Measurement Error Analysis and Thermal Degradation Kinetic Model Improvement for Thermogravimetric Analyzers
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Testing
2.3. Mathematical Modeling of Thermogravimetric Degradation Kinetics
3. Results
3.1. Influencing Factors for Thermogravimetric Analysis
3.2. Prediction of Service Lifetime of SGP Membrane
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haines, P.J. Thermal Methods of Analysis: Pinciples, Applications and Problems; Springer Science, Business Media: Dordrecht, Germany, 1995. [Google Scholar]
- Menczel, J.D.; Prime, R.B. (Eds.) Thermal Analysis of Polymers: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 241–317. [Google Scholar]
- Aniza, R.; Chen, W.H.; Kwon, E.E.; Bach, Q.V.; Hoang, A.T. Lignocellulosic biofuel properties and reactivity analyzed by thermogravimetric analysis (TGA) toward zero carbon scheme: A critical review. Energy Convers. Manag. 2024, 22, 100538. [Google Scholar] [CrossRef]
- Msetra, Z.; Khitouni, N.J.J.; Khitouni, M.; Chemingui, M. Characterization and thermal analysis of new amorphous Co60Fe18Ta8B14 alloy produced by mechanical alloying. Mater. Lett. 2021, 292, 129532. [Google Scholar] [CrossRef]
- Khan, T.; Rao, H.I.; Muthukumar, C.; Shahroze, R.M.; Sebaey, T.A.; Parthasarathy, V. Date palm fiber-reinforced polymer composites and their thermal properties: A comprehensive review. Biomass Convers. Biorefinery 2024, 15, 8311–8330. [Google Scholar] [CrossRef]
- Amorim, D.; Siqueira, A.F.V.; Ricardo, S.M.C.; Neto, N.M.P.S.; de Souza, F.W.D.Q.A.; Costa, C.A.G.; Cunha, K.B.S.; de Almeida, A.P.; Saraiva, R.R.; Marinho, G.D.; et al. Microencapsulation of hesperidin with galactomannan biopolymer: Structural, vibrational and thermal analysis. Mater. Lett. 2024, 357, 135784. [Google Scholar] [CrossRef]
- Ding, Y.W. Fundamentals of Thermal Analysis; University of Science and Technology of China Press: Hefei, China, 2020. [Google Scholar]
- Peñalver, R.; Arroyo-Manzanares, N.; López-García, I.; Hernández-Córdoba, M. An overview of microplastics characterization by thermal analysis. Chemosphere 2020, 242, 125170. [Google Scholar] [CrossRef] [PubMed]
- Moens, E.K.; De Smit, K.; Marien, Y.W.; Trigilio, A.D.; Van Steenberge, P.H.; Van Geem, K.M.; D’hooge, D.R. Progress in reaction mechanisms and reactor technologies for thermochemical recycling of poly (methyl methacrylate). Polymers 2020, 12, 1667. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.H.; Song, Y.J.; Rhu, C.J.; Go, B.R. Pyrolysis process of mixed microplastics using TG-FTIR and TED-GC-MS. Polymers 2023, 15, 241. [Google Scholar] [CrossRef]
- Prezgot, D.; Chen, M.; Leng, Y.; Gaburici, L.; Zou, S. Automated machine-learning-driven analysis of microplastics by TGA-FTIR for enhanced identification and quantification. Anal. Chem. 2025, 97, 8833–8840. [Google Scholar] [CrossRef]
- Rebecca, G.L.; Simmons, M.J.H.; Stitt, E.H.; Horsburgh, L.; Gallen, R.W. Selection of formal baseline correction methods in thermal analysis. Chem. Eng. Technol. 2022, 45, 238–248. [Google Scholar]
- Saadatkhah, N.; Carillo Garcia, A.; Ackermann, S.; Leclerc, P.; Latifi, M.; Samih, S.; Chaouki, J. Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. Can. J. Chem. Eng. 2020, 98, 34–43. [Google Scholar] [CrossRef]
- Michael, E.B. Introduction to Thermal Analysis; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Matthias, W. Thermal Analysis in Practice: Fundamental Aspects; Hanser Publications: Cincinnati, OH, USA, 2017. [Google Scholar]
- Gabbott, P. (Ed.) Principles and Applications of Thermal Analysis; Wiley-Blackwell: Hoboken, NJ, USA, 2007. [Google Scholar]
- Krämer, R.H.; Raza, M.A.; Gedde, U.W. Degradation of poly (ethylene-co-methacrylic acid)–calcium carbonate nanocomposites. Polym. Degrad. Stabil. 2007, 92, 1795–1802. [Google Scholar] [CrossRef]
- Favero, S.; Li, A.; Wang, M.; Uddin, F.; Kuzuoglu, B.; Georgeson, A.; Titirici, M.M. Poly (ionic liquid) ionomers help prevent active site aggregation, in single-site oxygen reduction catalysts. ACS Catal. 2024, 14, 7937–7948. [Google Scholar] [CrossRef] [PubMed]
- Dony, P.; Berzin, F. Thermogravimetric, morphological and infrared analysis of blends involving thermoplastic starch and poly (ethylene-co-methacrylic acid) and its ionomer form. Molecules 2023, 28, 4519. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, J.; Wen, D.; Yuan, B.; Gong, P.; Liu, J.; Chen, X. Fabrication of remote controllable devices with multistage responsiveness based on a NIR light-induced shape memory ionomer containing various bridge ions. J. Mater. Chem. A 2019, 7, 20723–20732. [Google Scholar] [CrossRef]
