Numerical Analysis on Mechanical Properties of Different Fiber-Reinforced Cold-Formed Steel–Concrete Composite Corner Columns
Abstract
1. Introduction
2. Materials and Methodology
2.1. Component Creation and Assembly
2.2. Material Properties
2.2.1. Steel
2.2.2. Core Concrete
2.3. Constraints and Loads
2.4. Mesh Division
3. Results and Discussion
3.1. Validation of the FEM
3.1.1. Comparison of Failure Phenomena
3.1.2. Comparison of Load–Displacement Curves
3.1.3. Comparison of Ultimate Capacity
3.2. Parameter Analysis of CFS-C Composite Corner Columns
3.2.1. Polypropylene Fiber-Reinforced Concrete
3.2.2. Carbon Fiber-Reinforced Concrete
3.2.3. Steel Fiber-Reinforced Concrete
3.2.4. Bamboo Fiber-Reinforced Concrete
4. Calculation of Ultimate Capacity Using Eurocode
4.1. Calculation of Ultimate Capacity
4.2. Comparison of Ultimate Capacity Calculations
4.3. Modification and Verification of the Ultimate Capacity Calculation Formula
5. Conclusions
- (1)
- The reinforcing effect of PFs showed a significant dependence on steel thickness. When the steel thickness t ≤ 1.5 mm, a high dosage of 2.0% led to a decrease in ultimate capacity by up to 11.8%, whereas when t ≥ 1.8 mm, a dosage of 1.0% could increase the ultimate capacity by 3.5% and simultaneously increase the corresponding displacement by 24.8%. This phenomenon arose because when the thin-walled steel provided insufficient confinement, fibers induced the propagation of micro-defects in the concrete matrix; in contrast, thicker steel could effectively inhibit crack propagation and activate the potential of fiber bridging for toughening. This indicates that PFs were suitable for components with t ≥ 1.8mm, and a dosage of 1.0% can achieve the synergistic optimization of bearing capacity and ductility.
- (2)
- CFs exhibited a clear critical dosage effect. At a dosage of 0.4%, the ultimate capacity was increased by up to 14.1%, but beyond this dosage, performance deteriorated due to fiber agglomeration, with the maximum reduction in bearing capacity reaching 16.2%. It is worth noting that the displacement at ultimate capacity increased continuously with the dosage, with the highest increase reaching 14.7%. The underlying mechanism was that at low dosages, fibers were uniformly dispersed and exerted their high-modulus advantage; however, excessive incorporation formed weak stress concentration zones, while the crack-inhibiting ability of fibers consistently improved ductility.
- (3)
- A comparative analysis of four types of fibers showed that SFs had the most significant effect in simultaneously enhancing the ultimate capacity and ductility of specimens. SFs exhibited a linear enhancement characteristic. When the dosage rose from 1.0% to 1.6%, the ultimate capacity increased by 13.4% to 36.5%, and the corresponding displacement increased by 60.2% to 92.2%. This positive correlation arose because the three-dimensional fiber bridging network directly bore tensile stress, forming a dual enhancement mechanism with steel tube confinement, which transformed the material failure mode from brittle crushing to progressive failure. SFs significantly improved energy dissipation efficiency through the pull-out process, making them the optimal choice for simultaneously optimizing bearing capacity and ductility. At a dosage of 1.6%, the displacement increase rate could reach 92.2%.
- (4)
- The core value of BFs lies in ductility optimization. The maximum improvement in the ultimate capacity of the specimens was only 7.4%, but the corresponding displacement increased steadily by 20.1% to 33.2%. This phenomenon was attributed to the low strength of the fibers themselves and the impact of their hydrophilicity on matrix compactness. However, fibers’ crack-bridging and progressive pull-out energy dissipation mechanisms significantly improved the fracture performance of concrete. This toughening effect had weak dependence on steel thickness, and a displacement increase of more than 20% could be achieved even when the steel thickness was 1.2 mm.
