Functionalized Micellar Membranes from Medicinal Mushrooms as Promising Self-Growing Bioscaffolds
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Microorganisms
2.3. Preparation of Mango Peel Extract
2.4. Production of Micellar Membranes
2.5. Water-Uptake Capacity of Micellar Membranes
2.6. Determination of Hydrophilicity/Hydrophobicity of the Surfaces of Micellar Membranes
2.7. Chemical Characterization of Micellar Membranes
2.8. Morphological Characterization of Micellar Membranes
2.9. Thermal Characterization of Micellar Membranes
2.10. Functionalization of Micellar Membranes
2.11. In Vitro Release of Bioactive Substances from Functionalized Micellar Membranes
2.12. Determination of Antimicrobial Activity of Functionalized Micellar Membranes
2.12.1. Disc Diffusion Method
2.12.2. Plate Count Method
3. Results and Discussion
3.1. Optimization of Growth Conditions for the Production of Micellar Membranes
3.1.1. The Influence of the Growth Medium Composition on the Production of Micellar Membranes
3.1.2. Effect of the pH Value of Growth Media on the Characteristics of Micellar Membranes
Effect of Growth Medium and Autoclaving of Micellar Membranes on Surface Hydrophilicity/Hydrophobicity
Effect of Growth Medium and Autoclaving of Micellar Membranes on the Presence of Functional Groups
3.2. Effect of Heat Treatment on the Characteristics of Micellar Membranes
3.2.1. Morphological Characterization of Micellar Membranes
3.2.2. Swelling Kinetics of Micellar Membranes
3.2.3. Inactivation of Mycelium
3.3. Functionalization of Micellar Membranes
3.4. In Vitro Release of Bioactive Substances from Functionalized Micellar Membranes
3.5. Characterization of Functionalized Micellar Membranes
3.5.1. Morphological Characterization of Functionalized Micellar Membranes
3.5.2. Thermal Stability of Functionalized Micellar Membranes
3.5.3. Chemical Characterization of Functionalized Micellar Membranes
3.6. Antimicrobial Properties of Functionalized Micellar Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MPE | Mango peel extract |
IE | Incorporation efficiency |
LC | Loading capacity |
UAE | Ultrasound-assisted extraction |
CIP | Ciprofloxacin |
FTIR | Fourier-transform infrared spectroscopy |
SEM | Scanning electron microscopy |
TGA/DSC | Thermogravimetric analysis/differential scanning calorimetry |
CR | Cumulative release |
AUT | Autoclaved |
NON-AUT | Non-autoclaved |
PDA | Potato dextrose agar |
PBS | Phosphate-buffered saline |
PLGA | Poly(lactic-co-glycolic) acid |
PCL | Poly(ε-caprolactone) |
References
- Silva, A.C.Q.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Natural Polymers-Based Materials: A Contribution to a Greener Future. Molecules 2021, 27, 94. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Fais, A.; Delogu, G.L.; Kumar, A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers 2022, 14, 983. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023, 12, 2422. [Google Scholar] [CrossRef]
