Comparative Analyses of Different Routes to Prepare Cutin Colloidal- and Nano- Particle Dispersions from Tomato (Solanum lycopersicum) Peels
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Cutin Isolate
- Dialysis of the precipitated cutin dispersion through dialysis tubing cellulose membrane, D9402–100FT, Sigma-Aldrich, St. Louis, MO, USA. Conductivity of the precipitated cutin dispersion was monitored and dialysis was stopped when conductivity had dropped down to ≤15 μS. Conductivity was measured on Cond Level 1 Conductometer, InoLab, Weilheim, Germany.
- Washing—precipitated cutin was washed in demineralized water (mass ratio cutin precipitate:water = 1:100) by gentle stirring for 20 min to obtain cutin dispersion which was subsequently centrifuged at 4 °C and 10,000 rpm for 20 min to separate cutin from liquid. Washing/centrifugation steps were repeated three times. Centrifugation was carried out using a Sigma 4–16KS centrifuge (Osterode am Harz, Germany).
- No action taken; the precipitated cutin dispersion was subjected to the next step.
2.3. Cutin Extract Yield
2.4. Cutin Isolates Yield
2.5. Cutin Isolate Ash and Moisture Content
2.6. Preparation of the Cutin Particle Dispersions
2.7. Cutin Particles Recovery
2.8. Particle Size and Zeta Potential Measurements
2.9. Cutin Particle Dispersion Stability
3. Results and Discussion
3.1. Cutin Isolates’ Yield, Ash, and Moisture Content
3.2. Colloidal Properties of Cutin Particle Dispersions
3.3. Cutin Particle Recovery
3.4. Influence of the Cutin Solution Concentration on Cutin Particle Size
3.5. Influence of Cutin Dispersion Storage Time on Particle Size
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NP E | nanoparticle dispersion obtained from cutin extract |
NP D | nanoparticle dispersion obtained from dialyzed cutin isolate |
NP S | nanoparticle dispersion obtained from standard cutin isolate |
NP W | nanoparticle dispersion obtained from washed cutin isolate |
Is | standard cutin isolate |
Iw | washed cutin isolate |
Id | dialyzed cutin isolate |
R | recovery |
cs | cutin solution concentration |
References
- Kumari, S.; Raturi, S.; Kulshrestha, S.; Chauhan, K.; Dhingra, S.; András, K.; Thu, K.; Khargotra, R.; Singh, T. A comprehensive review on various techniques used for synthesizing nanoparticles. J. Mater. Res. Technol. 2023, 27, 1739–1763. [Google Scholar] [CrossRef]
- Wouters, A.G.B.; Delcour, A.J. Cereal protein-based nanoparticles as agents stabilizing air–water and oil–water interfaces in food systems. Curr. Opin. Food Sci. 2019, 25, 19–27. [Google Scholar] [CrossRef]
- Spasojević, L.; Katona, J.; Bučko, S.; Savić, S.M.; Petrović, L.; Budinčić, J.M.; Tasić, N.; Aidarova, S.; Sharipova, A. Edible water barrier films prepared from aqueous dispersions of zein nanoparticles. LWT 2019, 109, 350–358. [Google Scholar] [CrossRef]
- Tuesta, T.; Castillo-Barzola, A.; Linares, H.; Ruiz-Pacco, G.; Baena-Moncada, A.M.; Valderrama-Negrón, A.C. Chitosan-based materials for food preservation: Enhancing shelf life and safety through sustainable nanoparticles and films. Food Chem. 2025, 486, 144589. [Google Scholar] [CrossRef]
- Costa, C.; Padrela, L. Progress on drug nanoparticle manufacturing: Exploring the adaptability of batch bottom-up approaches to continuous manufacturing. J. Drug Deliv. Sci. Technol. 2025, 111, 107120. [Google Scholar] [CrossRef]