- (5)
- Aiming to rectify the adaptability defect of Eurocode 4 to fiber-reinforced concrete, this study proposed a modified formula with a fiber correction factor η. The original formula, which ignored the fiber reinforcement mechanism and the transformation of failure modes, resulted in a prediction error of 6.3% for the bearing capacity of fiber-reinforced specimens. After modification, the calculation error of the formula was reduced to within 1%, with a standard deviation of only 0.016. This unified the fiber–steel–concrete synergistic working mechanism and provided a reliable theoretical basis for subsequent research.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, D.; Yin, Z.; Xu, S. Axial compressive behavior and capacity prediction of concrete-filled cold-formed lipped channel PEC stub columns. J. Constr. Steel Res. 2025, 224, 109125. [Google Scholar] [CrossRef]
- Rahnavard, R.; Craveiro, H.D.; Simões, R.A.; Laím, L.; Santiago, A. Test and design of built-up cold-formed steel-lightweight concrete (CFS-LWC) composite beams. Thin-Walled Struct. 2023, 193, 111211. [Google Scholar] [CrossRef]
- Roy, P.; Kumar Samanta, A. Behavior of concrete-filled stub columns confined with cold formed steel under axial compression: A comparative review. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Zhu, A.; Zhang, X.; Zhu, H.; Zhu, J.; Lu, Y. Experimental study of concrete filled cold-formed steel tubular stub columns. J. Constr. Steel Res. 2017, 134, 17–27. [Google Scholar] [CrossRef]
- Yan, Z.; Honggang, L. Experimental and theoretical study on the eccentric compression performance of novel L-shaped composite columns composed of HGM-filled square steel tubes. Structures 2025, 75, 108728. [Google Scholar] [CrossRef]
- Xiao, Y.; Bie, X.-M.; Song, X.; Zhang, J.; Du, G. Performance of composite L-shaped CFST columns with inner I-shaped steel under axial compression. J. Constr. Steel Res. 2020, 170, 106138. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J. Study on Mechanism of L-Shaped Concrete-Filled Steel Tubular Columns Subjected to Axial Compression. Adv. Mat. Res. 2012, 476, 2463–2468. [Google Scholar] [CrossRef]
- Jiang, L.; He, J.; Ma, X.; Hu, Y.; Chen, Z.; Zhang, Z.; Yang, H. Compressive behavior of novel cold-formed steel built-up closed L-shaped section columns. J. Build. Eng. 2024, 86, 108748. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, L.; Ye, J.; Yang, H.; Hu, Y.; Han, H. Buckling behavior and failure mechanism of cold-formed steel built-up special shape cross-section columns. Eng. Fail. Anal. 2024, 165, 108716. [Google Scholar] [CrossRef]
- Zheng, Y.; Zeng, S. Design of L-shaped and T-shaped concrete-filled steel tubular stub columns under axial compression. Eng. Struct. 2020, 207, 110262. [Google Scholar] [CrossRef]
- Liu, X.; Xu, C.; Liu, J.; Yang, Y. Research on special-shaped concrete-filled steel tubular columns under axial compression. J. Constr. Steel Res. 2018, 147, 203–223. [Google Scholar] [CrossRef]
- Zuo, Z.-L.; Cai, J.; Yang, C.; Chen, Q.-J.; Sun, G. Axial load behavior of L-shaped CFT stub columns with binding bars. Eng. Struct. 2012, 37, 88–98. [Google Scholar] [CrossRef]
- Adamu, M.; Labib, W.A.; Ibrahim, Y.E.; Alanazi, H. Mechanical Behavior and Durability Performance of Concrete Reinforced with Hybrid Date Palm and Polypropylene Polymer Fibers. Polymers 2025, 17, 1350. [Google Scholar] [CrossRef]
- Birol, T.; Avcıalp, A. Impact of Macro-Polypropylene Fiber on the Mechanical Properties of Ultra-High-Performance Concrete. Polymers 2025, 17, 1232. [Google Scholar] [CrossRef]
- Li, F.; Jin, S.; Cheng, P.; Wang, Z.; Yang, Z. Study on Mechanical Properties and Carbon Emission Analysis of Polypropylene Fiber-Reinforced Brick Aggregate Concrete. Polymers 2024, 16, 3535. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Beskopylny, A.N.; Smolyanichenko, A.S.; Chernil’nik, A.; Elshaeva, D.; Beskopylny, N. Influence of Polymer Fibers on the Structure and Properties of Modified Variatropic Vibrocentrifuged Concrete. Polymers 2024, 16, 642. [Google Scholar] [CrossRef]
