Addressing Adhesive-Induced Agglomeration: Metal Detachment and Flow Behavior in Recycled Paper Fibres/Cellulose
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Coated Samples
2.2. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
2.3. Agglomerate Size
2.4. Rheological Measurements
Rheological Data
3. Results and Discussion
3.1. Disintegration of Coated Samples
3.2. Spectroscopy
3.3. Particle Size Distribution
3.4. Rheology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mandeep; Gupta, G.K.; Liu, H.; Shukla, P. Pulp and paper industry–based pollutants, their health hazards and environmental risks. Curr. Opin. Environ. Sci. Health 2019, 12, 48–56. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, Y. Designing a multi-echelon reverse logistics operation and network: A case study of office paper in Beijing. Resour. Conserv. Recycl. 2015, 100, 58–69. [Google Scholar] [CrossRef]
- Pivnenko, K.; Eriksson, E.; Astrup, T.F. Waste paper for recycling: Overview and identification of potentially critical substances. Waste Manag. 2015, 45, 134–142. [Google Scholar] [CrossRef] [PubMed]
- EUROSTAT Packaging Waste Statistics, Extracted Data October 2024. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Packaging_waste_statistics#Waste_generation_by_packaging_material (accessed on 25 May 2025).
- Mirkovic, I.B.; Majnaric, I.; Bolanca, Z. Ecological Sustainability and Waste Paper Recycling. Procedia Eng. 2015, 100, 177–186. [Google Scholar] [CrossRef]
- Purwanto, P.; Permana-Citra, A.D. Recycling and processing of solid waste into products of the cosmetic packaging industry. J. Phys. Conf. Ser. 2019, 1295, 012042. [Google Scholar] [CrossRef]
- Saha, T.; Hoque, M.E.; Mahbub, T. Biopolymers for sustainable packaging in food. cosmetics. and pharmaceuticals. In Advanced Processing, Properties and Applications of Starch and Other Bio-Based Polymers; Elsevier: Amsterdam, The Netherlands, 2020; pp. 197–214. [Google Scholar]
- Ibrahim, I.D.; Hamam, Y.; Sadiku, E.R.; Ndambuki, J.M.; Kupolati, W.K.; Jamiru, T.; Snyman, J. Need for sustainable packaging: An overview. Polymers 2022, 14, 4430. [Google Scholar] [CrossRef]
- Morel, S.; Mura, G.; Gallarate, M.; Sapino, S. Cosmetic Packaging: European Regulatory Aspects and Sustainability. Cosmetics 2024, 4, 110. [Google Scholar] [CrossRef]
- Pauwels, M.; Rogiers, V. Human health safety evaluation of cosmetics in the EU: A legally imposed challenge to science. Toxicol. Appl. Pharmacol. 2010, 2, 260–274. [Google Scholar] [CrossRef]
- Karademir, A.; Aydemir, C.; Tutak, D.; Aravamuthan, R. Printability of papers recycled from toner and inkjet-printed papers after deinking and recycling processes. J. Appl. Biomater. Funct. Mater. 2017, 16, 76–82. [Google Scholar] [CrossRef]
- Zeltner, M.; Toedtli, L.M.; Hild, N.; Fuhrer, R.; Rossier, M.; Gerber, L.; Raso, R.A.; Grass, R.N.; Stark, W.J. Ferromagnetic Inks Facilitate Large Scale Paper Recycling and Reduce Bleach Chemical Consumption. Langmuir 2013, 29, 5093–5098. [Google Scholar] [CrossRef]
- Bu, X.; Tabelin, C.B.; Ulusoy, U. Editorial: Advanced green and sustainable chemical and physical technologies for resources recycling of solid wastes. Front. Chem. 2023, 11. [Google Scholar] [CrossRef] [PubMed]
- Lamberti, M.; Escher, F. Aluminium foil as a food packaging material in comparison with other materials. Food Rev. Int. 2007, 4, 407–433. [Google Scholar] [CrossRef]
- De Araujo, P.; Steyer, P.; Millet, J.P.; Damond, E.; Stauder, B.; Jacquot, P. Pvd aluminium alloy coatings: Environmentally friendly alternative to protect steel parts against corrosion. Surf. Eng. 2003, 19, 304–309. [Google Scholar] [CrossRef]
- Bandara, R.; Indunil, G.M. Food packaging from recycled papers: Chemical, physical, optical properties and heavy metal migration. Heliyon 2022, 8, 10959. [Google Scholar] [CrossRef]