- Nurazzi, N.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Shafi, A.R.; Aisyah, H.A.; Radzi, M.H.M.; Sabaruddin, F.A.; et al. Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments. Polymers 2021, 13, 2710. [Google Scholar] [CrossRef] [PubMed]
- Zeller, M.; Garbev, K.L.; Saatzer, T.; Merz, D.; Tavakkol, S.; Stapf, D. Thermogravimetric studies, kinetic modeling and product analysis of the pyrolysis of model polymers for technical polyurethane applications. J. Anal. Appl. Pyrolysis 2023, 171, 105976. [Google Scholar] [CrossRef]
- Niklas, N.; Schröder, L.; Zeller, M.; Neugber, I.; Merz, D.; Klein, C.O.; Tavakkol, S.; Stapf, D. Thermogravimetric study on thermal degradation kinetics and polymer interactions in mixed thermoplastics. J. Therm. Anal. Calorim. 2024, 150, 211–229. [Google Scholar]
- Ali, H.; Wilde, J.D. Kinetic modeling of the thermal degradation of methacrylate copolymers by thermogravimetric methods. Int. J. Chem. React. Eng. 2007, 5, 1–17. [Google Scholar]
- Flynn, J.H.; Wall, L.A. A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Polym. Lett. 1966, 4, 323–328. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Y.; Liu, Y.; Qin, J.; He, M.; Qin, S.; Yu, J. Effect of para-substituent on copolymerization and thermal degradation kinetics of styrene copolymers composed with maleic anhydride derivative. J. Polym. Res. 2024, 31, 101. [Google Scholar] [CrossRef]
- Mohanraj, G.T.; Vikram, T.; Shanmugharaj, A.M.; Khastgir, D.; Chaki, T.K. Kinetics of thermal degradation and thermo-oxidative degradation of conductive styrene-butadiene rubber-carbon black composites. J. Mater. Sci. 2006, 41, 4777–4789. [Google Scholar] [CrossRef]
- Doyle, C.D. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal. Chem. 1961, 33, 77–79. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Z.; Yang, M.; Chen, R. Thermal degradation of KN90 gauze mask rope waste: Thermogravimetric and thermodynamic analyses, kinetic modeling and volatile products. Case Stud. Therm. Eng. 2023, 43, 102816. [Google Scholar] [CrossRef]
- Jiang, G.; Wei, L. Analysis of pyrolysis kinetic model for processing of thermogravimetric analysis data. In Phase Change Materials and Their Applications; IntechOpen: London, UK, 2018. [Google Scholar]
- Jie, Y.; Sun, S.L.; Ma, C.; Qiao, Y.; Yao, H. Thermal degradation of PVC: A review. Waste Manag. 2016, 48, 300–314. [Google Scholar]
- Marongiu, A.; Faravelli, T.; Bozzano, G.; Dente, M.; Ranzi, E. Thermal degradation of poly (vinyl chloride). J. Anal. Appl. Pyrolysis 2003, 70, 519–553. [Google Scholar] [CrossRef]
- Ha, Y.; Jeon, J. Thermogravimetric analysis and pyrolysis characterization of expanded-polystyrene and polyurethane-foam insulation materials. Case Stud. Therm. Eng. 2024, 54, 104002. [Google Scholar] [CrossRef]
- Dobkowskiz, Z.; Rudnik, E. Lifetime prediction for polymers via the temperature of initial decomposition. J. Therm. Anal. Calorim. 1997, 48, 1393–1400. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, G.; Lin, N.; Lan, H.; Li, Q.; Yao, D.; Tang, J. A review of degradation and life prediction of polyethylene. Appl. Sci. 2023, 13, 3045. [Google Scholar] [CrossRef]
- Sánchez-vila, N.; Cardarelli, A.; Carmona-Cabell, M.; Dorado, M.P.; Pinzi, S.; Barbanera, M. Kinetic and thermodynamic behavior of co-pyrolysis of olive pomace and thermoplastic waste via thermogravimetric analysis. Renew. Energy 2024, 230, 120880. [Google Scholar] [CrossRef]
- Kamavaram, V.; Reddy, R.G. Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int. J. Therm. Sci. 2008, 47, 773–777. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, G.; Lu, Y.; Lu, X.; Zhang, Z.; Lin, S. Measurement Error Analysis and Thermal Degradation Kinetic Model Improvement for Thermogravimetric Analyzers. Polymers 2025, 17, 2390. https://doi.org/10.3390/polym17172390
Xie G, Lu Y, Lu X, Zhang Z, Lin S. Measurement Error Analysis and Thermal Degradation Kinetic Model Improvement for Thermogravimetric Analyzers. Polymers. 2025; 17(17):2390. https://doi.org/10.3390/polym17172390
Chicago/Turabian StyleXie, Guixiang, Yaqi Lu, Xiaochun Lu, Zhusen Zhang, and Shuidong Lin. 2025. "Measurement Error Analysis and Thermal Degradation Kinetic Model Improvement for Thermogravimetric Analyzers" Polymers 17, no. 17: 2390. https://doi.org/10.3390/polym17172390
APA StyleXie, G., Lu, Y., Lu, X., Zhang, Z., & Lin, S. (2025). Measurement Error Analysis and Thermal Degradation Kinetic Model Improvement for Thermogravimetric Analyzers. Polymers, 17(17), 2390. https://doi.org/10.3390/polym17172390