- Wang, T.; Fan, X.; Gao, C.; Qu, C.; Liu, J.; Yu, G. The Influence of Fiber on the Mechanical Properties of Geopolymer Concrete: A Review. Polymers 2023, 15, 827. [Google Scholar] [CrossRef]
- Fang, H.; Chan, T.-M.; Young, B. Structural performance of concrete-filled cold-formed high-strength steel octagonal tubular stub columns. Eng. Struct. 2021, 239, 112360. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Hassanein, M.F.; Cashell, K.A.; Hadzima-Nyarko, M.; Xu, Y.; Shao, Y.-B. Experimental and numerical investigation on the behaviour of square concrete-filled cold-formed double-skin steel stiffened tubular short columns. Eng. Struct. 2024, 303, 117560. [Google Scholar] [CrossRef]
- Huang, W.-F.; Shao, Y.-B.; Hassanein, M.F. Behaviour and confinement-based direct design of concrete-filled cold-formed stiffened steel tubular short columns. J. Constr. Steel Res. 2023, 202, 107773. [Google Scholar] [CrossRef]
- Guo, F.; Guan, B.; Jiang, L.; Xu, J.; Zhou, S.; Hu, Y. Tests of foam concrete-filled S600E high-strength cold-formed sorbite stainless steel composite columns. J. Constr. Steel Res. 2025, 234, 109683. [Google Scholar] [CrossRef]
- Chen, P.; Yang, H.; Tao, Z. Size effect behavior of square concrete-filled steel tubular short columns under axial compression. Eng. Struct. 2025, 339, 120689. [Google Scholar] [CrossRef]
- Li, H.; Guo, L.; Gao, S.; Elchalakani, M. Analysis and design of wide rectangular concrete-filled steel tubular columns under axial compression. Structures 2024, 70, 107540. [Google Scholar] [CrossRef]
- Mander, J.B.; Priestley, M.J.N.; Park, R. Theoretical Stress-Strain Model for Confined Concrete. J. Struct. Eng. 1988, 114, 1804–1826. [Google Scholar] [CrossRef]
- Liu, H.; Wang, K.; Sun, J.; Qiao, Q.; Wei, L.; Ye, X.; Yang, A.; Cao, W. Axial compressive behavior of circular steel-reinforced concrete-filled stainless steel tubular stub columns. Structures 2025, 75, 108751. [Google Scholar] [CrossRef]
- Wu, L.; Han, G.; Di Sarno, L.; Chen, X.; Sun, Y. Experimental and numerical analysis of L-shaped concrete-filled steel tube stub columns. Structures 2024, 69, 107351. [Google Scholar] [CrossRef]
- Ouyang, Y.; Kwan, A.K.H. Finite element analysis of square concrete-filled steel tube (CFST) columns under axial compressive load. Eng. Struct. 2018, 156, 443–459. [Google Scholar] [CrossRef]
- Han, H.; Zhou, S.; Jiang, L.; Zeng, Z.; Yang, H.; Hu, Y.; Ye, J.; Yin, S.; Wu, Y. Numerical modelling and design of cold-formed steel built-up special shape cross-section columns. Structures 2025, 75, 108785. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, P.; Lu, Y.; Liu, Z. Hysteresis performance of steel fiber-reinforced high-strength concrete-filled steel tube columns. J. Constr. Steel Res. 2024, 219, 108755. [Google Scholar] [CrossRef]
- Li, N.; Lu, Y.; Li, S.; Gao, D. Axial compressive behaviour of steel fibre reinforced self-stressing and self-compacting concrete-filled steel tube columns. Eng. Struct. 2020, 222, 111108. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, J.; Xu, P.; Deng, D.; Fan, Y. Investigation on eccentric compression performance of basalt fiber-reinforced recycled aggregate concrete-filled square steel tubular columns. Dev. Built Environ. 2024, 18, 100411. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, D.; Wu, H.; Lu, Y.; Luo, X. Axial compressive behavior of steel fiber reinforced concrete-filled square steel tube stub columns. J. Constr. Steel Res. 2023, 203, 107804. [Google Scholar] [CrossRef]
- Zong, S.; Ma, W.; Lu, Y.; Liu, Z.; Huang, D. Research on axial compressive behavior of steel-fiber-reinforced recycled concrete-filled square steel tube slender columns. J. Build. Eng. 2023, 79, 107777. [Google Scholar] [CrossRef]
- prEN 1994-1-1; Design of Composite Steel and Concrete Structures, Part 1.1: General Rules and Rules for Buildings. British Standards Institution: London, UK, 1994.
