effects of micro-and nano-fillers on the properties of polyamide 11/poly(lactic acid) blend. J. Thermoplast. Compos. Mater. 2024, 37, 2329–2355. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, D.; Lecocq, H.; Serghei, A.; Cassagnau, P. Viscoelastic behaviour of highly filled polypropylene with solid and liquid Tin microparticles: Influence of the stearic acid additive. Rheol. Acta 2021, 60, 661–673. [Google Scholar] [CrossRef]
- Haghgoo, G.; Dadashi, P.; Babaei, A. Effects of Cellulose nanocrystals localization on compatibility between polylactic Acid and polycaprolactone: Correlating the microstructure and mechanical performance. Polym. Adv. Technol. 2025, 36, e70113. [Google Scholar] [CrossRef]
- Eng, C.C.; Ibrahim, N.A.; Zainuddin, N.; Ariffin, H.; Wan Yunus, W.M.Z.; Then, Y.Y. Enhancement of mechanical and dynamic mechanical properties of hydrophilic nanoclay reinforced polylactic acid/polycaprolactone/oil palm mesocarp fiber hybrid composites. Int. J. Polym. Sci. 2014, 2013, 11. [Google Scholar] [CrossRef]
- Bisht, N.; Vishwakarma, J.; Jaiswal, S.; Kumar, P.; Srivastava, A.K.; Dhand, C.; Dwivedi, N. Synergizing chemistry: Unveiling the potential of hybrid fillers for enhanced performance in shape memory polymers. Adv. Compos. Hybrid Mater. 2025, 8, 7. [Google Scholar] [CrossRef]
- Ye, G.; Li, Z.; Chen, B.; Bai, X.; Chen, X.; Hu, Y. Performance of polylactic acid/polycaprolactone/microcrystalline cellulose biocomposites with different filler contents and maleic anhydride compatibilization. Polym. Compos. 2022, 43, 5179–5188. [Google Scholar] [CrossRef]
- Khdier, K.H.; Husham, K.A.F.; Shali, W.M.; Al-Atabi, H.A. Interfacial effects on mechanical, thermal and electrical properties of polymer-based nanocomposites: A Review. Ann. Chim. Sci. Des Matériaux 2024, 48, 857–869. [Google Scholar] [CrossRef]
- Hayward, M.R.; Johnston, J.H.; Dougherty, T.; Silva, K.D. Interfacial adhesion: Improving the mechanical properties of silicon nitride fibre-epoxy polymer composites. Compos. Interfaces 2019, 3, 263–273. [Google Scholar] [CrossRef]
- Nethula, A.; Koka, N.S.S.; Chanamala, R.; Putta, N.R. Experimental investigations on preparation of silica-coated TiO2 nanoparticles (S-TiO2) and its mechanical characterizations as reinforcement in polylactic acid (PLA)/thermoplastic polyurethane (TPU) composites. Eng. Res. Express 2023, 5, 035005. [Google Scholar] [CrossRef]
- Cui, Y.; Kumar, S.; Kona, B.R.; van Houcke, D. Gas barrier properties of polymer/clay nanocomposites. RSC Adv. 2015, 5, 63669–63690. [Google Scholar] [CrossRef]
- Moustafa, H.; Galliard, H.; Vidal, L.; Dufresne, A. Facile modification of organoclay and its effect on the compatibility and properties of novel biodegradable PBE/PBAT nanocomposites. Eur. Polym. J. 2017, 87, 188–199. [Google Scholar] [CrossRef]
- Trinh, B.M.; Tadele, D.T.; Mekonnen, T.H. Robust and high barrier thermoplastic starch-PLA blend films using starch-graft-poly(lactic acid) as a compatibilizer. Mater. Adv. 2022, 3, 6208. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, M.; Huang, Z.; Yang, F.; Weng, Y.; Zhang, C. The effect of polylactic acid-based blend films modified with various biodegradable polymers on the preservation of strawberries. Food Packag. Shelf Life 2024, 45, 101333. [Google Scholar] [CrossRef]
- Moraczewski, K.; Stepczynska, M.; Raszkowska-Kaczor, A.; Szymanska, L.; Rytlewski, P. PLA/PCL Polymer Material for Food Packaging with Enhanced Antibacterial Properties. Polymers 2025, 17, 1134. [Google Scholar] [CrossRef]
- Venkatesan, R.; Thiyagu, T.T.; Rajeswari, N. Zinc composite materials and food packaging. In Composites Materials for Food Packaging; Cirillo, G., Kozlowski, M.A., Spizzirri, U.G., Eds.; Scrivener Publishing LLC.: Beverly, Massachusetts, 2018. [Google Scholar] [CrossRef]
- Sundar, N.; Keerthana, P.; Kumar, S.A.; Kumar, G.A.; Ghosh, S. Dual purpose, bio-based polylactic acid (PLA)-polycaprolactone (PCL) blends for coated abrasive and packaging industrial coating applications. J. Polym. Res. 2020, 27, 386. [Google Scholar] [CrossRef]
