Thermal Runaway Suppression Mechanism of Thermosensitive Microcapsules for Lithium-Ion Batteries
Abstract
1. Introduction
2. Experiment and Methods
2.1. Preparation of TM
2.1.1. Material Preparation
2.1.2. Sample Preparation
2.2. Characterization Testing
2.2.1. FE–SEM Testing
2.2.2. FTIR Testing
2.2.3. Thermal Property Testing
2.2.4. Particle Size Testing
2.3. TR Experiment of LIBs
2.3.1. Experimental Device for TR of LIBs
- (1)
- A stainless steel, explosion-proof combustion chamber equipped with a smoke exhaust system and an observation window.
- (2)
- An INR 18650 LIB, a 200 W electric heating rod (EVE Energy, Huizhou, Guangdong Province, China), and three K-type thermocouples with a diameter of 1 mm were used in the experiment. The thermocouples were positioned at the top, middle, and bottom of the upper surface of the LIBs and secured using high-temperature tape, aluminum foil tape, and wire to prevent detachment in the event of a LIB explosion. The LIB cells were labeled as T1, T2, and T3 for cell 1, and T4, T5, and T6 for cell 2. The heating rod was connected in parallel with the LIBs.
- (3)
- Data acquisition system. This system is capable of monitoring temperature changes in real time throughout the TR process of LIBs, providing critical data for analysis and safety assessment.
- (4)
- High-definition cameras are utilized to record the dynamic changes in LIBs during TR in real time, including temperature fluctuations, morphological transformations, and electrolyte ejection behavior.
- (5)
- The specific arrangement of the heating rods is illustrated in Figure 3b. Prior to actual operation, the power cords should be completely wrapped with aluminum foil tape to ensure safety and mitigate potential risks associated with flames or flying sparks. Subsequently, activate the heating rod switch to initiate the heating process for LIB No. 1, thereby inducing a TR phenomenon under controlled experimental conditions. After the power supply to the heating rod was disconnected, the No. 1 LIB, which had undergone a combustion explosion, continued to release heat. This resulted in the temperature of the adjacent No. 2 LIB increasing steadily, thereby facilitating heat transfer between the two LIBs. The LIB fixation device was constructed using iron wire and cable ties.
2.3.2. Experimental Steps for TR of LIBs
- (1)
- The TM fire extinguishing agent is prepared and formulated into adhesive fire extinguishing stickers, which can subsequently be applied to the surface of the LIBs [40]. TM achieves a uniform coating coverage on the LIB cell body surface, reaching a 95% coverage rate.
- (2)
- The constant-temperature and -humidity chamber, in conjunction with the charge–discharge instrument, maintains the LIBs at a constant temperature of 40 °C during testing. Each test LIB is discharged at a constant current of 1 C until the voltage reaches 2.75 V and is then charged to a 100% state of charge using a constant current of 1 C. The risk of TR is most significant when the LIB is fully charged, as this condition illustrates the cooling performance of the material under extreme conditions.
- (3)
- Secure the LIB by firmly attaching it to the heating rod using iron wire and cable ties. This arrangement ensures stability and prevents potential issues, such as explosion or detachment during operation.
- (4)
- Turn on the equipment, including electric heating rods, data acquisition systems, high-definition cameras, and thermocouple systems, and heat the LIBs until TR occurs.
- (5)
- Observe the experimental phenomenon and record the data. When the temperature of LIBs exceeds 120 °C, the core material of the TM fire extinguishing agent coated on the surface of the LIBs is automatically released, effectively reducing the temperature and mitigating TR risks. When the temperature decreases to within the safe threshold, the data acquisition system automatically records the temperature variations throughout the suppression process. The response time, release time, suppression duration, and extended TR suppression time of the LIBs encapsulated with TM were systematically analyzed and recorded to successfully complete the experiment.
- (6)
- Repeat the aforementioned steps and utilize natural cooling methods to mitigate TR in LIBs.