- Lalpuria, M.; Anantheswaran, R.; Floros, J. Packaging technologies and their role in food safety. In Microbial Decontamination in the Food Industry; Woodhead Publishing: Cambridgeshire, UK, 2020; pp. 701–745. [Google Scholar]
- Sani, M.S.; Aziz, F.A. Advanced manufacturing systems in food processing and packaging industry. IOP Conf. Ser. Mater. Sci. Eng. 2013, 46, 012042. [Google Scholar] [CrossRef]
- Dos Santos, J.M.; Quináia, S.P.; Felsner, M.L. Fast and direct analysis of Cr. Cd and Pb in brown sugar by GF AAS. Food Chem. 2018, 260, 19–26. [Google Scholar] [CrossRef]
- Bibi, F.; Guillaume, C.; Gontard, N.; Sorli, B. A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products. Trends Food Sci. Technol. 2017, 62, 91–103. [Google Scholar] [CrossRef]
- Subedi, K.; Trejos, T.; Almirall, J. Forensic Analysis of Printing Inks Using Tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Spectrochim. Acta Part B Spectrosc. 2015, 103, 76–83. [Google Scholar] [CrossRef]
- Olsmats, C.; Kaivo-Oja, J. European packaging industry foresight study—Identifying global drivers and driven packaging industry implications of the global megatrends. Eur. J. Futures Res. 2014, 2, 1–10. [Google Scholar] [CrossRef]
- Bobalek, J.F. Paper products: Security applications. In Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2001; pp. 6704–6706. [Google Scholar]
- Deshwal, G.K.; Panjagari, N.R. Review on metal packaging: Materials, forms, food applications, safety and recyclability. J. Food Sci. Technol. 2020, 57, 2377–2392. [Google Scholar] [CrossRef] [PubMed]
- Dean, D.A.; Halli, I.H. An introduction to pharmaceutical packaging. In Pharmaceutical Packaging Technology; Taylor and Francis: Abingdon, UK, 2000. [Google Scholar]
- Mates, J.E.; Bayer, I.S.; Salerno, M.; Carroll, P.J.; Jiang, Z.; Liu, L.; Megaridis, C.M. Durable and flexible graphene composites based on artists’ paint for conductive paper applications. Carbon 2015, 87, 163–174. [Google Scholar] [CrossRef]
- Soni, S.R.; Kılıç, H.; Camden, M.P.; Derriso, M.M.; Cunningham, S. Failure analysis and behaviour of titanium alloy metal matrix composite bolted joints. Int. J. Mater. Prod. Technol. 2004, 21, 41–58. [Google Scholar] [CrossRef]
- He, Q.; Wang, M.; Du, Y.; Qin, Q.; Qiu, W. Quantitative characterization of the anisotropy of the stress-optical properties of polyethylene terephthalate films based on the photoelastic method. Polymers 2022, 14, 3257. [Google Scholar] [CrossRef]
- Feng, R.; Farris, R.J. Linear thermoelastic characterization of anisotropic poly (ethylene terephthalate) films. J. Appl. Polym. Sci. 2002, 86, 2937–2947. [Google Scholar] [CrossRef]
- Piergiovanni, L.; Limbo, S. Metal packaging materials. In Food Packaging Materials; Springer: Berlin/Heidelberg, Germany, 2016; pp. 13–22. [Google Scholar]
- Chhipa, S.M.; Sharma, S.; Bagha, A.K. Recent development in polymer coating to prevent corrosion in metals: A review. Mater. Today Proc. 2024, 371–395. [Google Scholar] [CrossRef]
- Kaliyannan, G.V.; Velusamy, M.K.K.; Palaniappan, S.K.; Anandraj, M.K.; Rathanasamy, R. Polymer coatings for corrosive protection. In Polymer Coatings: Technology and Applications; Wiley: Oxford, UK, 2020; pp. 371–395. [Google Scholar] [CrossRef]
- Videira-Quintela, D.; Martin, O.; Montalvo, G. Recent advances in polymer-metallic composites for food packaging applications. Trends Food Sci. Technol. 2021, 109, 230–244. [Google Scholar] [CrossRef]
- Adeyemi, J.O.; Fawole, O.A. Metal-based nanoparticles in food packaging and coating technologies: A review. Biomolecules 2023, 13, 1092. [Google Scholar] [CrossRef]
- Son, Y.K.; Ko, D.C.; Kim, B.M. Prediction of delamination and tearing during stamping of polymer-coated metal sheet. J. Mater. Process. Technol. 2015, 220, 146–156. [Google Scholar] [CrossRef]
- Van den Bosch, M.J.; Schreurs, P.J.G.; Geers, M.G.D. Identification and characterization of delamination in polymer coated metal sheet. J. Mech. Phys. Solids 2008, 56, 3259–3276. [Google Scholar] [CrossRef]