- Martinez-Medina, G.A.; Chávez-González, M.L.; Verma, D.K.; Prado-Barragán, L.A.; Martínez-Hernández, J.L.; Flores-Gallegos, A.C.; Thakur, M.; Srivastav, P.P.; Aguilar, C.N. Bio-Funcional Components in Mushrooms, a Health Opportunity: Ergothionine and Huitlacohe as Recent Trends. J. Funct. Foods 2021, 77, 104326. [Google Scholar] [CrossRef]
- Sivaprasad, S.; Byju, S.K.; Prajith, C.; Shaju, J.; Rejeesh, C.R. Development of a Novel Mycelium Bio-Composite Material to Substitute for Polystyrene in Packaging Applications. Mater. Today Proc. 2021, 47, 5038–5044. [Google Scholar] [CrossRef]
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Heredia-Guerrero, J.A.; Athanassiou, A. Advanced Materials from Fungal Mycelium: Fabrication and Tuning of Physical Properties. Sci. Rep. 2017, 7, 41292. [Google Scholar] [CrossRef]
- Ziegler, A.; Bajwa, S.; Holt, G.; Mcintyre, G.; Bajwa, D. Evaluation of Physico-Mechanical Properties of Mycelium Reinforced Green Biocomposites Made from Cellulosic Fibers. Appl. Eng. Agric. 2016, 32, 931–938. [Google Scholar] [CrossRef]
- Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R.C. Morphology and Mechanics of Fungal Mycelium. Sci. Rep. 2017, 7, 13070. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Chan, W.K. Cost Modeling and Optimization of a Manufacturing System for Mycelium-Based Biocomposite Parts. J. Manuf. Syst. 2016, 41, 8–20. [Google Scholar] [CrossRef]
- Girometta, C.; Picco, A.M.; Baiguera, R.M.; Dondi, D.; Babbini, S.; Cartabia, M.; Pellegrini, M.; Savino, E. Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability 2019, 11, 281. [Google Scholar] [CrossRef]
- López Nava, J.A.; Méndez González, J.; Ruelas Chacón, X.; Nájera Luna, J.A. Assessment of Edible Fungi and Films Bio-Based Material Simulating Expanded Polystyrene. Mater. Manuf. Process. 2016, 31, 1085–1090. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Anaele, J.U.; Oke, T.M.; Kareem, S.A.; Adediran, M.; Ajibuwa, O.A.; Anabaranze, Y.O. Mycelium Based Composites: A Review of Their Bio-Fabrication Procedures, Material Properties and Potential for Green Building and Construction Applications. Alex. Eng. J. 2023, 83, 234–250. [Google Scholar] [CrossRef]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered Mycelium Composite Construction Materials from Fungal Biorefineries: A Critical Review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- Verma, N.; Jujjavarapu, S.E.; Mahapatra, C. Green Sustainable Biocomposites: Substitute to Plastics with Innovative Fungal Mycelium Based Biomaterial. J. Environ. Chem. Eng. 2023, 11, 110396. [Google Scholar] [CrossRef]
- Jones, M.; Weiland, K.; Kujundzic, M.; Theiner, J.; Kählig, H.; Kontturi, E.; John, S.; Bismarck, A.; Mautner, A. Waste-Derived Low-Cost Mycelium Nanopapers with Tunable Mechanical and Surface Properties. Biomacromolecules 2019, 20, 3513–3523. [Google Scholar] [CrossRef]
- Abhijith, R.; Ashok, A.; Rejeesh, C.R. Sustainable Packaging Applications from Mycelium to Substitute Polystyrene: A Review. Mater. Today Proc. 2018, 5, 2139–2145. [Google Scholar] [CrossRef]