- Yang, Z.; Liu, M.; Sun, L.; Shen, M. Size effect of axial compressive bearing capacity of high-strength concrete filled high-strength square steel tubular short columns. Structures 2024, 60, 105978. [Google Scholar] [CrossRef]
- Niu, H.; Xie, S.; Qing, Y.; Huang, M.; Fan, Y. Axial compression behaviour of square steel tubes encased by and filled with high-strength recycled aggregate concrete. Mag. Concr. Res. 2025, 77, 80–94. [Google Scholar] [CrossRef]
- Chen, Z.; Ning, F.; Song, C.; Liang, Y. Study on axial compression bearing capacity of novel concrete-filled square steel tube columns. J. Build. Eng. 2022, 51, 104298. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Y.; Jiang, L.; Ye, J.; Sun, H.; Li, M. Test and design method for axial compressive bearing capacity of cold-formed steel-solid waste foamed concrete special-shaped composite section edge columns. J. Harbin Inst. Technol. 2025, 1–10. Available online: https://link.cnki.net/urlid/23.1235.t.20250425.1220.003 (accessed on 28 August 2025).
- Wang, L.; Hu, Y.; Jiang, L.; Zhou, S.; Wang, D.; Sun, H. Axial compression experimental on T-section special-shape light-weight foam concrete-filled cold-formed steel built-up columns. Structures 2025, 76, 108911. [Google Scholar] [CrossRef]
- GB 50018-2002; Technical Code of Cold-Formed Thin-Walled Steel Structures. China Architecture & Building Press: Beijing, China, 2002.
- AISI S100-16; North American Specification for the Design of Cold-Formed Steel Structural Members. American Iron and Steel Institute: Washington, DC, USA, 2016.
- GB 50936-2014; Technical Code for Design of Concrete-Filled Steel Tubular Structures. China Architecture & Building Press: Beijing, China, 2014.
- Wilches, J.; Leon, R.; Santa Maria, H.; Graterol, A. CFT Connections: State-of-the-art Report and Numerical Validation by 3D FEM. Int. J. Steel Strut. 2024, 24, 892–907. [Google Scholar] [CrossRef]
- Xu, L.; Huang, B.; Li, B.; Chi, Y.; Li, C.; Shi, Y. Study on the stress-strain relation of polypropylene fiber reinforced concrete under cyclic compression. China Civ. Eng. J. 2019, 52, 1–12. [Google Scholar]
- Zheng, R.; Pang, J.; Sun, J.; Su, Y.; Xu, G. Damage Model of Carbon-Fiber-Reinforced Concrete Based on Energy Conversion Principle. J. Compos. Sci. 2024, 8, 71. [Google Scholar] [CrossRef]
- Ni, L. Research on Uniaxial Compression Performance and Constitutive Relationship of Steel Fiber Reinforced Concrete. Master’s Thesis, Hubei University of Technology, Wuhan, China, 2020. [Google Scholar]
