Interfacial Polarization Mechanism in Image Sticking of Polyimide-Based Flexible OLEDs
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jang, K.; O’Brien, B. Advanced Displays, Materials Market Trends, and Unsettled Challenges. Inf. Disp. 2023, 39, 31–34. [Google Scholar] [CrossRef]
- Xie, J.; Jia, D.; Dirican, M.; Xia, Y.; Li, C.; Liu, Y.; Cui, M.; Yan, C.; Wan, J.; Liu, H.; et al. Highly foldable, super-sensitive, and transparent nanocellulose/ceramic/polymer cover windows for flexible OLED displays. ACS Appl. Mater. Interfaces 2022, 14, 16658–16668. [Google Scholar] [CrossRef]
- Zhu, H.; Shin, E.S.; Liu, A.; Ji, D.; Xu, Y.; Noh, Y.Y. Printable semiconductors for backplane TFTs of flexible OLED displays. Adv. Funct. Mater. 2019, 30, 1904588. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, H.; Kang, C.; Gao, L. Synthesis and characterization of amide-bridged colorless polyimide films with low CTE and high optical performance for flexible OLED displays. Polym. Chem. 2021, 12, 5364–5376. [Google Scholar] [CrossRef]
- Cho, D.; Moon, J.; Kihm, T.-Y.; Choi, Y.-T.; Park, J. LTPO technology development for enhanced display performance: Image sticking phenomena, circuit operation and backplane process integration. SID Symp. Dig. Tech. Pap. 2022, 53, 620–623. [Google Scholar] [CrossRef]
- Kinoshita, T.; Ishiyama, Y.; Fujimori, T.; Masuda, K.; Takahashi, K.; Tanaka, M.; Arai, T. Requirement of a polyimide substrate to achieve high thin-film-transistor reliability. J. Soc. Inf. Disp. 2018, 49, 888–891. [Google Scholar] [CrossRef]
- Bao, Z.; Liu, B.; Liu, X.; Zhang, S.; Weng, L.; Sun, H.; Zhang, X.; Yao, Q.; Yuan, G.; Guo, J.; et al. The stability analysis of In–Ga–ZnO thin film transistors with polyimide substrates based on Maxwell–Wagner effect. Appl. Phys. Lett. 2024, 124, 163501. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Bak, S.; Park, J.; Byun, C.; Oh, C.; Kim, B.S.; Han, C.; Yoo, J.; Kim, D.; et al. Effects of polyimide curing on image sticking behaviors of flexible displays. Sci. Rep. 2021, 11, 21805. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Khim, T.; Bak, S.; Song, J.; Choi, B. Threshold voltage instability and polyimide charging effects of LTPS TFTs for flexible displays. Sci. Rep. 2021, 11, 8387. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Khim, T.; Park, J.; Han, C.; Yoo, J.; Kim, D.; Song, J.; Choi, B. Highly reliable flexible device with a charge compensation layer. ACS Appl. Mater. Interfaces 2022, 14, 12863–12872. [Google Scholar] [CrossRef]
- Hwang, H.W.; Hong, S.; Hwang, S.S.; Kim, K.W.; Ha, Y.M.; Kim, H.J. Analysis of recoverable residual image characteristics of flexible organic light-emitting diode displays using polyimide substrates. IEEE Electron Device Lett. 2019, 40, 1108–1111. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, F.-H.; Xing, R.; Du, Z.; Li, J. Instability issues of LTPS TFT for high performance of flexible AMOLED display. SID Symp. Dig. Tech. Pap. 2021, 52, 5–8. [Google Scholar] [CrossRef]
- Kim, C.-Y.; Han, M.-K.; Lee, H.-K.; Jung, S.-H.; Kim, C.-D.; Kang, I.B. Negative data insertion method for suppressing hysteresis of polysilicon thin-film transistors. J. Electrochem. Soc. 2008, 155, 491. [Google Scholar] [CrossRef]
- Hong, S.; Hwang, H.W.; Hwang, S.S.; Kim, K.W.; Ha, Y.M.; Kim, H.J. Alleviation of recoverable residual image phenomenon of flexible organic light-emitting diode display. J. Soc. Inf. Disp. 2019, 50, 105–108. [Google Scholar]
- Li, Y.; Tong, W.; Yang, J.; Wang, Z.; Wang, D.; An, Q.; Zhang, Y. Electrode-free piezoelectric nanogenerator based on carbon black/polyvinylidene fluoride–hexafluoropropylene composite achieved via interface polarization effect. Chem. Eng. J. 2023, 457, 141356. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, X.; Ellingford, C.; Zhang, Y.; Chen, S.; Zhou, K.; Zhang, D.; Bowen, C.R.; Wan, C. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 2019, 48, 4424–4465. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, L.; Xia, W.; Gao, T.; Zhou, W. A novel flexible substrate structure to enhance temperature, humidity, and mechanical reliability of flexible AMOLED devices. SID Symp. Dig. Tech. Pap. 2021, 52, 1333–1335. [Google Scholar] [CrossRef]
- Hahn, B.R.; Yoon, D.Y. Electrical and interfacial properties of metal-polyimide-silicon structures. J. Appl. Phys. 1989, 65, 2766–2771. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, Y.; Wang, Q.; Zhang, Y.; Qiu, J.; Helander, M. Self-assembled cathode patterning in AMOLED for under-display camera. SID Symp. Dig. Tech. Pap. 2020, 51, 811–814. [Google Scholar] [CrossRef]