- Carradò, A.; Faerber, J.; Niemeyer, S.; Ziegmann, G.; Palkowski, H. Metal/polymer/metal hybrid systems: Towards potential formability applications. Compos. Struct. 2011, 93, 715–721. [Google Scholar] [CrossRef]
- Kaiser, K.; Schmid, M.; Schlummer, M. Recycling of polymer-based multilayer packaging: A review. Recycling 2017, 3, 1. [Google Scholar] [CrossRef]
- Huang, H.D.; Ren, P.G.; Zhong, G.J.; Olah, A.; Li, Z.M.; Baer, E.; Zhu, L. Promising strategies and new opportunities for high barrier polymer packaging films. Prog. Polym. Sci. 2023, 144, 101722. [Google Scholar] [CrossRef]
- Sirviö, J.A.; Liimatainen, H.; Niinimäki, J.; Hormi, O. Sustainable packaging materials based on wood cellulose. RSC Adv. 2013, 3, 16590–16596. [Google Scholar] [CrossRef]
- Tajeddin, B. Cellulose-based polymers for packaging applications. In Lignocellulosic Polymer Composites: Processing, Characterization and Properties; Wiley: Oxford, UK, 2014; pp. 477–498. ISBN 978-1-118-77357-4. [Google Scholar]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Dimic-Misic, K.; Barcelo, E.; Brkic, V.S.; Gane, P. Identifying the challenges of implementing a European bioeconomy based on forest resources: Reality demands circularity. FME Trans. 2019, 47, 60–69. [Google Scholar] [CrossRef]
- Perišić, M.; Barceló, E.; Dimic-Misic, K.; Imani, M.; Spasojević Brkić, V. The role of bioeconomy in the future energy scenario: A state-of-the-art review. Sustainability 2022, 14, 560. [Google Scholar] [CrossRef]
- Kam-Biron, M.; Podesto, L. The growing role of wood in building sustainability. In AEI 2011: Building Integration Solutions; ASCE: Reston, VA, USA, 2011; pp. 318–326. [Google Scholar]
- Sahoo, K.; Bergman, R.; Alanya-Rosenbaum, S.; Gu, H.; Liang, S. Life cycle assessment of forest-based products: A review. Sustainability 2019, 11, 4722. [Google Scholar] [CrossRef]
- Silviana, S.; Rahayu, P. Central composite design for optimization of starch-based bioplastic with bamboo microfibrillated cellulose as reinforcement assisted by potassium chloride. J. Phys. Conf. Ser. 2019, 1295, 012073. [Google Scholar] [CrossRef]
- Teng, C.P.; Tan, M.Y.; Toh, J.P.W.; Lim, Q.F.; Wang, X.; Ponsford, D.; Lin, E.M.J.; Thitsartarn, W.; Tee, S.Y. Advances in cellulose-based composites for energy applications. Materials 2023, 16, 3856. [Google Scholar] [CrossRef] [PubMed]
- Narancic, T.; O’Connor, K.E. Plastic waste as a global challenge: Are biodegradable plastics the answer to the plastic waste problem? Microbiology 2019, 165, 129–137. [Google Scholar] [CrossRef]
- Du, X.; Lee, D.T.; Hsieh, J.S. Inkjet ink behaviors and its implication in adsorption deinking. Sep. Sci. Technol. 2016, 51, 2857–2867. [Google Scholar] [CrossRef]
- Mikkilineni, A.K.; Ali, G.N.; Chiang, P.; Chiu, G.T.; Allebach, J.P.; Delp, E.J. Signature-embedding in coated documents for security and forensic applications. In Proceedings of the Security, Steganography, and Watermarking of Multimedia Contents VI, SPIE, Electronic Imaging 2004, San Jose, CA, USA, 18–22 January 2004. [Google Scholar] [CrossRef]
- Simske, S.J.; Aronoff, J.S.; Arnabat, J. Qualification of security printing features. In Proceedings of the Optical Security and Counterfeit Deterrence Techniques VI, SPIE, Electronic Imaging 2006, San Jose, CA, USA, 15–19 January 2006. [Google Scholar] [CrossRef]
- Bonadies, I.; Capuano, R.; Avolio, R.; Castaldo, R.; Cocca, M.; Gentile, G.; Errico, M.E. Sustainable cellulose-aluminum-plastic composites from beverage cartons scraps and recycled polyethylene. Polymers 2022, 14, 807. [Google Scholar] [CrossRef]
- Oloyede, O.O.; Lignou, S. Sustainable paper-based packaging: A consumer’s perspective. Foods 2021, 10, 1035. [Google Scholar] [CrossRef]
- European Parliament and Council Directive 94/62/EC of 20 December 1994 on Packaging and Packaging Waste. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01994L0062-20180704 (accessed on 25 May 2025).