- Litha, T.T.; Nair, P.P. Investigation on the potentials of nanocomposites derived from polylactic acid-polycaprolactone blends using different nanofillers as biomedical implants. Asian J. Chem. 2025, 37, 377–384. [Google Scholar] [CrossRef]
- Najera, S.E.; Michel, M.; Kim, N.-S. 3D Printed PLA/PCL/TiO2 Composite for Bone Replacement and Grafting. MRS Adv. 2018, 3, 2373–2378. [Google Scholar] [CrossRef]
- Narancic, T.; Verstichel, S.; Chaganti, S.R.; Morales-Gamez, L.; Kenny, S.T.; De Wilde, B.; Padamati, R.B.; O’Connor, K.E. Biodegradable plastic blends create new possibilities for end-of-life management of plastics, but they are not a panacea for plastic pollution. Environ. Sci. Technol. 2018, 52, 10441–10452. [Google Scholar] [CrossRef]
- Van de Perre, D.; Serbruyns, L.; Coltelli, M.-B.; Gigante, V.; Aliotta, L.; Lazzeri, A.; Geerinck, R.; Verstichel, S. Tuning biodegradation of poly (lactic acid) (PLA) at mild temperature by blending with poly (butylene succinate-co-adipate) (PBSA) or polycaprolactone (PCL). Materials 2024, 17, 5436. [Google Scholar] [CrossRef] [PubMed]
Biodegradable Polymers | Non-Biodegradable Polymers |
---|---|
Produced from renewable (corn and starch) and synthetic resources. | They are produced or synthesised from petroleum-based resources. |
Environmentally friendly as they degrade naturally into water (H2O), carbon dioxide (CO2), and biomass. | They are not biodegradable and release toxic gases during incineration. |
Consist of chains that can be hydrolytically or enzymatically cleaved. | Consist of non-polar covalent bonds, which are hard to break under the action of enzymes or water. |
They last for a short period of time. | They are resistant to degradation and microbial attack, thus requiring a long duration for their decomposition. |
Contain degradable groups in their polymeric backbone, like esters, amides, and ethers. | They consist of hydrocarbon chains. |
Type of Filler | Properties of Filler | Common Applications | References |
---|---|---|---|
Titanium dioxide (TiO2) | Antibacterial activity, low toxicity, photocatalytic activity, UV resistance, good mechanical and thermal properties. | Used in the removal of environmental pollutants, photocatalysis, cosmetics, medicine, and self-cleaning coatings. | [53,70,81] |
Silicon dioxide (SiO2) | Fire resistant, high surface area, biocompatible, large band gap energy, non-toxic, and antimicrobial activity. | Rubber products, implants, coatings for ultrafiltration membranes (UF), chemical sensors, dental fillings, and cosmetics. | [74,82] |
Cellulose and microcrystalline cellulose (MCC) | High specific surface area, biocompatibility, thermal stability, barrier properties, excellent mechanical strength, non-toxic nature, and antimicrobial activity. | Used to make membranes or filters for water purification, wound dressing, feminine hygiene products, dental implants, drug delivery, and packaging films. | [3,83] |
Nanoclays | Excellent barrier, good mechanical and thermal stability. | Food package barrier films, rubber products, medicine, and cosmetics. | [84] |
Zinc oxide nanoparticles (ZnO NPs) | Antimicrobial effect, UV shielding abilities, electromagnetic shielding. | Cosmetics, medicine (for wound healing), rubber products, and pigments. | [75,85] |
Silver nanoparticles (AgNPs) | Strong antimicrobial agent, chemical stability, and good catalytic properties. | Used in wound dressings, cancer diagnosis, and surgical sutures. | [86] |
Calcium carbonate (CaCO3) | High porosity, high surface area, non-toxic, and biocompatible. | Used in paints, pigments, paper coatings, and plastics. | [71,87] |
Sample Composition and Names | Processing Method | Influence of Varying Blend Composition on Morphology of the PLA/PCL Blend | Refs. |
---|---|---|---|
90/10, 80/20, 70/30 w/w PLA/PCL blends | Melt blending | PCL was evenly dispersed in the PLA phase in all the blends. It formed spherulite-shaped droplets, and they were observed in the continuous PLA phase. | [100] |