- Khamrai, M.; Banerjee, S.L.; Kundu, P.P. A Sustainable Production Method of Mycelium Biomass Using an Isolated Fungal Strain Phanerochaete chrysosporium (Accession No: KY593186): Its Exploitation in Wound Healing Patch Formation. Biocatal. Agric. Biotechnol. 2018, 16, 548–557. [Google Scholar] [CrossRef]
- Manan, S.; Ullah, M.W.; Ul-Islam, M.; Atta, O.M.; Yang, G. Synthesis and Applications of Fungal Mycelium-Based Advanced Functional Materials. J. Bioresour. Bioprod. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Wasser, S. Medicinal Mushrooms as a Source of Antitumor and Immunomodulating Polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258–274. [Google Scholar] [CrossRef]
- Ruggeri, M.; Miele, D.; Contardi, M.; Vigani, B.; Boselli, C.; Icaro Cornaglia, A.; Rossi, S.; Suarato, G.; Athanassiou, A.; Sandri, G. Mycelium-Based Biomaterials as Smart Devices for Skin Wound Healing. Front. Bioeng. Biotechnol. 2023, 11, 1225722. [Google Scholar] [CrossRef]
- Antinori, M.E.; Ceseracciu, L.; Mancini, G.; Heredia-Guerrero, J.A.; Athanassiou, A. Fine-Tuning of Physicochemical Properties and Growth Dynamics of Mycelium-Based Materials. ACS Appl. Bio Mater. 2020, 3, 1044–1051. [Google Scholar] [CrossRef]
- Antinori, M.E.; Contardi, M.; Suarato, G.; Armirotti, A.; Bertorelli, R.; Mancini, G.; Debellis, D.; Athanassiou, A. Advanced Mycelium Materials as Potential Self-Growing Biomedical Scaffolds. Sci. Rep. 2021, 11, 12630. [Google Scholar] [CrossRef]
- Vandelook, S.; Elsacker, E.; Van Wylick, A.; De Laet, L.; Peeters, E. Current State and Future Prospects of Pure Mycelium Materials. Fungal Biol. Biotechnol. 2021, 8, 20. [Google Scholar] [CrossRef]
- Dudekula, U.T.; Doriya, K.; Devarai, S.K. A Critical Review on Submerged Production of Mushroom and Their Bioactive Metabolites. 3 Biotech 2020, 10, 337. [Google Scholar] [CrossRef]
- Bentil, J.A.; Thygesen, A.; Mensah, M.; Lange, L.; Meyer, A.S. Cellulase Production by White-Rot Basidiomycetous Fungi: Solid-State versus Submerged Cultivation. Appl. Microbiol. Biotechnol. 2018, 102, 5827–5839. [Google Scholar] [CrossRef]
- Elisashvili, V. Submerged Cultivation of Medicinal Mushrooms: Bioprocesses and Products (Review). Int. J. Med. Mushrooms 2012, 14, 211–239. [Google Scholar] [CrossRef]
- Kučuk, N.; Primožič, M.; Kotnik, P.; Knez, Ž.; Leitgeb, M. Mango Peels as an Industrial By-Product: A Sustainable Source of Compounds with Antioxidant, Enzymatic, and Antimicrobial Activity. Foods 2024, 13, 553. [Google Scholar] [CrossRef]
- Kučuk, N.; Primožič, M.; Knez, Ž.; Leitgeb, M. Alginate Beads with Encapsulated Bioactive Substances from Mangifera Indica Peels as Promising Peroral Delivery Systems. Foods 2024, 13, 2404. [Google Scholar] [CrossRef]
- Davami, F.; Eghbalpour, F.; Nematollahi, L.; Barkhordari, F.; Mahboudi, F. Effects of Peptone Supplementation in Different Culture Media on Growth, Metabolic Pathway and Productivity of CHO DG44 Cells; a New Insight into Amino Acid Profiles. Iran. Biomed. J. 2015, 19, 194–205. [Google Scholar] [CrossRef]