- Joye, I.J.; McClements, D.J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr. Opin. Colloid Interface Sci. 2014, 19, 417–427. [Google Scholar] [CrossRef]
- Altammar, K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Chen, H.; Qian, F.; Cheng, Y. Preparation of itraconazole nanoparticles by anti-solvent precipitation method using a cascaded microfluidic device and an ultrasonic spray drier. Chem. Eng. J. 2018, 334, 2264–2272. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchem. J. 2020, 154, 104623. [Google Scholar] [CrossRef]
- Saxena, R.; Kotnala, S.; Bhatt, S.; Uniyal, M.; Rawat, B.; Negi, P.; Riyal, M.K. A review on green synthesis of nanoparticles toward sustainable environment. Sustain. Chem. Clim. Action 2025, 6, 100071. [Google Scholar] [CrossRef]
- Kumari, S.; Yadav, B.S.; Yadav, R.B. Synthesis and modification approaches for starch nanoparticles for their emerging food industrial applications: A review. Food Res. Int. 2020, 128, 108765. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. The future of food colloids: Next-generation nanoparticle delivery systems. Curr. Opin. Colloid Interface Sci. 2017, 28, 7–14. [Google Scholar] [CrossRef]
- Jenkin, S.; Molina, I. Isolation and Compositional Analysis of Plant Cuticle Lipid Polyester Monomers. J. Vis. Exp. 2015, 105, e53386. [Google Scholar] [CrossRef]
- Heredia-Guerrero, A.J.; Heredia, A.; Domínguez, E.; Cingolani, R.; Bayer, I.S.; Athanassiou, A.; Benítez, J.J. Cutin from agro-waste as a raw material for the production of bioplastics. J. Exp. Bot. 2017, 68, 5401–5410. [Google Scholar] [CrossRef]
- Leontijevic, V.; Cocero, M.J.; Cantero, D.; Solares, S.B.; Heredia, A.; Alonso, M.J.C. Unlocking branched cutin via sudden supercritical water hydrolysis of tomato peel. Green Chem. 2025, 27, 2950–2967. [Google Scholar] [CrossRef]
- Benítez, J.J.; Heredia-Guerrero, J.A.; Guzmán-Puyol, S.; Barthel, M.J.; Domínguez, E.; Heredia, A. Polyhydroxyester films obtained by non-catalyzed melt-polycondensation of natural occurring fatty polyhydroxyacids. Front. Mater 2015, 2, 59. [Google Scholar] [CrossRef]
- Manrich, A.; Moreira, F.K.; Otoni, C.G.; Lorevice, M.V.; Martins, M.A.; Mattoso, L.H. Hydrophobic edible films made up of tomato cutin and pectin. Carbohydr. Polym. 2017, 164, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Arrighetti, L.; Ricci, L.; De Monte, C.; Aiello, F.; Massa, C.; Balzano, F.; Barretta, G.U.; Bronco, S. Innovative materials based on physical melt-blending of cutin from tomato waste and poly(lactic acid). Mater. Today Sustain. 2024, 27, 110852. [Google Scholar] [CrossRef]
- Benítez, J.J.; García-Segura, R.; Heredia, A. Plant biopolyester cutin: A tough way to its chemical synthesis. Biochim. Biophys. Acta Gen. Subj. 2004, 1674, 1–3. [Google Scholar] [CrossRef]
- Benítez, J.J.; Castillo, P.M.; Del Río, J.C.; León-Camacho, M.; Domínguez, E.; Heredia, A.; Guzmán-Puyol, S.; Athanassiou, A.; Heredia-Guerrero, J.A. Valorization of Tomato Processing by-Products: Fatty Acid Extraction and Production of Bio-Based Materials. Materials 2018, 11, 2211. [Google Scholar] [CrossRef]
- Suriano, R.; Magni, M.; Tagliabue, B.; Re, V.; Ciapponi, R.; Nasti, R.; Cavallaro, M.; Beretta, G.; Turri, S.; Levi, M. Highly pure curing agent from tomato waste for bio-based anti-corrosion epoxy coatings. Eur. Polym. J. 2024, 223, 113629. [Google Scholar] [CrossRef]