98.75/1.25, 97.5/2.5, 95/5, 92.5/7.5 w/w PLA/PCL blends | Solution blending | PCL particles were dispersed in the PLA matrix. However, cracks and many ridges were seen in the blends, depicting plastic deformation prior to fracturing. Therefore, with the discussed behaviour, it is evident that there is poor compatibility between PLA and PCL. | [112] |
90/10, 80/20, 70/30, 60/40, 50/50 w/w PLA/PCL blends | Melt mixing | It was reported that as PCL content increased, the particle size distribution also increased. At 30 wt.%, the particle size distribution of PCL enlarged. Furthermore, at a PCL content of 50 wt.%, the phase morphology exhibited a co-continuous structure. | [113] |
80/20 w/w PLA/PCL blend | Batch mixer | Two-phase morphology was observed in the blend, indicating immiscibility between PLA and PCL. | [57] |
90/10, 80/20, 70/30, 60/40 w/w PLA/PCL blends | Ball mill process | Immiscibility of the PLA/PCL blends was observed, which was visible by voids caused by the detachment of PCL particles from the PLA surface. | [25] |
80/20 and 70/30 w/w PLA/PCL blends | Twin-screw extruder | The authors reported that both blends (80/20 and 70/30 w/w) exhibited a two-phase separation morphology irrespective of the incorporated PCL content. In addition, increasing PCL content resulted in an increased number of PCL droplets. Furthermore, at the 80/20 PLA/PCL blend, a sea-island morphology was observed. | [58] |
Surface Energies (mJm−2) | Interfacial Tension (mJm−2) | ||||
---|---|---|---|---|---|
PLA | 52.3 | 10.2 | 42.0 | PLA/PCL | 2.20 |
PCL | 51.1 | 16.1 | 34.9 | PCL/CN | 4.5 |
CN | 68.9 | 28 | 40.9 | PLA/CN | 1.97 |
Polymer Blend Composite | Weight Percentages (wt.%) of Filler | Technique Used to Analyse the Morphology | Remarks on the Influence of Fillers on the Morphology of the PLA/PCL-Filler Micro-/Nanocomposites. | Refs. |
---|---|---|---|---|
PLA/PCL/Zinc oxide nanoparticles (ZnO-NPs) | 2.0, 4.0, and 6.0 | FESEM and TEM | It was stated that the diameter of PCL droplets increased with increasing ZnO-NPs, from 610 nm in the blend to 775 nm in the nanocomposites with 6 wt.% ZnO-NPs. Furthermore, the wetting coefficient value was calculated as 2.09 mNm−1, which suggests that ZnO-NPs would preferentially localise within the PLA matrix. | [75] |
PLA/PCL/Silicon carbide (SiC) | 0.25, 0.5, 0.75, and 1.0 | The introduction of SiC in the PLA/PCL blend showed good interfacial adhesion because SiC particles bonded well in a continuous PLA matrix. At a lower content of SiC (0.5 wt.%), there was a good dispersion of SiC in the PLA matrix. However, agglomeration of SiC was observed at a content above 0.5 wt.%. | [112] | |
PLA/PCL/Silk fibroin nanoparticles (SFNPs) | 1.0 | A continuous interface and uniform phase were observed with the incorporation of 1 wt.% content of SFNPs, which led to improved compatibility between PLA and PCL polymers. The improved compatibility resulted in a reduction in the PCL droplet size from 1.170 nm to 794 nm, which indicates a compatibilisation effect of SFNPs in the blend. | [61] | |
PLA/PCL/Silicon dioxide (SiO2) | 1.0 and 3.0 | Introducing 1 wt.% of SiO2 into the PLA/PCL blend (70/30) improved the compatibility between the two polymers. This behaviour was visible in two distinct phases in the blend without SiO2. Therefore, SiO2 acted as a compatibiliser by improving the interaction of PLA and PCL. Furthermore, agglomeration of SiO2 (3 wt.%) was visible in the PLA/PCL blend (50/50). | [120] | |
PCL/PLA/Montmorillonite (MMT) | 1.0 | TEM | It was noted that the presence of MMT significantly decreased the particle size of the PLA phase, and MMT was dispersed at the interface of the PCL/PCL blend, which could mean that the filler interacted with the two phases. | [73] |
Polymer Blends | Filler Types | Remarks on Thermal Properties of the PLA/PCL Blend and/or Blend Composites | Refs. |
---|---|---|---|
PLA/PCL blends | Glycidyl methacrylate (GMA) and nanocalcium carbonate (NCC) | The presence of a compatibiliser (GMA) and nanoparticles (NCC) increased the degree of crystallinity of PLA in the PLA/PCL blends. This was seen by NCC acting as a nucleating agent, while GMA enhanced the crystallinity of the blends. | [65] |