- Tomé, D. Yeast Extracts: Nutritional and Flavoring Food Ingredients. ACS Food Sci. Technol. 2021, 1, 487–494. [Google Scholar] [CrossRef]
- Majib, N.M.; Sam, S.T.; Yaacob, N.D.; Rohaizad, N.M.; Tan, W.K. Characterization of Fungal Foams from Edible Mushrooms Using Different Agricultural Wastes as Substrates for Packaging Material. Polymers 2023, 15, 873. [Google Scholar] [CrossRef]
- Subedi, K.; Basnet, B.B.; Panday, R.; Neupane, M.; Tripathi, G.R. Optimization of Growth Conditions and Biological Activities of Nepalese Ganoderma Lucidum Strain Philippine. Adv. Pharmacol. Pharm. Sci. 2021, 2021, 4888979. [Google Scholar] [CrossRef]
- Gern, R.M.M.; Wisbeck, E.; Rampinelli, J.R.; Ninow, J.L.; Furlan, S.A. Alternative Medium for Production of Pleurotus ostreatus Biomass and Potential Antitumor Polysaccharides. Bioresour. Technol. 2008, 99, 76–82. [Google Scholar] [CrossRef]
- Gbolagade, J.; Sobowale, A.; Adejoye, D. Optimization of Sub-Merged Culture Conditions for Biomass Production in Pleurotus florida (Mont.) Singer, a Nigerian Edible Fungus. Afr. J. Biotechnol. 2006, 5, 1464–1469. [Google Scholar]
- Mustafa, H.K.; Anwer, S.S.; Zrary, T.J. Influence of pH, Agitation Speed, and Temperature on Growth of Fungi Isolated from Koya, Iraq. Kuwait J. Sci. 2023, 50, 657–664. [Google Scholar] [CrossRef]
- Ali, S.; Fradi, A.; Al-Araji, A. Effect of Some Physical Factors on Growth of Five Fungal Species. Eur. Acad. Res. 2017, 2, 1069–1078. [Google Scholar]
- Kapoor, P.; Sharma, B.M. Studies on Different Growth Parameters of Ganoderma lucidum. Int. J. Sci. Environ. Technol. 2014, 3, 1515–1524. [Google Scholar]
- Ibekwe, V.I.; Azubuike, P.I.; Ezeji, U.; Chinakwe, E. Effects of Nutrient Sources and Environmental Factors on the Cultivation and Yield of Oyster Mushroom (Pleurotus ostreatus). Pak. J. Nutr. 2008, 7, 349–351. [Google Scholar] [CrossRef]
- Imtiaj, A.; Jayasinghe, C.; Lee, G.W.; Shim, M.J.; Rho, H.-S.; Lee, H.S.; Hur, H.; Lee, M.W.; Lee, U.-Y.; Lee, T.-S. Vegetative Growth of Four Strains of Hericium erinaceus Collected from Different Habitats. Mycobiology 2008, 36, 88–92. [Google Scholar] [CrossRef]
- Chutimanukul, P.; Sukdee, S.; Prajuabjinda, O.; Thepsilvisut, O.; Panthong, S.; Ehara, H.; Chutimanukul, P. Exogenous Application of Coconut Water to Promote Growth and Increase the Yield, Bioactive Compounds, and Antioxidant Activity for Hericium erinaceus Cultivation. Horticulturae 2023, 9, 1131. [Google Scholar] [CrossRef]
- Law, K.-Y. Water–Surface Interactions and Definitions for Hydrophilicity, Hydrophobicity and Superhydrophobicity. Pure Appl. Chem. 2015, 87, 759–765. [Google Scholar] [CrossRef]
- Bruscato, C.; Malvessi, E.; Brandalise, R.N.; Camassola, M. High Performance of Macrofungi in the Production of Mycelium-Based Biofoams Using Sawdust—Sustainable Technology for Waste Reduction. J. Clean. Prod. 2019, 234, 225–232. [Google Scholar] [CrossRef]
