Enhancing Jabon (Anthocephalus cadamba) Laminated Board Properties with Impregnation of Citric Acid, Boric Acid, and Polystyrene
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Manufacture of Laminated Board
2.4. Testing and Evaluation of the Properties of the Laminated Board
2.4.1. Physical and Mechanical Testing
2.4.2. Chemical Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Physical Properties
3.2. Mechanical Properties
3.3. Chemical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ketut, I.; Pandit, N.; Nandika, D.; Darmawan, W. Analisis Sifat Dasar Kayu Hasil Hutan Tanaman Rakyat. J. Ilmu Pertan. Indones. 2011, 16, 119–124. [Google Scholar]
- Rachmi Trisatya, D.; Maria Sulastiningsih, I. Sifat papan partikel dari campuran kayu jabon dan bambu andong. J. Penelit. Has. Hutan 2019, 37, 123–136. [Google Scholar] [CrossRef]
- Anna, N.; Siregar, I.Z.; Supriyanto, S.; Sudrajat, D.J.; Karlinasari, L. Physical, Mechanical, and Anatomical Properties of 12 Jabon (Neolamarckia Cadamba) Provenances Wood in Indonesia. Biodiversitas J. Biol. Divers. 2023, 24, 5895–5904. [Google Scholar] [CrossRef]
- Yunianti, A.D.; Taskirawati, I.; Muin, M.; Sanusi, D.; Suhasman; Agussalim, A. Teknologi Tepat Guna Peningkatan Ketahanan Kayu Terhadap Organisme Perusak Kayu Untuk Bahan Baku Kerajinan Berkualitas. J. Din. Pengabdi. 2017, 3, 45–55. [Google Scholar]
- Hadjib, N.; Abdurachman; Basri, E. Karakteristik fisis dan mekanis glulam jati, mangium dan trembesi. J. Penelit. Has. Hutan 2015, 33, 105–114. [Google Scholar] [CrossRef][Green Version]
- Wulandari, F.T.; Lestari, D.; Amin, R. Analisis sifat fisika mekanika papan laminasi laminasi kayu kemiri (Analysis of the Physical and Mechanical Properties of Laminated Board Combination of Petung Bamboo Rajumas Wood and Candlenut Wood Laminated Board. J. Kehutan. Indones. Celeb. 2023, 4, 194–205. [Google Scholar][Green Version]
- Purwanto, D.; Riset, B.; Standardisasi, D.; Banjarbaru, I. Pembuatan Balok Dan Papan Dari Limbah Industri Kayu Board and Wood Block Making From Waste of Wood Industries. J. Ris. Ind. 2011, 5, 13–20. [Google Scholar][Green Version]
- Wulandari, F.T.; Amin, R.; Raehanayati, R. Karateristik Sifat Fisika Dan Mekanika Papan Laminasi Kayu Sengon Dan Kayu Bayur. Euler J. Ilm. Mat. Sains Teknol. 2022, 10, 75–87. [Google Scholar] [CrossRef]
- Widiati, K.Y. Karakteristik sifat fisika dan mekanika kayu lamina kombinasi jenis kayu sengon (Paraserianthes falcataria (L.) Nilsen) dan jenis kayu merbau (Intsia Spp.). ULIN J. Hutan Trop. 2018, 2, 93–97. [Google Scholar] [CrossRef]
- Wijaya, E.; Manik, P.; Jokosisworo, S. Analisa Kekuatan Tarik Dan Kekuatan Lentur Balok Laminasi Bambu Petung Dan Kayu Sengon Untuk Komponen Kapal Kayu. Tek. Perkapalan 2017, 5, 431–437. [Google Scholar]
- Handayani, S. Analisis pengujian struktur balok laminasi kayu sengon dan kayu kelapa. J. Tek. Sipil Perenc. 2016, 18, 39–46. [Google Scholar] [CrossRef]