- Coelho, S.C.; Estevinho, B.N.; Rocha, F. Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying–A review. Food Chem. 2021, 339, 127850. [Google Scholar] [CrossRef]
- Klemenčić, M.; Bolanča Mirković, I.; Bolf, N.; Markić, M. Determination of the Mass Fractions of the Heavy Metals in the Recycled Cellulose Pulp. Polymers 2024, 16, 934. Available online: https://www.sciencedirect.com/topics/engineering/cellulose-content (accessed on 10 June 2024). [CrossRef] [PubMed]
- Rigol, A.; Latorre, A.; Lacorte, S.; Barceló, D. Determination of toxic compounds in paper-recycling process waters by gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry. J. Chromatogr. A 2002, 963, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Kim-Kang, H. Volatiles in packaging materials. Crit. Rev. Food Sci. Nutr. 1990, 29, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Tanase, I.G.; Popa, D.E.; Udriştioiu, G.E.; Bunaciu, A.A.; Aboul-Enein, H.Y. Estimation of the uncertainty of the measurement results of some trace levels elements in document paper samples using ICP-MS. RSC Adv. 2015, 15, 11445–11457. [Google Scholar] [CrossRef]
- Cirillo, G.; Curcio, M.; Spataro, T.; Picci, N.; Restuccia, D.; Iemma, F.; Spizzirri, U.G. Antioxidant polymers for food packaging. In Food Packaging and Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 213–238. [Google Scholar]
- Gemechu, E.D.; Butnar, I.; Gomà-Camps, J.; Pons, A.; Castells, F. A comparison of the GHG emissions caused by manufacturing tissue paper from virgin pulp or recycled waste paper. Int. J. Life Cycle Assess. 2013, 18, 1618–1628. [Google Scholar] [CrossRef]
- Gane, P.; Dimić-Mišić, K.; Barać, N.; Imani, M.; Janaćković, D.; Uskoković, P.; Barceló, E. Unveiling a recycling-sourced mineral-biocellulose fibre composite for use in combustion-generated NO x mitigation forming plant nutrient: Meeting sustainability development goals in the circular economy. Appl. Sci. 2020, 10, 3927. [Google Scholar] [CrossRef]
- Ämmälä, A.; Laitinen, O.; Sirviö, J.A.; Liimatainen, H. Key role of mild sulfonation of pine sawdust in the production of lignin containing microfibrillated cellulose by ultrafine wet grinding. Ind. Crops Prod. 2019, 140, 111664. [Google Scholar] [CrossRef]
- Dimic-Misic, K.; Hummel, M.; Paltakari, J.; Sixta, H.; Maloney, T.; Gane, P. From colloidal spheres to nanofibrils: Extensional flow properties of mineral pigment and mixtures with micro and nanofibrils under progressive double layer suppression. J. Colloid Interface Sci. 2015, 446, 31–43. [Google Scholar] [CrossRef]
- Mohtaschemi, M.; Dimic-Misic, K.; Puisto, A.; Korhonen, M.; Maloney, T.; Paltakari, J.; Alava, M.J. Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer. Cellulose 2014, 21, 1305–1312. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Tayeb, P.; Joyce, M.; Tyagi, P.; Kehoe, M.; Dimic-Misic, K.; Pal, L. Rheology of nanocellulose-rich aqueous suspensions: A review. BioResources 2017, 12, 9556–9661. [Google Scholar] [CrossRef]