- Rozario, T.; DeSimone, D.W. The Extracellular Matrix in Development and Morphogenesis: A Dynamic View. Dev. Biol. 2010, 341, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Wu, X.; Gao, W.; Zhang, J.; Huang, C. High Temperature Induced Disruption of the Cell Wall Integrity and Structure in Pleurotus ostreatus Mycelia. Appl. Microbiol. Biotechnol. 2018, 102, 6627–6636. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, A.; Li, M.-J.; Cao, P.-F.; Chen, T.-X.; Zhang, G.; Shi, L.; Jiang, A.-L.; Zhao, M.-W. Heat Stress Modulates Mycelium Growth, Heat Shock Protein Expression, Ganoderic Acid Biosynthesis, and Hyphal Branching of Ganoderma lucidum via Cytosolic Ca2+. Appl. Environ. Microbiol. 2016, 82, 4112–4125. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Campaniello, D.; Speranza, B.; Altieri, C.; Sinigaglia, M.; Corbo, M.R. Two Nonthermal Technologies for Food Safety and Quality—Ultrasound and High Pressure Homogenization: Effects on Microorganisms, Advances, and Possibilities: A Review. J. Food Prot. 2019, 82, 2049–2064. [Google Scholar] [CrossRef]
- Jayasinghe, C.; Imtiaj, A.; Hur, H.; Lee, G.W.; Lee, T.S.; Lee, U.Y. Favorable Culture Conditions for Mycelial Growth of Korean Wild Strains in Ganoderma lucidum. Mycobiology 2008, 36, 28–33. [Google Scholar] [CrossRef]
- Houette, T.; Maurer, C.; Niewiarowski, R.; Gruber, P. Growth and Mechanical Characterization of Mycelium-Based Composites towards Future Bioremediation and Food Production in the Material Manufacturing Cycle. Biomimetics 2022, 7, 103. [Google Scholar] [CrossRef]
- Azimi, B.; Maleki, H.; Zavagna, L.; De la Ossa, J.G.; Linari, S.; Lazzeri, A.; Danti, S. Bio-Based Electrospun Fibers for Wound Healing. J. Funct. Biomater. 2020, 11, 67. [Google Scholar] [CrossRef]
- Djafari Petroudy, S.R.; Arjmand Kahagh, S.; Vatankhah, E. Environmentally Friendly Superabsorbent Fibers Based on Electrospun Cellulose Nanofibers Extracted from Wheat Straw. Carbohydr. Polym. 2021, 251, 117087. [Google Scholar] [CrossRef]
- Choi, S.; Kim, H.R.; Kim, H.S. Fabrication of Superabsorbent Nanofibers Based on Sodium Polyacrylate/Poly(Vinyl Alcohol) and Their Water Absorption Characteristics. Polym. Int. 2019, 68, 764–771. [Google Scholar] [CrossRef]
- Oliveira, C.; Sousa, D.; Teixeira, J.A.; Ferreira-Santos, P.; Botelho, C.M. Polymeric Biomaterials for Wound Healing. Front. Bioeng. Biotechnol. 2023, 11, 1136077. [Google Scholar] [CrossRef]
- Alven, S.; Aderibigbe, B.A. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int. J. Mol. Sci. 2020, 21, 9656. [Google Scholar] [CrossRef]
- Abdelrahman, E.; Takatori, K.; Matsuda, Y.; Tsukada, M.; Kirino, F. Fungicidal Effects of Ultraviolet Light (254 Nm) Irradiation on Contaminated Museum Packing and Storing Materials. Biocontrol Sci. 2018, 23, 177–186. [Google Scholar] [CrossRef]
- Marquenie, D.; Lammertyn, J.; Geeraerd, A.H.; Soontjens, C.; Van Impe, J.F.; Nicolaï, B.M.; Michiels, C.W. Inactivation of Conidia of Botrytis cinerea and Monilinia fructigena Using UV-C and Heat Treatment. Int. J. Food Microbiol. 2002, 74, 27–35. [Google Scholar] [CrossRef]
