Functionalized Bisphenol A-Based Polymer for High-Performance Structural Supercapacitor Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Functionalization of Polymer
2.3. Structure of Sandwich SSC
2.4. Fabrication of Structural Supercapacitor Core Layer
2.5. Fabrication of Skin Layer
2.6. Fabrication of Supercapacitor Functional Sandwich Composite
2.7. Electrochemical Testing
2.8. Flexural Testing
2.8.1. Experimental Analysis
2.8.2. Finite Element Analysis
3. Results and Discussion
3.1. Characterization of Bisphenol A-Based Structural Electrolyte
3.2. Electrochemical Measurements
3.3. Flexural Behaviour of the Composite
3.3.1. Performance at Room Temperature
Experimental Results
Finite Element Analysis Results
Loading and Constraints/Boundary Condition and Contact Setting
Data Validation and Prediction
Hashin’s Failure Modes and Locations
3.3.2. Performance at Elevated Temperatures
3.4. Proof of Concept: Mechanical Performance and Practical Implementation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Balat, M. Status of Fossil Energy Resources: A Global Perspective. Energy Sources Part B Econ. Plan. Policy 2007, 2, 31–47. [Google Scholar] [CrossRef]
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Soeder, D.J. Fossil Fuels and Climate Change. In Fracking and the Environment: A Scientific Assessment of the Environmental Risks From Hydraulic Fracturing and Fossil Fuels; Springer International Publishing: Cham, Switzerland, 2021; pp. 155–185. [Google Scholar]
- Wuebbles, D.J.; Jain, A.K. Concerns about climate change and the role of fossil fuel use. Fuel Process. Technol. 2001, 71, 99–119. [Google Scholar] [CrossRef]
- Xu, X.; Wei, Z.; Ji, Q.; Wang, C.; Gao, G. Global renewable energy development: Influencing factors, trend predictions and countermeasures. Resour. Policy 2019, 63, 101470. [Google Scholar] [CrossRef]
- Adekoya, O.B.; Olabode, J.K.; Rafi, S.K. Renewable energy consumption, carbon emissions and human development: Empirical comparison of the trajectories of world regions. Renew. Energy 2021, 179, 1836–1848. [Google Scholar] [CrossRef]
- Stram, B.N. Key challenges to expanding renewable energy. Energy Policy 2016, 96, 728–734. [Google Scholar] [CrossRef]
- Zyadin, A.; Halder, P.; Kähkönen, T.; Puhakka, A. Challenges to renewable energy: A bulletin of perceptions from international academic arena. Renew. Energy 2014, 69, 82–88. [Google Scholar] [CrossRef]
- Qian, H.; Kucernak, A.R.; Greenhalgh, E.S.; Bismarck, A.; Shaffer, M.S.P. Multifunctional Structural Supercapacitor Composites Based on Carbon Aerogel Modified High Performance Carbon Fiber Fabric. ACS Appl. Mater. Interfaces 2013, 5, 6113–6122. [Google Scholar] [CrossRef]
- Adak, N.C.; Lim, S.; Lee, G.-H.; Lee, W. Epoxy-based multifunctional solid polymer electrolytes for structural batteries and supercapacitors. a short review. Front. Chem. 2024, 12, 1330655. [Google Scholar] [CrossRef]
- Ismail, K.B.M.; Kumar, M.A.; Mahalingam, S.; Raj, B.; Kim, J. Carbon fiber-reinforced polymers for energy storage applications. J. Energy Storage 2024, 84, 110931. [Google Scholar] [CrossRef]
- Asp, L.E.; Johansson, M.; Lindbergh, G.; Xu, J.; Zenkert, D. Structural battery composites: A review. Funct. Compos. Struct. 2019, 1, 042001. [Google Scholar] [CrossRef]
- Javaid, A.; Zafrullah, M.B.; Khan, F.u.H.; Bhatti, G.M. Improving the multifunctionality of structural supercapacitors by interleaving graphene nanoplatelets between carbon fibers and solid polymer electrolyte. J. Compos. Mater. 2019, 53, 1401–1409. [Google Scholar] [CrossRef]
- Javaid, A.; Ho, K.; Bismarck, A.; Shaffer, M.; Steinke, J.; Greenhalgh, E. Multifunctional structural supercapacitors for electrical energy storage applications. J. Compos. Mater. 2014, 48, 1409–1416. [Google Scholar] [CrossRef]