- Chen, L.; Yu, H.; Dirican, M.; Fang, D.; Tian, Y.; Yan, C.; Xie, J.; Jia, D.; Liu, H.; Wang, J.; et al. Highly transparent and colorless nanocellulose/polyimide substrates with enhanced thermal and mechanical properties for flexible OLED displays. Adv. Mater. Interfaces 2020, 7, 2000928. [Google Scholar] [CrossRef]
- Wu, J.-H.; Liou, G.-S. High-efficiency fluorescent polyimides based on locally excited triarylamine-containing dianhydride moieties. Polym. Chem. 2015, 6, 5225–5232. [Google Scholar] [CrossRef]
- Cheng, C.-A.; Huang, Y.-H.; Lin, C.-H.; Lee, C.-L.; Yang, S.-C.; Chen, K.-N. Feasibility Investigation of Amorphous Silicon as Release Layer in Temporary Bonding for 3-D Integration and FOWLP Scheme. IEEE J. Electron Devices Soc. 2017, 5, 136–140. [Google Scholar] [CrossRef]
- Zha, J.-W.; Tian, Y.; Zheng, M.-S.; Wan, B.; Yang, X.; Chen, G. High-temperature energy storage polyimide dielectric materials: Polymer multiple-structure design. Mater. Today Energy 2023, 31, 101217. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, C.; Wang, K.; Zhang, X.; Feng, L.; Wei, W.; Sun, Y.; Liu, Y.; Dai, J.; Xu, X.; et al. Enhancing Interfacial Polarization through Electron Accumulation in Carbon Nanotube-Encapsulated α-Fe2O3 for Highly Efficient Microwave Absorption. ACS Nano 2025, 19, 16869–16876. [Google Scholar] [CrossRef]
- Peng, X.; Pu, Y.; Du, X.; Ji, J.; Zhou, S.; Zhang, L. The effect of glass network structure on interfacial polarization in Na2O–K2O–Nb2O5–SiO2–BaO glass-ceramics. J. Alloys Compd. 2020, 845, 155645. [Google Scholar] [CrossRef]
- Liu, P.; Han, Z.; He, X. Dielectric properties of diamond/SiC composite fabricated by Si vapor infiltration process. J. Eur. Ceram. Soc. 2024, 44, 651–658. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L. Dielectric constant, dielectric loss, conductivity, capacitance and model analysis of electronic electroactive polymers. Polym. Test. 2023, 120, 107965. [Google Scholar] [CrossRef]
- Bronnikov, S.; Kostromin, S.; Asandulesa, M.; Pankin, D.; Podshivalov, A. Interfacial interactions and interfacial polarization in polyazomethine/MWCNTs nanocomposites. Compos. Sci. Technol. 2020, 190, 108049. [Google Scholar] [CrossRef]
- Fakharuddin, A.; Schmidt-Mende, L.; Garcia-Belmonte, G.; Jose, R.; Mora-Sero, I. Interfaces in perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700623. [Google Scholar] [CrossRef]
- Lynall, D.; Nair, S.V.; Gutstein, D.; Shik, A.; Savelyev, I.G.; Blumin, M.; Ruda, H.E. Surface state dynamics dictating transport in InAs nanowires. Nano Lett. 2018, 18, 1387–1395. [Google Scholar] [CrossRef]
- Yokokura, S.; Tomimatsu, A.; Ishiguro, J.; Harada, J.; Takahashi, H.; Takahashi, Y.; Nakamura, Y.; Kishida, H.; Suizu, R.; Matsushita, M.M.; et al. Stabilization of interfacial polarization and induction of polarization hysteresis in organic MISIM devices. ACS Appl. Mater. Interfaces 2021, 13, 31928–31933. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, H.; Baek, M.; Lee, J.; Park, M.; Kim, C.; Hwang, Y.; Park, J. Vt behaviors of LTPS-TFT fabricated on PI substrate for flexible applications. SID Symp. Dig. Tech. Pap. 2017, 48, 1773–1776. [Google Scholar] [CrossRef]
- Hamdia, K.M.; Ghasemi, H.; Zhuang, X.; Alajlan, N.; Rabczuk, T. Sensitivity and uncertainty analysis for flexoelectric nanostructures. Comput. Methods Appl. Mech. Eng. 2018, 337, 95–109. [Google Scholar] [CrossRef]
- Hong, J.; Lim, J.; Jeon, J. Reduction of short-time image sticking in organic light-emitting diode display through transient analysis of low-temperature polycrystalline silicon thin-film transistor. Displays 2024, 84, 102794. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, H.; Ma, D.; Zhao, B.; Li, Y. Interfacial Polarization Mechanism in Image Sticking of Polyimide-Based Flexible OLEDs. Polymers 2025, 17, 2333. https://doi.org/10.3390/polym17172333
Li Z, Li H, Ma D, Zhao B, Li Y. Interfacial Polarization Mechanism in Image Sticking of Polyimide-Based Flexible OLEDs. Polymers. 2025; 17(17):2333. https://doi.org/10.3390/polym17172333
Chicago/Turabian StyleLi, Zhipeng, Haowen Li, Dawei Ma, Baojie Zhao, and Yanbo Li. 2025. "Interfacial Polarization Mechanism in Image Sticking of Polyimide-Based Flexible OLEDs" Polymers 17, no. 17: 2333. https://doi.org/10.3390/polym17172333
APA StyleLi, Z., Li, H., Ma, D., Zhao, B., & Li, Y. (2025). Interfacial Polarization Mechanism in Image Sticking of Polyimide-Based Flexible OLEDs. Polymers, 17(17), 2333. https://doi.org/10.3390/polym17172333