- Hojnik, N.; Modic, M.; Ni, Y.; Filipič, G.; Cvelbar, U.; Walsh, J.L. Effective Fungal Spore Inactivation with an Environmentally Friendly Approach Based on Atmospheric Pressure Air Plasma. Environ. Sci. Technol. 2019, 53, 1893–1904. [Google Scholar] [CrossRef]
- Zaid Alkilani, A.; McCrudden, M.T.C.; Donnelly, R.F. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics 2015, 7, 438–470. [Google Scholar] [CrossRef]
- Wong, W.F.; Ang, K.P.; Sethi, G.; Looi, C.Y. Recent Advancement of Medical Patch for Transdermal Drug Delivery. Medicina 2023, 59, 778. [Google Scholar] [CrossRef]
- Buck, E.; Maisuria, V.; Tufenkji, N.; Cerruti, M. Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption. ACS Appl. Bio Mater. 2018, 1, 627–635. [Google Scholar] [CrossRef]
- Baskakova, A.; Awwad, S.; Jiménez, J.Q.; Gill, H.; Novikov, O.; Khaw, P.T.; Brocchini, S.; Zhilyakova, E.; Williams, G.R. Electrospun Formulations of Acyclovir, Ciprofloxacin and Cyanocobalamin for Ocular Drug Delivery. Int. J. Pharm. 2016, 502, 208–218. [Google Scholar] [CrossRef]
- Herold, S.E.; Kyser, A.J.; Orr, M.G.; Mahmoud, M.Y.; Lewis, W.G.; Lewis, A.L.; Steinbach-Rankins, J.M.; Frieboes, H.B. Release Kinetics of Metronidazole from 3D Printed Silicone Scaffolds for Sustained Application to the Female Reproductive Tract. Biomed. Eng. Adv. 2023, 5, 100078. [Google Scholar] [CrossRef]
- Heredia, N.S.; Vizuete, K.; Flores-Calero, M.; Pazmiño, V.K.; Pilaquinga, F.; Kumar, B.; Debut, A. Comparative Statistical Analysis of the Release Kinetics Models for Nanoprecipitated Drug Delivery Systems Based on Poly(Lactic-Co-Glycolic Acid). PLoS ONE 2022, 17, e0264825. [Google Scholar] [CrossRef]
- Obayemi, J.D.; Jusu, S.M.; Salifu, A.A.; Ghahremani, S.; Tadesse, M.; Uzonwanne, V.O.; Soboyejo, W.O. Degradable Porous Drug-Loaded Polymer Scaffolds for Localized Cancer Drug Delivery and Breast Cell/Tissue Growth. Mater. Sci. Eng. C 2020, 112, 110794. [Google Scholar] [CrossRef]
- Aucoin, H.R.; Wilson, A.N.; Wilson, A.M.; Ishihara, K.; Guiseppi-Elie, A. Release of Potassium Ion and Calcium Ion from Phosphorylcholine Group Bearing Hydrogels. Polymers 2013, 5, 1241–1257. [Google Scholar] [CrossRef]
- O’Donnell, K.; Boyd, A.; Meenan, B.J. Controlling Fluid Diffusion and Release through Mixed-Molecular-Weight Poly(Ethylene) Glycol Diacrylate (PEGDA) Hydrogels. Materials 2019, 12, 3381. [Google Scholar] [CrossRef]
- Nga, N.K.; Thanh Tam, L.T.; Ha, N.T.; Hung Viet, P.; Huy, T.Q. Enhanced Biomineralization and Protein Adsorption Capacity of 3D Chitosan/Hydroxyapatite Biomimetic Scaffolds Applied for Bone-Tissue Engineering. RSC Adv. 2020, 10, 43045–43057. [Google Scholar] [CrossRef]
- Chulikavit, N.; Huynh, T.; Dekiwadia, C.; Khatibi, A.; Mouritz, A.; Kandare, E. Influence of Growth Rates, Microstructural Properties and Biochemical Composition on the Thermal Stability of Mycelia Fungi. Sci. Rep. 2022, 12, 15105. [Google Scholar] [CrossRef]
- Aranda-Ledesma, N.E.; González-Hernández, M.D.; Rojas, R.; Paz-González, A.D.; Rivera, G.; Luna-Sosa, B.; Martínez-Ávila, G.C.G. Essential Oil and Polyphenolic Compounds of Flourensia cernua Leaves: Chemical Profiling and Functional Properties. Agronomy 2022, 12, 2274. [Google Scholar] [CrossRef]