- Javaid, A.; Khalid, O.; Shakeel, A.; Noreen, S. Multifunctional structural supercapacitors based on polyaniline deposited carbon fiber reinforced epoxy composites. J. Energy Storage 2021, 33, 102168. [Google Scholar] [CrossRef]
- Anurangi, J.; Herath, M.; Galhena, D.T.L.; Epaarachchi, J. The use of fibre reinforced polymer composites for construction of structural supercapacitors: A review. Adv. Compos. Mater. 2023, 32, 942–986. [Google Scholar] [CrossRef]
- Greenhalgh, E.S.; Nguyen, S.; Valkova, M.; Shirshova, N.; Shaffer, M.S.P.; Kucernak, A.R.J. A critical review of structural supercapacitors and outlook on future research challenges. Compos. Sci. Technol. 2023, 235, 109968. [Google Scholar] [CrossRef]
- Anurangi, J.; Herath, M.; Galhena, D.T.L.; Epaarachchi, J. Electrochemical and structural performances of carbon and glass fiber-reinforced structural supercapacitor composite at elevated temperatures. Funct. Compos. Struct. 2024, 6, 035004. [Google Scholar] [CrossRef]
- Shirshova, N.; Bismarck, A.; Carreyette, S.; Fontana, Q.P.V.; Greenhalgh, E.S.; Jacobsson, P.; Johansson, P.; Marczewski, M.J.; Kalinka, G.; Kucernak, A.R.J.; et al. Structural supercapacitor electrolytes based on bicontinuous ionic liquid–epoxy resin systems. J. Mater. Chem. A 2013, 1, 15300–15309. [Google Scholar] [CrossRef]
- Chan, K.-Y.; Jia, B.; Lin, H.; Hameed, N.; Lee, J.-H.; Lau, K.-T. A critical review on multifunctional composites as structural capacitors for energy storage. Compos. Struct. 2018, 188, 126–142. [Google Scholar] [CrossRef]
- Javaid, A.; Irfan, M. Multifunctional structural supercapacitors based on graphene nanoplatelets/carbon aerogel composite coated carbon fiber electrodes. Mater. Res. Express 2019, 6, 016310. [Google Scholar] [CrossRef]
- Ganguly, A.; Karakassides, A.; Benson, J.; Hussain, S.; Papakonstantinou, P. Multifunctional Structural Supercapacitor Based on Urea-Activated Graphene Nanoflakes Directly Grown on Carbon Fiber Electrodes. ACS Appl. Energy Mater. 2020, 3, 4245–4254. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Z.; Wang, C.; Zhang, X.; Wu, L. Carbon fiber electrodes for composite structural supercapacitor: Preparation and modification methods. J. Energy Storage 2024, 98, 113129. [Google Scholar] [CrossRef]
- Ding, Y.; Qi, G.; Cui, Q.; Yang, J.; Zhang, B.; Du, S. High-Performance Multifunctional Structural Supercapacitors Based on In Situ and Ex Situ Activated-Carbon-Coated Carbon Fiber Electrodes. Energy Fuels 2022, 36, 2171–2178. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Komarov, F.F.; Lipkin, M.S.; Milchanin, O.V.; Parfimovich, I.D.; Shchegolkov, A.V.; Semenkova, A.V.; Velichko, A.V.; Chebotov, K.D.; Nokhaeva, V.A. Synthesis and Study of Cathode Materials Based on Carbon Nanotubes for Lithium-Ion Batteries. Inorg. Mater. Appl. Res. 2021, 12, 1281–1287. [Google Scholar] [CrossRef]
- Hudak, N.S.; Schlichting, A.D.; Eisenbeiser, K. Structural supercapacitors with enhanced performance using carbon nanotubes and polyaniline. J. Electrochem. Soc. 2017, 164, A691. [Google Scholar] [CrossRef]
- Samsur, R.; Rangari, V.K.; Jeelani, S.; Zhang, L.; Cheng, Z.Y. Fabrication of carbon nanotubes grown woven carbon fiber/epoxy composites and their electrical and mechanical properties. J. Appl. Phys. 2013, 113, 214903. [Google Scholar] [CrossRef]
- Valkova, M.; Anthony, D.B.; Kucernak, A.R.J.; Shaffer, M.S.P.; Greenhalgh, E.S. Predicting the mechanical behaviour of structural supercapacitor composites. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106860. [Google Scholar] [CrossRef]
- Subhani, K.; Jin, X.; Mahon, P.J.; Kin Tak Lau, A.; Salim, N.V. Graphene aerogel modified carbon fiber reinforced composite structural supercapacitors. Compos. Commun. 2021, 24, 100663. [Google Scholar] [CrossRef]