- Okuda, S.; Corpataux, L.; Muthukrishnan, S.; Wei, K.H. Cross-Laminated Timber with Renewable and Fast Growing Tropical Species in South East Asia. In Proceedings of the WCTE 2018: 2018 World Conference on Timber Engineering, Seoul, Republic of Korea, 20–23 August 2018. [Google Scholar]
- Hendrik, J.; Hadi, Y.S.; Massijaya, M.Y.; Santoso, A. Properties of Laminated Composite Panels Made from Fast-Growing Species Glued with Mangium Tannin Adhesive. BioResources 2016, 11, 5949–5960. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood Modification Technologies—A Review. IForest 2017, 10, 895–908. [Google Scholar] [CrossRef]
- Schorr, D.; Boivin, G.; Stirling, R. Treatments to Improve the Dimensional Stability of White Spruce Cladding. Wood Fiber Sci. 2024, 56, 138–154. [Google Scholar] [CrossRef]
- Seydibeyoğlu, M.Ö.; Dogru, A.; Wang, J.; Rencheck, M.; Han, Y.; Wang, L.; Seydibeyoğlu, E.A.; Zhao, X.; Ong, K.; Shatkin, J.A.; et al. Review on Hybrid Reinforced Polymer Matrix Composites with Nanocellulose, Nanomaterials, and Other Fibers. Polymers 2023, 15, 984. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Soomro, S.A.; Huang, F.; Wei, W.; Wang, B.; Zhou, Z.; Hui, D. Naturally or Artificially Constructed Nanocellulose Architectures for Epoxy Composites: A Review. Nanotechnol. Rev. 2020, 9, 1643–1659. [Google Scholar] [CrossRef]
- Gomes, M.G.; Gurgel, L.V.A.; Baffi, M.A.; Pasquini, D. Pretreatment of Sugarcane Bagasse Using Citric Acid and Its Use in Enzymatic Hydrolysis. Renew. Energy 2020, 157, 332–341. [Google Scholar] [CrossRef]
- Lee, S.H.; Tahir, P.M.; Lum, W.C.; Tan, L.P.; Bawon, P.; Park, B.D.; Al Edrus, S.S.A.O.; Abdullah, U.H. A Review on Citric Acid as Green Modifying Agent and Binder for Wood. Polymers 2020, 12, 1692. [Google Scholar] [CrossRef]
- Fidan, M.S.; Adanur, H. Physical and Mechanical Properties of Wood Impregnated with Quebracho and Boron Compounds. Forestist 2019, 69, 68–80. [Google Scholar] [CrossRef]
- Marney, D.C.O.; Russell, L.J. Combined Fire Retardant and Wood Preservative Treatments for Outdoor Wood Applications—A Review of the Literature. Fire Technol. 2008, 44, 1–14. [Google Scholar] [CrossRef]
- Han, X.; Wang, Z.; Zhang, Q.; Pu, J. An Effective Technique for Constructing Wood Composite with Superior Dimensional Stability. Holzforschung 2020, 74, 435–443. [Google Scholar] [CrossRef]
- Huan, S.; Liu, G.; Han, G.; Cheng, W.; Fu, Z.; Wu, Q.; Wang, Q. Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers. Materials 2015, 8, 2718–2734. [Google Scholar] [CrossRef]
- Hartono, R.; Muliani, P.F.; Sutiawan, J.; Amanda, P.; Sumardi, I.; Rofii, M.N. Properties of Laminated Board from Belangke Bamboo (Gigantochloa Pruriens) Modified with Citric Acid, Boric Acid, and Polystyrene. Wood Mater. Sci. Eng. 2025, 20, 3–10. [Google Scholar] [CrossRef]
- Rowell, R.; Pettersen, R.; Tshabalala, M. Handbook of Wood Chemistry and Wood Composites: Cell Wall Chemistry; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2012. [Google Scholar]