3. Results and Discussion
3.1. Preparation Strategies and Extinguishing Methods of TM Fire Extinguishing Agent
3.2. Characterization of Microscopic Properties
3.2.1. Microcosmic Properties of TM Fire Extinguishing Agents
3.2.2. FTIR Spectrum of TM
3.2.3. Encapsulation Properties of TM
3.2.4. TM Particle Size Analysis
3.3. Characteristics of TM in Suppressing TR of LIBs
3.3.1. Performance of TM in Suppressing TR of Single-Cell LIB
3.3.2. Performance of TM in Suppressing TR of the Dual-LIB Module
3.3.3. Mechanism Analysis of TM Suppressing TR of LIBs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LIBs | Lithium-ion batteries |
TM | Thermosensitive microcapsules |
MUF | Melamine–urea–formaldehyde |
C6F12O | Perfluorohexanone |
C5H3F7 | Heptafluorocyclopentane |
2-BTP | 2-bromo-3,3,3-trifluoropropene |
TR | Thermal runaway |
FE–SEM | Field-Emission Scanning Electron Microscopy |
FTIR | Fourier Transform Infrared Spectroscopy |
TGA | Thermogravimetric Analysis |
DSC | Differential Scanning Calorimetry |
SEM | Scanning electron microscope |
TG | Thermogravimetry |
References
- Liu, P.; Wang, C.; Sun, S.; Zhao, G.; Yu, X.; Hu, Y.; Mei, W.; Jin, K.; Wang, Q. Understanding the influence of the confined cabinet on thermal runaway of large format batteries with different chemistries: A comparison and safety assessment study. J. Energy Storage 2023, 74, 109337. [Google Scholar] [CrossRef]
- Wu, T.-H.; Moo, C.-S. State-of-charge estimation with state-of-health calibration for lithium-ion batteries. Energies 2017, 10, 987. [Google Scholar] [CrossRef]
- Zhang, N.; Mei, W.; Li, Y.; Wei, Z.; Jiang, L.; Sun, J.; Wang, Q. Investigation on mechanical bending caused thermal runaway of lithium-ion cell. J. Energy Storage 2023, 68, 107688. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, S.; Qin, P.; Li, C.; Song, L.; Cheng, Z.; Jin, K.; Sun, J.; Wang, Q. Comparative investigation of the thermal runaway and gas venting behaviors of large-format LiFePO4 batteries caused by overcharging and overheating. J. Energy Storage 2023, 61, 106791. [Google Scholar] [CrossRef]
- Ren, D.; Feng, X.; Liu, L.; Hsu, H.; Lu, L.; Wang, L.; He, X.; Ouyang, M. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Mater. 2021, 34, 563–573. [Google Scholar] [CrossRef]
- Liu, L.; Feng, X.; Rahe, C.; Li, W.; Lu, L.; He, X.; Sauer, D.U.; Ouyang, M. Internal short circuit evaluation and corresponding failure mode analysis for lithium-ion batteries. J. Energy Chem. 2021, 61, 269–280. [Google Scholar] [CrossRef]
- Zhang, Y.Z. Thermophysical interpretation of the latent heat of vaporization of water. Int. J. Thermophys. 1989, 10, 911–915. [Google Scholar] [CrossRef]
- Said, A.O.; Garber, A.; Peng, Y.; Stoliarov, S.I. Experimental investigation of suppression of 18650 lithium ion cell array fires with water mist. Fire Technol. 2022, 58, 523–551. [Google Scholar] [CrossRef]
- Wang, W.; He, S.; He, T.; You, T.; Parker, T.; Wang, Q. Suppression behavior of water mist containing compound additives on lithium-ion batteries fire. Process Saf. Environ. Prot. 2022, 161, 476–487. [Google Scholar] [CrossRef]
- Ditch, B. The impact of thermal runaway on sprinkler protection recommendations for warehouse storage of cartoned lithium-ion batteries. Fire Technol. 2017, 54, 359–377. [Google Scholar] [CrossRef]