- Dimic-Misic, K.; Nieminen, K.; Gane, P.; Maloney, T.; Sixta, H.; Paltakari, J. Deriving a process viscosity for complex particulate nanofibrillar cellulose gel-containing suspensions. Appl. Rheol. 2014, 24, 43–51. [Google Scholar]
- Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Vasiljevic, Z.Z.; Auger, S.; Vidic, J. Metal oxide nanoparticles for safe active and intelligent food packaging. Trends Food Sci. Technol. 2021, 116, 655–668. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, L.T.; Sun, X.H. Deinking Technology and Deinking Agent of Waste Paper. Adv. Mater. Res. 2011, 335–336, 1340–1343. [Google Scholar] [CrossRef]
- Sajjad, M.; Otsuki, A. Correlation between flotation and rheology of fine particle suspensions. Metals 2022, 12, 270. [Google Scholar] [CrossRef]
- Nazari, B.; Kumar, V.; Bousfield, D.W.; Toivakka, M. Rheology of cellulose nanofibers suspensions: Boundary driven flow. J. Rheol. 2016, 60, 1151–1159. [Google Scholar] [CrossRef]
Symbol | Sample |
---|---|
D_BW | Double-side coated paper before washing |
D_AW | Double-side coated paper after washing |
O_BW | One-side coated paper before washing |
O_AW | One-side coated paper after washing |
U_BW | Uncoated paper before washing |
U_AW | Uncoated paper after washing |
Parameters Measured | Working Conditions |
---|---|
Spray gas flow rate | 0.85 L/min |
Auxiliary gas flow rate | 1.3 L/min |
Plasma flow rate | 15 L/min |
Lens Voltage | 8.5 V |
ICP RF Power supply | 1100 W |
CeO/Ce | 0.015 |
Ba++/Ba+ | 0.014 |
Stage | Analysis Capability of Elements Analyzing and Characteristics |
---|---|
Sample Feed | Small pieces of coated samples were cut and weighed to about 100 mg. |
Chemical Extraction | Five milliliters of hydrochloric acid and nitric acid (1:3 ratio, J.T. Baker, Phillipsburg, NJ, USA, p.a. purity) were added to the sample for metal extraction. |
Dilution and Filtration | After extraction, the sample underwent dilution and filtration with a syringe filter, then received an additional tenfold dilution. |
Instrumentation | Elemental analysis performed |
Analysis Method | An atomized sample generates ions, which are detected. |
Detection Capability | Able to identify metals and different non-metals in liquid samples at exceptionally low concentrations. |
Elements that were detected | Silver (Ag), Cobalt (Co), Copper (Cu), Chromium (Cr), Nickel (Ni), Iron (Fe), Manganese (Mn), Titanium (Ti), Vanadium (V), Zinc (Zn) |
Metal | Sample Label | Relative Mass of Metal That Was Left on Sample After Deinking and Washing/% |
---|---|---|
Ti | U_AW | 6.73 |
Ti | U_BW | 8.21 |
Zn | O_BW | 12.07 |
Ag | O_AW | 13.79 |
Ag | D_BW | 14.29 |
Ag | O_BW | 14.71 |
Ti | O_BW | 17.86 |
Co | U_AW | 20 |
Ti | U_BW | 22.03 |
Ti | O_AW | 22.09 |
Ag | U_AW | 22.22 |
Ti | D_AW | 23.91 |
Ag | O_AW | 25.12 |
Co | U_BW | 26.32 |
Ag | U_BW | 35.29 |
Co | D_AW | 50.10 |
Cu | U_AW | 52.38 |
Zn | U_AW | 58.33 |
Ni | D_AW | 66.67 |
Cr | D_AW | 66.67 |
Metal | Condition | SD | σ2 |
---|---|---|---|
Ag | D_BW | 0.031 | 0.025 |
Ag | D_AW | 0.030 | 0.021 |