- Li, H.; Wei, Y.; Meng, K.; Zhao, L.; Zhu, B.; Wei, B. Mechanical properties and stress-strain relationship of surface-treated bamboo fiber reinforced lightweight aggregate concrete. Constr. Build. Mater. 2024, 424, 135914. [Google Scholar] [CrossRef]
Specimen Number | T (mm) | D | h1 | h |
---|---|---|---|---|
L-1.2 | 1.2 | 140 | 50 | 90 |
L-2.0 | 2.0 | 140 | 50 | 90 |
Parameter Name | Dilation Angle | Eccentricity | fbo/fco | k | Viscous Parameter |
---|---|---|---|---|---|
Set value | 30 | 0.1 | 1.16 | 0.6667 | 0.0005 |
Specimen Number | Pf (kN) | Pt (kN) | Pt/Pf |
---|---|---|---|
L-1.2-6 | 307.90 | 294.15 | 0.96 |
L-2.0-6 | 558.06 | 544.57 | 0.98 |
L-1.2-10 | 419.55 | 401.17 | 0.96 |
L-2.0-10 | 620.08 | 593.07 | 0.96 |
Paper | Fiber Types | Diameter (mm) | Length (mm) | Tensile Strength (MPa) | Elastic Modulus (GPa) |
---|---|---|---|---|---|
Xu et al. [44] | PF | 0.048 | 8 | ≥400 | 6.5 |
Zheng et al. [45] | CF | 0.007 | 3 | 3450 | 230 |
Ni et al. [46] | SF | 0.55 | 30 | 700–1100 | 206 |
Li et al. [47] | BF | 0.3–0.4 | 30 | ≥520 | ≥24 |
Specimen Number | Nu | Pf | Nu/Pf | Specimen Number | Nu | Pf | Nu/Pf |
---|---|---|---|---|---|---|---|
PF-1.2-0 | 700.48 | 695.75 | 1.007 | PF-1.5-0 | 762.03 | 742.13 | 1.027 |
PF-1.2-0.5 | 728.11 | 656.09 | 1.110 | PF-1.5-0.5 | 789.62 | 696.84 | 1.133 |
PF-1.2-1.0 | 717.47 | 681.02 | 1.054 | PF-1.5-1.0 | 779.00 | 726.74 | 1.072 |
PF-1.2-1.5 | 712.19 | 675.35 | 1.055 | PF-1.5-1.5 | 773.73 | 724.93 | 1.067 |
PF-1.2-2.0 | 679.82 | 637.96 | 1.066 | PF-1.5-2.0 | 741.41 | 686.90 | 1.079 |
PF-1.8-0 | 820.96 | 768.09 | 1.069 | PF-2.0-0 | 858.85 | 816.85 | 1.051 |
PF-1.8-0.5 | 848.50 | 744.14 | 1.140 | PF-2.0-0.5 | 886.36 | 783.47 | 1.131 |
PF-1.8-1.0 | 837.89 | 795.12 | 1.054 | PF-2.0-1.0 | 875.77 | 840.60 | 1.042 |
PF-1.8-1.5 | 832.63 | 781.35 | 1.066 | PF-2.0-1.5 | 870.52 | 837.78 | 1.039 |
PF-1.8-2.0 | 800.40 | 746.70 | 1.072 | PF-2.0-2.0 | 838.29 | 796.48 | 1.052 |
CF-1.2-0 | 684.47 | 687.95 | 0.995 | CF-1.5-0 | 746.82 | 775.14 | 0.963 |
CF-1.2-0.2 | 704.68 | 734.61 | 0.959 | CF-1.5-0.2 | 766.23 | 815.88 | 0.939 |
CF-1.2-0.4 | 745.93 | 784.76 | 0.951 | CF-1.5-0.4 | 807.41 | 861.72 | 0.937 |
CF-1.2-0.6 | 623.03 | 635.68 | 0.980 | CF-1.5-0.6 | 684.72 | 714.57 | 0.958 |
CF-1.2-0.8 | 587.34 | 576.73 | 1.018 | CF-1.5-0.8 | 649.09 | 656.84 | 0.988 |
CF-1.8-0 | 805.00 | 853.77 | 0.943 | CF-2.0-0 | 842.92 | 906.60 | 0.930 |
CF-1.8-0.2 | 825.15 | 892.97 | 0.924 | CF-2.0-0.2 | 863.04 | 943.96 | 0.914 |
CF-1.8-0.4 | 866.25 | 939.02 | 0.923 | CF-2.0-0.4 | 904.10 | 991.28 | 0.912 |
CF-1.8-0.6 | 743.77 | 784.69 | 0.948 | CF-2.0-0.6 | 781.76 | 839.38 | 0.931 |