- Lou, M.; Jia, H.; Lin, Z.; Zeng, D.; Huo, J. Study on fire extinguishing performance of different foam extinguishing agents in diesel pool fire. Results Eng. 2023, 17, 100874. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.; Wang, T.; Tang, Z.; Meng, H.; Zhang, C.; Xia, D.; Guo, Z. Reliability study of fire suppression using dodecafluoro-2-methylpentan-3-one in small-sized confined space: From a temperature and gaseous products viewpoint. Case Stud. Therm. Eng. 2024, 59, 104302. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, F.; Li, Y.; Chen, M.; Meng, X.; Xu, J.; Sun, J.; Wang, Q. Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing large-scale battery module fire. Fire Technol. 2023, 59, 1247–1267. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, K.; Zhang, M.; Li, S.; Gao, F.; Duan, Q.; Sun, J.; Wang, Q. The efficiency and toxicity of dodecafluoro-2-methylpentan-3-one in suppressing lithium-ion battery fire. J. Energy Chem. 2022, 65, 532–540. [Google Scholar] [CrossRef]
- Kang, M.; Liu, Y.; Lin, W.; Liang, C.; Qu, W.; Li, S.; Wang, Y.; Zhang, F.; Cheng, J. Thermal comfort and flame retardant performance of novel temperature-control coatings with modified phase change material microcapsules. Prog. Org. Coat. 2023, 181, 107579. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, Q.; Xu, J.; Chen, H.; Lu, W.; Wang, Q. Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing lithium-ion battery fires. RSC Adv. 2018, 8, 42223–42232. [Google Scholar] [CrossRef]
- Wang, Q.; Li, K.; Wang, Y.; Chen, H.; Duan, Q.; Sun, J. The efficiency of dodecafluoro-2-methylpentan-3-one on suppressing the lithium ion battery fire. J. Electrochem. Energy Convers. Storage 2018, 15, 041001. [Google Scholar] [CrossRef]
- Ke, W.; Wang, K.; Zhou, B.; Wang, Z.; Wang, W.; Sun, X.; Qiu, B.; Han, Y. The cooling performance of halogenated alkane fire extinguishing agent and its quantitative prediction model. Therm. Sci. Eng. Prog. 2021, 26, 101093. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, H.; Wu, D.; Yang, Y.; Yuan, C.; Li, G. Inhibition effect of inert gas jet on gas and hybrid explosions caused by thermal runaway of lithium-ion battery. J. Loss Prev. Process Ind. 2024, 90, 105336. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, G.; Duan, Q.; Chen, M.; Li, Y.; Wu, K.; Liu, B.; Peng, P.; Sun, J. The efficiency of heptafluoropropane fire extinguishing agent on suppressing the lithium titanate battery fire. Fire Technol. 2016, 52, 387–396. [Google Scholar] [CrossRef]
- Rohilla, M.; Saxena, A.; Tyagi, Y.K.; Singh, I.; Tanwar, R.K.; Narang, R. Condensed aerosol based fire extinguishing system covering versatile applications: A review. Fire Technol. 2022, 58, 327–351. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, P.; Duan, Q.; Zhao, C.; Wang, Q. Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery. J. Power Sources 2021, 495, 229795. [Google Scholar] [CrossRef]
- Zhou, G.; Li, Y.; Liu, Y.; Zhang, Q.; Wei, Z.; Li, S.; Yang, S.; Yuan, S.; Fan, T.; Huang, Q. Preparation of a novel environmental-friendly lithium-ion battery fire suppression microcapsule and its fire extinguishing mechanism in coordination with ABC dry powder. J. Clean. Prod. 2024, 448, 141438. [Google Scholar] [CrossRef]
- Li, H.; Du, D.; Guo, X.; Hua, M.; Pan, X. Experimental study on the optimum concentration of ferrocene in composite ultrafine dry powder. Fire Technol. 2019, 56, 913–936. [Google Scholar] [CrossRef]
- Li, H.; Feng, L.; Du, D.; Guo, X.; Hua, M.; Pan, X. Fire suppression performance of a new type of composite superfine dry powder. Fire Mater. 2019, 43, 905–916. [Google Scholar] [CrossRef]