- Moriam, K.; Azevedo, C.; Fateixa, S.; Bernardo, F.; Sixta, H.; Evtuguin, D.V. Modification of regenerated cellulose fibres by cork-derived suberin and the cutin fraction from grape skins. Carbohydr. Polym. Technol. Appl. 2024, 8, 110613. [Google Scholar] [CrossRef]
- Chaudhari, S.A.; Singhal, R.S. Cutin from watermelon peels: A novel inducer for cutinase production and its physicochemical characterization. Int. J. Biol. Macromol. 2015, 79, 398–404. [Google Scholar] [CrossRef]
- Cifarelli, A.; Cigognini, I.; Bolzoni, L.; Montanari, A. Cutin Isolated from Tomato Processing By-Products: Extraction Methods and Characterization. In Proceedings of the CYPRUS 2016 4th International Conference on Sustainable Solid Waste Management, Limassol, Cyprus, 23–25 June 2016. [Google Scholar]
- Järvinen, R.; Kaimainen, M.; Kallio, H. Cutin composition of selected northern berries and seeds. Food Chem. 2010, 122, 137–144. [Google Scholar] [CrossRef]
- Dutta, K.; Sen, S.; Veeranki, V.D. Production, characterization and applications of microbial cutinases. Process Biochem. 2009, 44, 127–134. [Google Scholar] [CrossRef]
- Cigognini, I.; Montanari, A.; de la Torre Carreras, R.; Montserrat, G.C.B. Extraction Method of a Polyester Polymer or Cutin from the Wasted Tomato. Patent WO2015028299A1, 5 March 2015. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis; AOAC: Washington, DC, USA, 2000. [Google Scholar]
- Chen, Y.; Zhao, Z.; Xia, G.; Xue, F.; Chen, C.; Zhang, Y. Fabrication and characterization of zein/lactoferrin composite nanoparticles for encapsulating 7,8-dihydroxyflavone: Enhancement of stability, water solubility and bioaccessibility. Int. J. Biol. Macromol. 2020, 146, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Perro, A.; Giraud, L.; Coudon, N.; Shanmugathasan, S.; Lapeyre, V.; Goudeau, B.; Douliez, J.-P.; Ravaine, V. Self-coacervation of ampholyte polymer chains as an efficient encapsulation strategy. J. Colloid Interface Sci. 2019, 548, 275–283. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bučko, S.; Spasojević, L.; Milinković Budinčić, J.; Fraj, J.; Petrović, L.; Katona, J.; Aidarova, S.; Mussabekov, K.; Babayev, A.; Sarsembekova, R.; et al. Comparative Analyses of Different Routes to Prepare Cutin Colloidal- and Nano- Particle Dispersions from Tomato (Solanum lycopersicum) Peels. Polymers 2025, 17, 2348. https://doi.org/10.3390/polym17172348
Bučko S, Spasojević L, Milinković Budinčić J, Fraj J, Petrović L, Katona J, Aidarova S, Mussabekov K, Babayev A, Sarsembekova R, et al. Comparative Analyses of Different Routes to Prepare Cutin Colloidal- and Nano- Particle Dispersions from Tomato (Solanum lycopersicum) Peels. Polymers. 2025; 17(17):2348. https://doi.org/10.3390/polym17172348
Chicago/Turabian StyleBučko, Sandra, Ljiljana Spasojević, Jelena Milinković Budinčić, Jadranka Fraj, Lidija Petrović, Jaroslav Katona, Saule Aidarova, Kuanyshbek Mussabekov, Alpamys Babayev, Raziya Sarsembekova, and et al. 2025. "Comparative Analyses of Different Routes to Prepare Cutin Colloidal- and Nano- Particle Dispersions from Tomato (Solanum lycopersicum) Peels" Polymers 17, no. 17: 2348. https://doi.org/10.3390/polym17172348
APA StyleBučko, S., Spasojević, L., Milinković Budinčić, J., Fraj, J., Petrović, L., Katona, J., Aidarova, S., Mussabekov, K., Babayev, A., Sarsembekova, R., & Sharipova, A. (2025). Comparative Analyses of Different Routes to Prepare Cutin Colloidal- and Nano- Particle Dispersions from Tomato (Solanum lycopersicum) Peels. Polymers, 17(17), 2348. https://doi.org/10.3390/polym17172348