CF-1.8-0.8 | 708.21 | 731.18 | 0.969 | CF-2.0-0.8 | 746.23 | 784.62 | 0.951 |
SF-1.2-0 | 699.93 | 696.66 | 1.005 | SF-1.5-0 | 761.48 | 721.84 | 1.055 |
SF-1.2-1.0 | 737.28 | 790.06 | 0.933 | SF-1.5-1.0 | 798.78 | 858.20 | 0.931 |
SF-1.2-1.3 | 771.93 | 855.26 | 0.903 | SF-1.5-1.3 | 833.36 | 909.24 | 0.917 |
SF-1.2-1.6 | 796.15 | 866.76 | 0.919 | SF-1.5-1.6 | 857.55 | 933.54 | 0.919 |
SF-1.8-0 | 820.41 | 731.67 | 1.121 | SF-2.0-0 | 858.30 | 801.26 | 1.071 |
SF-1.8-1.0 | 857.64 | 917.70 | 0.935 | SF-2.0-1.0 | 895.49 | 969.59 | 0.924 |
SF-1.8-1.3 | 892.16 | 933.26 | 0.956 | SF-2.0-1.3 | 929.98 | 1015.91 | 0.915 |
SF-1.8-1.6 | 916.31 | 998.59 | 0.918 | SF-2.0-1.6 | 954.09 | 1053.13 | 0.906 |
BF-1.2-0 | 748.61 | 779.31 | 0.961 | BF-1.5-0 | 810.08 | 827.09 | 0.979 |
BF-1.2-0.25 | 735.02 | 780.46 | 0.942 | BF-1.5-0.25 | 796.52 | 844.08 | 0.944 |
BF-1.2-0.5 | 708.98 | 762.07 | 0.930 | BF-1.5-0.5 | 770.53 | 833.33 | 0.925 |
BF-1.2-0.75 | 698.79 | 758.62 | 0.921 | BF-1.5-0.75 | 760.35 | 829.38 | 0.917 |
BF-1.8-0 | 868.92 | 846.63 | 1.026 | BF-2.0-0 | 906.76 | 910.45 | 0.996 |
BF-1.8-0.25 | 855.38 | 908.89 | 0.941 | BF-2.0-0.25 | 893.24 | 955.22 | 0.935 |
BF-1.8-0.5 | 829.43 | 889.64 | 0.932 | BF-2.0-0.5 | 867.32 | 935.32 | 0.927 |
BF-1.8-0.75 | 819.28 | 883.98 | 0.927 | BF-2.0-0.75 | 857.18 | 958.33 | 0.894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Hu, Y.; Rao, L.; Jiang, L.; Li, J.; Zhou, S.; Sun, H.; Peng, S.; Pang, X.; Chen, Y.; et al. Numerical Analysis on Mechanical Properties of Different Fiber-Reinforced Cold-Formed Steel–Concrete Composite Corner Columns. Polymers 2025, 17, 2365. https://doi.org/10.3390/polym17172365
Li M, Hu Y, Rao L, Jiang L, Li J, Zhou S, Sun H, Peng S, Pang X, Chen Y, et al. Numerical Analysis on Mechanical Properties of Different Fiber-Reinforced Cold-Formed Steel–Concrete Composite Corner Columns. Polymers. 2025; 17(17):2365. https://doi.org/10.3390/polym17172365
Chicago/Turabian StyleLi, Mengyao, Yi Hu, Lanzhe Rao, Liqiang Jiang, Jingbin Li, Shizhong Zhou, Hongyu Sun, Shi Peng, Xia Pang, Yuanjun Chen, and et al. 2025. "Numerical Analysis on Mechanical Properties of Different Fiber-Reinforced Cold-Formed Steel–Concrete Composite Corner Columns" Polymers 17, no. 17: 2365. https://doi.org/10.3390/polym17172365
APA StyleLi, M., Hu, Y., Rao, L., Jiang, L., Li, J., Zhou, S., Sun, H., Peng, S., Pang, X., Chen, Y., Hu, J., & Xie, P. (2025). Numerical Analysis on Mechanical Properties of Different Fiber-Reinforced Cold-Formed Steel–Concrete Composite Corner Columns. Polymers, 17(17), 2365. https://doi.org/10.3390/polym17172365