Ag | O-BW | 0.020 | 0.015 |
Ag | O-AW | 0.020 | 0.015 |
Ag | U-BW | 0.025 | 0.015 |
Ag | U-BW | 0.020 | 0.011 |
Co | D_BW | 0.125 | 0.101 |
Co | D_AW | 0.106 | 0.101 |
Co | O-BW | 0.085 | 0.081 |
Co | O-AW | 0.076 | 0.061 |
Co | U-BW | 0.055 | 0.031 |
Co | U-BW | 0.036 | 0.021 |
Cu | D_BW | 0.025 | 0.001 |
Cu | D_AW | 0.006 | 0.001 |
Cu | O-BW | 0.015 | 0.001 |
Cu | O-AW | 0.011 | 0.001 |
Cu | U-BW | 0.015 | 0.001 |
Cu | U-BW | 0.006 | 0.001 |
Cr | D_BW | 0.125 | 0.081 |
Cr | D_AW | 0.096 | 0.071 |
Cr | O-BW | 0.055 | 0.041 |
Cr | O-AW | 0.056 | 0.041 |
Cr | U-BW | 0.035 | 0.021 |
Cr | U-BW | 0.026 | 0.015 |
Ni | D_BW | 0.025 | 0.001 |
Ni | D_AW | 0.016 | 0.011 |
Ni | O-BW | 0.025 | 0.011 |
Ni | O-AW | 0.016 | 0.011 |
Ni | U-BW | 0.025 | 0.009 |
Ni | U-BW | 0.016 | 0.011 |
Fe | D_BW | 0.045 | 0.032 |
Fe | D_AW | 0.036 | 0.022 |
Fe | O-BW | 0.025 | 0.011 |
Fe | O-AW | 0.016 | 0.012 |
Fe | U-BW | 0.025 | 0.011 |
Fe | U-BW | 0.016 | 0.011 |
Mn | D_BW | 0.035 | 0.021 |
Mn | D_AW | 0.026 | 0.021 |
Mn | O-BW | 0.025 | 0.011 |
Mn | O-AW | 0.016 | 0.011 |
Mn | U-BW | 0.025 | 0.011 |
Mn | U-BW | 0.016 | 0.011 |
Ti | D_BW | 0.025 | 0.001 |
Ti | D_AW | 0.016 | 0.011 |
Ti | O-BW | 0.025 | 0.011 |
Ti | O-AW | 0.016 | 0.004 |
Ti | U-BW | 0.025 | 0.011 |
Ti | U-BW | 0.016 | 0.011 |
V | D_BW | 0.055 | 0.041 |
V | D_AW | 0.032 | 0.029 |
V | O-BW | 0.025 | 0.016 |
V | O-AW | 0.032 | 0.021 |
V | U-BW | 0.025 | 0.011 |
V | U-BW | 0.022 | 0.011 |
Zn | D_BW | 0.125 | 0.078 |
Zn | D_AW | 0.099 | 0.077 |
Zn | O-BW | 0.085 | 0.074 |
Zn | O-AW | 0.075 | 0.068 |
Zn | U-BW | 0.042 | 0.031 |
Zn | U-BW | 0.032 | 0.016 |
D-BW | D-AW | O-BW | O-AW | U-BV | U-AW | |
---|---|---|---|---|---|---|
G′ω = 1.2(rads−1) (Pa) | 19.45 | 17.34 | 14.39 | 11.45 | 10.17 | 8.67 |
G″ω = 1.2(rads−1) (Pa) | 14. 12 | 12.23 | 9.88 | 7.87 | 8.91 | 6.63 |
τds (Pa) | 9.1 | 7.21 | 7.56 | 5.13 | 5.62 | 3.23 |
K (η) | 154.65 | 121.65 | 139.67 | 102.45 | 98.23 | 76.31 |
n (η) | 0.76 | 0. 81 | 0.82 | 0.85 | 0.87 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liukko, S.; Dimic-Misic, K.; Chouhan, S.S.; Gasik, M. Addressing Adhesive-Induced Agglomeration: Metal Detachment and Flow Behavior in Recycled Paper Fibres/Cellulose. Polymers 2025, 17, 2392. https://doi.org/10.3390/polym17172392
Liukko S, Dimic-Misic K, Chouhan SS, Gasik M. Addressing Adhesive-Induced Agglomeration: Metal Detachment and Flow Behavior in Recycled Paper Fibres/Cellulose. Polymers. 2025; 17(17):2392. https://doi.org/10.3390/polym17172392
Chicago/Turabian StyleLiukko, Sirje, Katarina Dimic-Misic, Shailesh Singh Chouhan, and Michael Gasik. 2025. "Addressing Adhesive-Induced Agglomeration: Metal Detachment and Flow Behavior in Recycled Paper Fibres/Cellulose" Polymers 17, no. 17: 2392. https://doi.org/10.3390/polym17172392
APA StyleLiukko, S., Dimic-Misic, K., Chouhan, S. S., & Gasik, M. (2025). Addressing Adhesive-Induced Agglomeration: Metal Detachment and Flow Behavior in Recycled Paper Fibres/Cellulose. Polymers, 17(17), 2392. https://doi.org/10.3390/polym17172392