PLA/PCL blend (70/30 w/w) | Cellulose nanocrystals (CN) | The addition of CN did not affect PLA’s cold crystallisation (Tcc). However, CN did improve the crystallisation (Tc) of PCL in the blends. This behaviour could be related to CN being localised in the PCL phase and acting as a nucleating agent, facilitating the crystal growth of PCL. Furthermore, neither PCL nor CN influenced the melting temperature of the PLA polymer. | [60] |
PLA/PCL blends | Nano-silica (SiO2) | Incorporating nano-silica slightly increased PLA’s melting temperature in the blends. The melting temperature of the PCL in the blends was reduced, but the exception was with 50% w/w PCL, where the melting temperature increased from 57 to 64 °C with 3 wt.% SiO2 content. Incorporating both PCL and nano-silica increased the degree of crystallinity of PLA. However, the only omissions are the blends of 60PLA/40PCL with 1, 2, and 3 wt.% SiO2 because both PCL and silica caused a reduction in the degree of crystallinity of PLA. | [120] |
PLA/PCL blends | No filler | The blends showed that two individual endothermic peaks were detected, whereby the first peak was ascribed to the PCL endotherm and the second peak to the PLA endotherm. The observed results show that PLA and PCL are immiscible, which was confirmed by two endothermic peaks in the blend. | [129] |
PLA/PCL blend | Multi-walled carbon nanotubes (CNTs) and montmorillonite (MMT) | It was stated that the presence of both CNTs and MMT slightly shifted the Tg of PCL towards higher temperatures, which could indicate improved compatibility between PLA and PCL in the blends. This behaviour was based on the unchanged Tg of PCL in the blend, which was attributed to poor compatibility between PCL and PLA. | [130] |
Sample Name | Strength (MPa) | Elastic Modulus (GPa) | Elongation at Break (%) |
---|---|---|---|
PLA | 49.4 | 1.5 | 3.79 |
PLA/PCL | 37.17 | 1.25 | 11.72 |
PLA/PCL/5MCC | 29.24 | 1.29 | 2.92 |
PLA/PCL/10MCC | 22.25 | 1.31 | 2.31 |
PLA/PCL/15MCC | 18.6 | 1.44 | 1.51 |
PLA/PCL/20MCC | 16.42 | 1.52 | 1.15 |
PLA/PLAma/5MCC/ PCL | 46.67 | 1.39 | 9.08 |
Sample | WVP (10−14 g·cm/cm2·s·Pa) |
---|---|
PLA | 15.0 ± 0.2 |
PLA/poly(butylene-adipate-co-terephthalate (PBAT) | 8.6 ± 0.1 |
PLA/polybutylene succinate (PBS) | 10.1 ± 0.9 |
PLA/poly(3-hydroxybutyrate-co-4- Hydroxybutyrate (P34HB) | 2.9 ± 0.6 |
PLA/polypropylene carbonate (PPC) | 5.2 ± 0.4 |
PLA/PCL | 3.1 ± 0.2 |
Medical and Hygiene Product | Materials Applied | Probable Biopolymer Replacement |
---|---|---|
Wound bandage | Polyvinyl alcohol (PVC), cotton. | PLA, PGA |
Surgical masks | PET, cotton. | PLA, TPS |
Disposable diapers | Polyacrylic acid, PVA copolymers. | TPS, PLA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokoena, T.E.; Mokoena, L.S.; Mofokeng, J.P. The Impact of Micro-Nanoparticles on Morphology, Thermal, Barrier, Mechanical, and Thermomechanical Properties of PLA/PCL Blends for Application in Personal Hygiene: A Review. Polymers 2025, 17, 2396. https://doi.org/10.3390/polym17172396
Mokoena TE, Mokoena LS, Mofokeng JP. The Impact of Micro-Nanoparticles on Morphology, Thermal, Barrier, Mechanical, and Thermomechanical Properties of PLA/PCL Blends for Application in Personal Hygiene: A Review. Polymers. 2025; 17(17):2396. https://doi.org/10.3390/polym17172396
Chicago/Turabian StyleMokoena, Tiisetso Ephraim, Lesia Sydney Mokoena, and Julia Puseletso Mofokeng. 2025. "The Impact of Micro-Nanoparticles on Morphology, Thermal, Barrier, Mechanical, and Thermomechanical Properties of PLA/PCL Blends for Application in Personal Hygiene: A Review" Polymers 17, no. 17: 2396. https://doi.org/10.3390/polym17172396
APA StyleMokoena, T. E., Mokoena, L. S., & Mofokeng, J. P. (2025). The Impact of Micro-Nanoparticles on Morphology, Thermal, Barrier, Mechanical, and Thermomechanical Properties of PLA/PCL Blends for Application in Personal Hygiene: A Review. Polymers, 17(17), 2396. https://doi.org/10.3390/polym17172396