- Artigas-Arnaudas, J.; Sánchez-Romate, X.F.; Sánchez, M.; Ureña, A. Effect of electrode surface treatment on carbon fiber based structural supercapacitors: Electrochemical analysis, mechanical performance and proof-of-concept. J. Energy Storage 2023, 59, 106599. [Google Scholar] [CrossRef]
- Anurangi, J.; Jeewantha, J.; Herath, M.; Galhena, D.T.L.; Epaarachchi, J. Enhanced electromechanical performance of structural supercapacitor composites with high loading of graphene nanoplatelet at the fibre/matrix interface. Compos. Part A Appl. Sci. Manuf. 2025, 190, 108617. [Google Scholar] [CrossRef]
- Sánchez-Romate, X.F.; Bosque, A.D.; Artigas-Arnaudas, J.; Muñoz, B.K.; Sánchez, M.; Ureña, A. A proof of concept of a structural supercapacitor made of graphene coated woven carbon fibers: EIS study and mechanical performance. Electrochim. Acta 2021, 370, 137746. [Google Scholar] [CrossRef]
- Sun, J.; Gargitter, V.; Pei, S.; Wang, T.; Yan, Y.; Advani, S.G.; Wang, L.; Chou, T.-W. Mechanical and electrochemical performance of hybrid laminated structural composites with carbon fiber/solid electrolyte supercapacitor interleaves. Compos. Sci. Technol. 2020, 196, 108234. [Google Scholar] [CrossRef]
- Mapleback, B.; Dao, V.; Webb, L.; Rider, A. Composite Structural Supercapacitors: High-Performance Carbon Nanotube Supercapacitors through Ionic Liquid Localisation. Nanomaterials 2022, 12, 2558. [Google Scholar] [CrossRef]
- Yadav, S.; Kamble, Z.; Behera, B.K. Advances in multifunctional textile structural power composites: A review. J. Mater. Sci. 2022, 57, 17105–17138. [Google Scholar] [CrossRef]
- Kim, S.-K.; Kim, H.J.; Lee, J.-C.; Braun, P.V.; Park, H.S. Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures. ACS Nano 2015, 9, 8569–8577. [Google Scholar] [CrossRef]
- Xiong, G.; Kundu, A.; Fisher, T.S. Influence of Temperature on Supercapacitor Performance. In Thermal Effects in Supercapacitors; Xiong, G., Kundu, A., Fisher, T.S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 71–114. [Google Scholar]
- Lin, X.; Salari, M.; Arava, L.M.R.; Ajayan, P.M.; Grinstaff, M.W. High temperature electrical energy storage: Advances, challenges, and frontiers. Chem. Soc. Rev. 2016, 45, 5848–5887. [Google Scholar] [CrossRef]
- Vellacheri, R.; Al-Haddad, A.; Zhao, H.; Wang, W.; Wang, C.; Lei, Y. High performance supercapacitor for efficient energy storage under extreme environmental temperatures. Nano Energy 2014, 8, 231–237. [Google Scholar] [CrossRef]
- Kumaravel, V.; Bartlett, J.; Pillai, S.C. Solid Electrolytes for High-Temperature Stable Batteries and Supercapacitors. Adv. Energy Mater. 2021, 11, 2002869. [Google Scholar] [CrossRef]
- Bazli, M.; Abolfazli, M. Mechanical Properties of Fibre Reinforced Polymers under Elevated Temperatures: An Overview. Polymers 2020, 12, 2600. [Google Scholar] [CrossRef] [PubMed]
- Anurangi, J.; Jayalath, S.; Rani Senevirathna, S.; Herath, M.; Epaarachchi, J. Enhanced thermo-mechanical properties of carbon fiber reinforced thermoresistant polymer, a blend of di-functional epoxy bisphenol A and a tri-functional epoxy Tactix 742. Polym. Compos. 2024, 45, 10898–10910. [Google Scholar] [CrossRef]
- Zaman, Y.; Amin, F.; Iqbal, M.; Gerges, M.; Asif, M.; Majid, K.A.; Hussain, B. Radial compressive behavior of hand-laid GFRP pipes: An experimental and numerical study. Multiscale Multidiscip. Model. Exp. Des. 2025, 8, 128. [Google Scholar] [CrossRef]
- Kathavate, V.S.; Pawar, D.N.; Adkine, A.S. Progressive Failure Analysis of Fiber Reinforced Polymer Matrix Composites. Mater. Today Proc. 2020, 22, 1524–1534. [Google Scholar] [CrossRef]
- Rozylo, P.; Ferdynus, M.; Debski, H.; Samborski, S. Progressive Failure Analysis of Thin-Walled Composite Structures Verified Experimentally. Materials 2020, 13, 1138. [Google Scholar] [CrossRef]