- Hartono, R.; Sutiawan, J.; Kusumah, S.S.; Tarmadi, D.; Wikantyoso, B.; Himmi, S.K.; Yusuf, S.; Zulfiana, D.; Roseley, A.S.M.; Abu, F. Belanke Bamboo (Gigantochloa Pruriens) Laminated Board Modified with Polystyrene, Citric, and Boric Acid: Resistance from Terminte and Decay Attacks. BioResources 2025, 20, 426–437. [Google Scholar] [CrossRef]
- Basri, E.; Balfas, J. Impregnasi ekstrak jati dan resin pada kayu jati cepat tumbuh dan karet. J. Penelit. Has. Hutan 2014, 32, 283–296. [Google Scholar] [CrossRef]
- Rumbaremata, A.; Cahyono, T.D.; Darmawan, T.; Kusumah, S.S.; Akbar, F.; Dwianto, W. Peningkatan Kerapatan Kayu Samama Melalui Pre-Kompresi Asam Sitrat (Density Improvement of Samama Wood by Pre-Compression of Citric Acid). J. Ilmu Teknol. Kayu Trop. 2021, 17, 122–133. [Google Scholar] [CrossRef]
- Basri, E.; Hanifah, N.; Martha, R.; Rahayu, I.S.; Mubarok, M.; Darmawan, W.; Gérardin, P. Effect of Citric Acid and Benzophenone Tetracarboxyclic Acid Treatments on Stability, Durability, and Surface Characteristic of Short Rotation Teak. Forests 2022, 13, 1938. [Google Scholar] [CrossRef]
- Tanaka, S.; Seki, M.; Miki, T.; Shigematsu, I.; Kanayama, K. Solute Diffusion into Cell Walls in Solution-Impregnated Wood under Conditioning Process II: Effect of Solution Concentration on Solute Diffusion. J. Wood Sci. 2016, 62, 146–155. [Google Scholar] [CrossRef]
- Yusof, N.M.; Hua, L.S.; Tahir, P.M.; James, R.M.S.; Al-Edrus, S.S.O.; Dahali, R.; Roseley, A.S.M.; Fatriasari, W.; Kristak, L.; Lubis, M.A.R.; et al. Effects of Boric Acid Pretreatment on the Properties of Four Selected Malaysian Bamboo Strips. Forests 2023, 14, 196. [Google Scholar] [CrossRef]
- Nurhanifah; Hermawan, D.; Hadi, Y.S.; Arsyad, W.O.M.; Abdillah, I.B. Shear Strength and Subterranean Termite Resistance of Polystyrene Impregnated Sengon (Falcataria Moluccana) Glulam. IOP Conf. Ser. Mater. Sci. Eng. 2020, 935, 012052. [Google Scholar] [CrossRef]
- Gonçalves, F.G.; Paes, J.B.; Lopez, Y.M.; de Alcântara Segundinho, P.G.; de Oliveira, R.G.E.; Fassarella, M.V.; Brito, A.S.; Chaves, I.L.S.; Martins, R.S.F. Resistance of Particleboards Produced with Ligno-Cellulosic Agro-Industrial Wastes to Fungi and Termites. Int. Biodeterior. Biodegrad. 2021, 157, 105159. [Google Scholar] [CrossRef]
- Karacan, I.; Soy, T. Structure and Properties of Oxidatively Stabilized Viscose Rayon Fibers Impregnated with Boric Acid and Phosphoric Acid Prior to Carbonization and Activation Steps. J. Mater. Sci. 2013, 48, 2009–2021. [Google Scholar] [CrossRef]
- Szanyi, J.; Kwak, J.H.; Moline, R.A.; Peden, C.H.F. Adsorption, Coadsorption, and Reaction of Acetaldehyde and NO2 on Na-Y,FAU: An in Situ FTIR Investigation. J. Phys. Chem. B 2004, 108, 17050–17058. [Google Scholar] [CrossRef]
- Kostryukov, S.G.; Matyakubov, H.B.; Masterova, Y.Y.; Kozlov, A.S.; Pryanichnikova, M.K.; Pynenkov, A.A.; Khluchina, N.A. Determination of Lignin, Cellulose, and Hemicellulose in Plant Materials by FTIR Spectroscopy. J. Anal. Chem. 2023, 78, 718–727. [Google Scholar] [CrossRef]