- Meng, X.; Yang, K.; Zhang, M.; Gao, F.; Liu, Y.; Duan, Q.; Wang, Q. Experimental study on combustion behavior and fire extinguishing of lithium iron phosphate battery. J. Energy Storage 2020, 30, 101532. [Google Scholar] [CrossRef]
- Liu, Y.J.; Duan, Q.L.; Li, K.; Chen, H.D.; Wang, Q.S. Experimental study on fire extinguishing of large-capacity lithium-ion batteries by various fire extinguishing agents. Energy Storage Sci. Technol. 2018, 7, 789–798. [Google Scholar] [CrossRef]
- Lee, D.H.; Kwon, S.; Kim, Y.E.; Kim, N.Y.; Joo, J.B. Double-layered polymer microcapsule containing non-flammable agent for initial fire suppression. Materials 2022, 15, 7831. [Google Scholar] [CrossRef] [PubMed]
- Gui, J.; Huang, Z.; Lu, J.; Wang, L.; Cao, Q.; Hu, H.; Zheng, M.; Leng, K.; Liang, Y. High-safety lithium metal batteries enabled by additive of fire-extinguishing microcapsules. Carbon Neutralization 2025, 4, 182. [Google Scholar] [CrossRef]
- Meng, X.; Wang, Z.; Liu, B.; Gao, Y.; Zhang, J.; Sun, J.; Wang, Q. Enhancing extinguishing efficiency for lithium-ion battery fire: Investigating the extinguishing mechanism and surface/interfacial activity of F-500 microcapsule extinguishing agent. eTransportation 2024, 22, 100357. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, T.; Yuan, S.; Chang, C.; Wang, K.; Song, Z.; Qian, X. Patent-based technological developments and surfactants application of lithium-ion batteries fire-extinguishing agent. J. Energy Chem. 2024, 88, 39–63. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, T.; Zhang, M.; Zhang, C.; Guo, Z.; Zhang, Y.; Chen, H.; Wu, Y.; Zhang, G. Preparation and thermal responsiveness of microencapsulated fluorinated liquids for automatic fire extinguishing. Heliyon 2024, 10, e27454. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, X.; Gao, J.; He, Z.; Yao, S.; Zhou, X.; Zhang, H. In situ extinguishing mechanism and performance of self-portable microcapsule fire extinguishing agent for lithium-ion batteries. J. Energy Storage 2024, 93, 112393. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Xing, Z.-X.; Chai, G.-Q.; Lin, S.; Wu, J.; Liu, Y.-C.; Peng, M.; Jiang, J.-C. Experimental study on the effectiveness of new core–shell structure extinguishant to extinguish oil pool fire and analysis of fire extinguishing mechanism. J. Therm. Anal. Calorim. 2025, 150, 3267–3282. [Google Scholar] [CrossRef]
- Zou, Y.; Xia, Y.; Yan, X. Effect of Melamine Formaldehyde Resin Encapsulated UV Acrylic Resin Primer Microcapsules on the Properties of UV Primer Coating. Polymers 2024, 16, 2308. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, H.; Song, Y.K.; Kim, S.; Noh, S.M.; Lee, K.C. Thermoresponsive microcapsules with fire-extinguishing composites for fire prevention. ACS Appl. Polym. Mater. 2024, 6, 3373–3378. [Google Scholar] [CrossRef]
- Fedorenko, E.; Luinstra, G.A. In Situ Polymerization and Synthesis of UHMWPE/Carbon Fiber Composites. Polymers 2025, 17, 90. [Google Scholar] [CrossRef]
- Mao, B.; Fear, C.; Chen, H.; Zhou, H.; Zhao, C.; Mukherjee, P.P.; Sun, J.; Wang, Q. Experimental and modeling investigation on the gas generation dynamics of lithium-ion batteries during thermal runaway. eTransportation 2023, 15, 100212. [Google Scholar] [CrossRef]
- Hou, J.; Feng, X.; Wang, L.; Liu, X.; Ohma, A.; Lu, L.; Ren, D.; Huang, W.; Li, Y.; Yi, M.; et al. Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Mater. 2021, 39, 395–402. [Google Scholar] [CrossRef]