- Khan, M.Z.; Aziz, M.; Hasan, M.R.; Mamun, M.R. The Role of Drug as Corrosion Inhibitor for Mild Steel Surface Characterization by SEM, AFM, and FTIR. Anti-Corros. Methods Mater. 2016, 63, 308–315. [Google Scholar] [CrossRef]
Growth Medium | Composition | Concentration (g/L) |
---|---|---|
Medium 1—Potato dextrose medium | Potato dextrose broth | 24.0 |
Medium 2—Malt extract medium | Malt extract | 10.0 |
Yeast extract | 4.0 | |
Medium 3—Peptone medium | Peptone | 5.0 |
Yeast extract | 2.0 | |
KH2PO4 | 1.0 | |
MgSO4·7H2O | 0.5 | |
MnSO4·H2O | 0.075 | |
Medium 4—Glucose medium | Glucose | 49.2 |
Yeast extract | 4.9 | |
KH2PO4 | 0.88 | |
MgSO4·7H2O | 0.5 | |
Medium 5—Medium enriched with trace elements | Glucose | 10.0 |
NH4Cl | 4.0 | |
Yeast extract | 1.0 | |
CaCl2·2H2O | 0.4 | |
KH2PO4 | 0.25 | |
MgSO4·7H2O | 0.25 | |
FeSO4·7H2O | 0.013 | |
ZnSO4·7H2O | 0.004 |
Medium | pH | Sample | Top Side of the Membrane | Bottom Side of the Membrane | ||
---|---|---|---|---|---|---|
Average Contact Angle | Hydrophilic or Hydrophobic Surface | Average Contact Angle | Hydrophilic or Hydrophobic Surface | |||
Medium 2 | 5.5 | AUT | 83.94 ± 3.55° | Hydrophilic | 41.57 ± 1.95° | Hydrophilic |
NON-AUT | 75.31 ± 6.32° | Hydrophilic | 43.07 ± 1.34° | Hydrophilic | ||
7.0 | AUT | 97.20 ± 2.20° | Hydrophobic | 33.78 ± 1.83° | Hydrophilic | |
NON-AUT | 134.12 ± 0.27° | Hydrophobic | 35.73 ± 2.26° | Hydrophilic | ||
8.5 | AUT | 96.53 ± 1.10° | Hydrophobic | 34.29 ± 2.48° | Hydrophilic | |
NON-AUT | 117.00 ± 2.39° | Hydrophobic | 34.69 ± 1.09° | Hydrophilic | ||
Medium 4 | 5.5 | AUT | 89.33 ± 2.87° | Hydrophilic | 32.64 ± 0.71° | Hydrophilic |
NON-AUT | 87.89 ± 2.10° | Hydrophilic | 39.67 ± 2.08° | Hydrophilic | ||
7.0 | AUT | 97.41 ± 0.84° | Hydrophobic | 41.88 ± 2.00° | Hydrophilic | |
NON-AUT | 91.32 ± 1.45° | Hydrophobic | 33.56 ± 4.24° | Hydrophilic | ||
8.5 | AUT | 90.19 ± 2.08° | Hydrophobic | 51.40 ± 0.20° | Hydrophilic | |
NON-AUT | 127.80 ± 3.45° | Hydrophobic | 51.84 ± 2.11° | Hydrophilic |
Medium | pH | Sample | Top Side of the Membrane | Bottom Side of the Membrane | ||
---|---|---|---|---|---|---|
Average Contact Angle | Hydrophilic or Hydrophobic Surface | Average Contact Angle | Hydrophilic or Hydrophobic Surface | |||
Medium 1 | 5.5 | AUT | 89.89 ± 0.88° | Hydrophilic | 49.77 ± 3.62° | Hydrophilic |
NON-AUT | 89.35 ± 1.04° | Hydrophilic | 48.70 ± 1.90° | Hydrophilic | ||
7.0 | AUT | 49.48 ± 0.98° | Hydrophilic | 71.78 ± 1.75° | Hydrophilic | |
NON-AUT | 64.30 ± 4.16° | Hydrophilic | 62.47 ± 1.95° | Hydrophilic | ||
8.5 | AUT | 84.52 ± 2.05° | Hydrophilic | 39.52 ± 0.31° | Hydrophilic | |
NON-AUT | 87.38 ± 2.74° | Hydrophilic | 63.33 ± 0.64° | Hydrophilic | ||
Medium 4 | 5.5 | AUT | 75.43 ± 5.36° | Hydrophilic | 77.55 ± 3.16° | Hydrophilic |
NON-AUT | 65.29 ± 2.48° | Hydrophilic | 70.32 ± 3.66° | Hydrophilic | ||
7.0 | AUT | 67.28 ± 4.13° | Hydrophilic | 46.60 ± 3.00° | Hydrophilic | |