- Anandan, S.; Dhaliwal, G.; Ganguly, S.; Chandrashekhara, K. Investigation of sandwich composite failure under three-point bending: Simulation and experimental validation. J. Sandw. Struct. Mater. 2020, 22, 1838–1858. [Google Scholar] [CrossRef]
- Heitkamp, T.; Girnth, S.; Kuschmitz, S.; Waldt, N.; Klawitter, G.; Vietor, T. Experimental and Numerical Investigation of the Mechanical Properties of 3D-Printed Hybrid and Non-Hybrid Composites. Polymers 2023, 15, 1164. [Google Scholar] [CrossRef]
- Sayahlatifi, S.; Rahimi, G.H.; Bokaei, A. The quasi-static behavior of hybrid corrugated composite/balsa core sandwich structures in four-point bending: Experimental study and numerical simulation. Eng. Struct. 2020, 210, 110361. [Google Scholar] [CrossRef]
- Reece, R.; Lekakou, C.; Smith, P.A. A structural supercapacitor based on activated carbon fabric and a solid electrolyte. Mater. Sci. Technol. 2019, 35, 368–375. [Google Scholar] [CrossRef]
- Xu, Y.; Pei, S.; Yan, Y.; Wang, L.; Xu, G.; Yarlagadda, S.; Chou, T.-W. High-Performance Structural Supercapacitors Based on Aligned Discontinuous Carbon Fiber Electrodes and Solid Polymer Electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 11774–11782. [Google Scholar] [CrossRef]
- Sha, Z.; Huang, F.; Zhou, Y.; Zhang, J.; Wu, S.; Chen, J.; Brown, S.A.; Peng, S.; Han, Z.; Wang, C.-H. Synergies of vertical graphene and manganese dioxide in enhancing the energy density of carbon fibre-based structural supercapacitors. Compos. Sci. Technol. 2021, 201, 108568. [Google Scholar] [CrossRef]
Constituents | Elastic Moduli (GPa) | Shear Moduli (GPa) | Poisson’s Ratio | |
---|---|---|---|---|
Skin | E1: 39 | G1: 25 | Nu12: 0.20 | |
E2: 20 | G2: 25 | Nu13: 0.10 | ||
E3: 10 | G3: 25 | Nu23: 0.10 | ||
Core | CF ply | E1: 18 | G1: 3 | Nu12: 0.25 |
E2: 10 | G2: 3 | Nu13: 0.30 | ||
E3: 3 | G3: 2 | Nu23: 0.30 | ||
GF ply | E1: 6 | G1: 2 | Nu12: 0.25 | |
E2: 3 | G2: 2 | Nu13: 0.30 | ||
E3: 2 | G3: 2 | Nu23: 0.30 |
Sandwich Composite | Loading Nose and Support Rollers | |
---|---|---|
Element library | Standard | Standard |
Geometric order | Linear | Linear |
Family | Continuum Shell | 3D Rigid |
Element shape | Hex | Quad |
Mesh size | 1 | 1 |
Electrode | Separator | Electrolyte | Capacitance | Flexural Strength (MPa) | Temp Range (°C) | Ref. |
---|---|---|---|---|---|---|
CF | GF | DGEBA (Araldite GY 191)+ IL (EMITFSI) +LiTFSI- Double cell | 57.26 mFcm−2 | 146 | RT | This work |
114.5 mFcm−2 | 71 | 85 | ||||
CF | GF | DGEBA (Araldite GY 191)+ IL (EMITFSI) +LiTFSI- Double cell | 1.16 mFcm−2 | 47.0 | RT | [18] |
2.58 mFcm−2 | 14.2 | 85 | ||||
Activated CF | CP | Epoxy+1M TEABF4 in PC | 25.4 mFg−1 | 29.1 | RT | [49] |
CF prepreg | GF | Epoxy+PVDF+ LiTf | 11.62 mFg−1 | 47.5 | RT | [50] |
VG-MnO2-CF | GF | PEGDGE+IL (EMIMTFSI)+ LiTFSI | 30.7 mFcm−2 | 32.0 | RT | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anurangi, J.; Jeewantha, J.; Shebl, H.; Herath, M.; Epaarachchi, J. Functionalized Bisphenol A-Based Polymer for High-Performance Structural Supercapacitor Composites. Polymers 2025, 17, 2380. https://doi.org/10.3390/polym17172380
Anurangi J, Jeewantha J, Shebl H, Herath M, Epaarachchi J. Functionalized Bisphenol A-Based Polymer for High-Performance Structural Supercapacitor Composites. Polymers. 2025; 17(17):2380. https://doi.org/10.3390/polym17172380
Chicago/Turabian StyleAnurangi, Jayani, Janitha Jeewantha, Hazem Shebl, Madhubhashitha Herath, and Jayantha Epaarachchi. 2025. "Functionalized Bisphenol A-Based Polymer for High-Performance Structural Supercapacitor Composites" Polymers 17, no. 17: 2380. https://doi.org/10.3390/polym17172380
APA StyleAnurangi, J., Jeewantha, J., Shebl, H., Herath, M., & Epaarachchi, J. (2025). Functionalized Bisphenol A-Based Polymer for High-Performance Structural Supercapacitor Composites. Polymers, 17(17), 2380. https://doi.org/10.3390/polym17172380