- Salaün, F. Microencapsulation technology for smart textile coatings. In Active Coatings for Smart Textiles; Woodhead Publishing: Cambridge, UK, 2016; pp. 179–220. [Google Scholar] [CrossRef]
- Song, Z.; Chen, R.; Huang, Z.; Gong, Y.; Zhao, H. Preparation and Characterization of Perfluoropolyether-Silane@Ethye Cellulose Polymeric Microcapsules. Polymers 2024, 16, 169. [Google Scholar] [CrossRef]
- Talari, A.C.S.; Martinez, M.A.G.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2017, 52, 456–506. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, L.; Du, J.; Tian, J.; Li, Y.; Zhao, Y.; Wu, H.; Zhong, Y.; Cao, Y.-C.; Cheng, S. Fabrication of a microcapsule extinguishing agent with a core–shell structure for lithium-ion battery fire safety. Mater. Adv. 2021, 2, 4634–4642. [Google Scholar] [CrossRef]
- Charmas, B.; Kucio, K.; Sydorchuk, V.; Khalameida, S.; Zięzio, M.; Nowicka, A. Characterization of multimodal silicas using TG/DTG/DTA, Q-TG, and DSC methods. Colloids Interfaces 2018, 3, 6. [Google Scholar] [CrossRef]
- Schick, C. Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal. Bioanal. Chem. 2009, 395, 1589–1611. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating thermal runaway of lithium-ion batteries. Joule 2020, 4, 743–770. [Google Scholar] [CrossRef]
- Wang, S.; Song, L.; Li, C.; Tian, J.; Jin, K.; Duan, Q.; Wang, Q. Experimental study of gas production and flame behavior induced by the thermal runaway of 280 Ah lithium iron phosphate battery. J. Energy Storage 2023, 74, 109368. [Google Scholar] [CrossRef]
- Liu, W.; Liu, P.; Mitlin, D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 2020, 10, 2002297. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, S.; Mei, W.; Jiang, L.; Jia, Z.; Cheng, Z.; Sun, J.; Wang, Q. Understanding of thermal runaway mechanism of LiFePO4 battery in-depth by three-level analysis. Appl. Energy 2023, 336, 120695. [Google Scholar] [CrossRef]
- Li, X.-Y.; Feng, S.; Song, Y.-W.; Zhao, C.-X.; Li, Z.; Chen, Z.-X.; Cheng, Q.; Chen, X.; Zhang, X.-Q.; Li, B.-Q.; et al. Kinetic evaluation on lithium polysulfide in weakly solvating electrolyte toward practical lithium–sulfur batteries. J. Am. Chem. Soc. 2024, 146, 14754–14764. [Google Scholar] [CrossRef]
- Bai, Z.-J.; Li, X.-H.; Deng, J.; Shu, C.-M.; Zhang, Y.-N.; Zhang, P.; Ramakrishna, S. Overview of anti-fire technology for suppressing thermal runaway of lithium battery: Material, performance, and applications. J. Power Sources 2025, 640, 236767. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Z.; Zhang, P.; Kang, F.; Song, Z.; Xiao, Y. Thermal Runaway Suppression Mechanism of Thermosensitive Microcapsules for Lithium-Ion Batteries. Polymers 2025, 17, 2374. https://doi.org/10.3390/polym17172374
Bai Z, Zhang P, Kang F, Song Z, Xiao Y. Thermal Runaway Suppression Mechanism of Thermosensitive Microcapsules for Lithium-Ion Batteries. Polymers. 2025; 17(17):2374. https://doi.org/10.3390/polym17172374
Chicago/Turabian StyleBai, Zujin, Pei Zhang, Furu Kang, Zeyang Song, and Yang Xiao. 2025. "Thermal Runaway Suppression Mechanism of Thermosensitive Microcapsules for Lithium-Ion Batteries" Polymers 17, no. 17: 2374. https://doi.org/10.3390/polym17172374
APA StyleBai, Z., Zhang, P., Kang, F., Song, Z., & Xiao, Y. (2025). Thermal Runaway Suppression Mechanism of Thermosensitive Microcapsules for Lithium-Ion Batteries. Polymers, 17(17), 2374. https://doi.org/10.3390/polym17172374