NON-AUT | 64.51 ± 3.13° | Hydrophilic | 44.61 ± 4.76° | Hydrophilic | ||
8.5 | AUT | 55.66 ± 0.21° | Hydrophilic | 45.19 ± 4.82° | Hydrophilic | |
NON-AUT | 68.81 ± 8.55° | Hydrophilic | 54.91 ± 0.41° | Hydrophilic |
Sample | Average Diameters of Hyphae (min.–max Diameter) (nm) | Average Diameters of Pores (min.–max Diameter) (µm) | |
---|---|---|---|
G. lucidum | AUT membrane | 516.75 (126.0–1170.0) | 22.14 (13.0–39.1) |
NON-AUT membrane | 425.02 (78.1–922.0) | 40.30 (28.3–48.1) | |
P. ostreatus | AUT membrane | 1150.71 (384.0–2880.0) | / |
NON-AUT membrane | 1310.80 (213.0–3030.0) | 25.08 (10.5–41.6) |
Model | Zero-Order | First-Order | Higuchi | Korsmeyer-Peppas | Release Mechanism | |||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | k0 | R2 | k1 | R2 | kH | R2 | kKP | n | ||
MPE-loaded G. lucidum membrane | 0.761 | 0.016 | 0.963 | 0.003 | 0.837 | 1.566 | 0.971 | 6.347 | 0.324 | Fickian diffusion mechanism |
MPE-loaded P. ostreatus membrane | 0.645 | 0.010 | 0.930 | 0.005 | 0.507 | 1.252 | 0.944 | 9.435 | 0.244 | Fickian diffusion mechanism |
CIP-loaded G. lucidum membrane | 0.121 | 0.004 | 0.999 | 0.034 | - | - | 0.838 | 15.894 | 0.093 | Fickian diffusion mechanism |
CIP-loaded P. ostreatus membrane | 0.078 | 0.004 | 0.999 | 0.060 | - | - | 0.906 | 26.728 | 0.053 | Fickian diffusion mechanism |
Membrane | Total Weight Loss (%) |
---|---|
Control G. lucidum membrane | 71.7 |
MPE-loaded G. lucidum membrane | 66.1 |
CIP-loaded G. lucidum membrane | 64.3 |
Control P. ostreatus membrane | 71.3 |
MPE-loaded P. ostreatus membrane | 70.4 |
CIP-loaded P. ostreatus membrane | 66.7 |
Bacterium | Inhibition Zone (mm) | |||||||
---|---|---|---|---|---|---|---|---|
Control G. lucidum Membrane | MPE-Loaded G. lucidum Membrane | CIP-Loaded G. lucidum Membrane | Control P. ostreatus Membrane | MPE-Loaded P. ostreatus Membrane | CIP-Loaded P. ostreatus Membrane | MPE | CIP | |
E. coli | / | 11.7 ± 0.3 | 41.3 ± 1.2 | / | 11.3 ± 0.6 | 41.0 ± 1.0 | 13.3 ± 0.6 | 43.0 ± 1.0 |
S. aureus | / | 10.3 ± 0.6 | 40.3 ± 0.6 | / | 10.0 ± 0.0 | 40.7 ± 0.6 | 10.7 ± 0.6 | 41.3 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kučuk, N.; Primožič, M.; Knez, Ž.; Leitgeb, M. Functionalized Micellar Membranes from Medicinal Mushrooms as Promising Self-Growing Bioscaffolds. Polymers 2025, 17, 2334. https://doi.org/10.3390/polym17172334
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Functionalized Micellar Membranes from Medicinal Mushrooms as Promising Self-Growing Bioscaffolds. Polymers. 2025; 17(17):2334. https://doi.org/10.3390/polym17172334
Chicago/Turabian StyleKučuk, Nika, Mateja Primožič, Željko Knez, and Maja Leitgeb. 2025. "Functionalized Micellar Membranes from Medicinal Mushrooms as Promising Self-Growing Bioscaffolds" Polymers 17, no. 17: 2334. https://doi.org/10.3390/polym17172334
APA StyleKučuk, N., Primožič, M., Knez, Ž., & Leitgeb, M. (2025). Functionalized Micellar Membranes from Medicinal Mushrooms as Promising Self-Growing Bioscaffolds. Polymers, 17(17), 2334. https://doi.org/10.3390/polym17172334