- Javier-Astete, R.; Jimenez-Davalos, J.; Zolla, G. Determination of Hemicellulose, Cellulose, Holocellulose and Lignin Content Using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. PLoS ONE 2021, 16, e0256559. [Google Scholar] [CrossRef]
- Lee, S.H.; Ashaari, Z.; Ang, A.F.; Abdul Halip, J.; Lum, W.C.; Dahali, R.; Halis, R. Effects of Two-Step Post Heat-Treatment in Palm Oil on the Properties of Oil Palm Trunk Particleboard. Ind. Crops Prod. 2018, 116, 249–258. [Google Scholar] [CrossRef]
- Chen, W.H.; Wang, C.W.; Ong, H.C.; Show, P.L.; Hsieh, T.H. Torrefaction, Pyrolysis and Two-Stage Thermodegradation of Hemicellulose, Cellulose and Lignin. Fuel 2019, 258, 116168. [Google Scholar] [CrossRef]
- Zhang, J.; Koubaa, A.; Xing, D.; Wang, H.; Wang, Y.; Liu, W.; Zhang, Z.; Wang, X.; Wang, Q. Conversion of Lignocellulose into Biochar and Furfural through Boron Complexation and Esterification Reactions. Bioresour. Technol. 2020, 312, 123586. [Google Scholar] [CrossRef]
- Hassan, E.B.; Elsayed, I.; Eseyin, A. Production High Yields of Aromatic Hydrocarbons through Catalytic Fast Pyrolysis of Torrefied Wood and Polystyrene. Fuel 2016, 174, 317–324. [Google Scholar] [CrossRef]
- Montoya-Escobar, N.; Ospina-Acero, D.; Velásquez-Cock, J.A.; Gómez-Hoyos, C.; Serpa Guerra, A.; Gañan Rojo, P.F.; Vélez Acosta, L.M.; Escobar, J.P.; Correa-Hincapié, N.; Triana-Chávez, O.; et al. Use of Fourier Series in X-Ray Diffraction (XRD) Analysis and Fourier-Transform Infrared Spectroscopy (FTIR) for Estimation of Crystallinity in Cellulose from Different Sources. Polymers 2022, 14, 5199. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartono, R.; Tarigan, R.A.B.; Rofii, M.N.; Sumardi, I.; Kartikawati, A.; Sutiawan, J.; Abu, F.; Radzi, A.M. Enhancing Jabon (Anthocephalus cadamba) Laminated Board Properties with Impregnation of Citric Acid, Boric Acid, and Polystyrene. Polymers 2025, 17, 2367. https://doi.org/10.3390/polym17172367
Hartono R, Tarigan RAB, Rofii MN, Sumardi I, Kartikawati A, Sutiawan J, Abu F, Radzi AM. Enhancing Jabon (Anthocephalus cadamba) Laminated Board Properties with Impregnation of Citric Acid, Boric Acid, and Polystyrene. Polymers. 2025; 17(17):2367. https://doi.org/10.3390/polym17172367
Chicago/Turabian StyleHartono, Rudi, Raynata Andini Br Tarigan, Muhammad Navis Rofii, Ihak Sumardi, Aprilia Kartikawati, Jajang Sutiawan, Falah Abu, and A. M. Radzi. 2025. "Enhancing Jabon (Anthocephalus cadamba) Laminated Board Properties with Impregnation of Citric Acid, Boric Acid, and Polystyrene" Polymers 17, no. 17: 2367. https://doi.org/10.3390/polym17172367
APA StyleHartono, R., Tarigan, R. A. B., Rofii, M. N., Sumardi, I., Kartikawati, A., Sutiawan, J., Abu, F., & Radzi, A. M. (2025). Enhancing Jabon (Anthocephalus cadamba) Laminated Board Properties with Impregnation of Citric Acid, Boric Acid, and Polystyrene. Polymers, 17(17), 2367. https://doi.org/10.3390/polym17172367