Design-Oriented Degradation Mapping and Hyperelastic Model-Switch Guidelines for Nitrile-Butadiene Rubber Seals
Abstract
1. Introduction
2. Determination of Equivalent Service Life of NBR Using Activation Energy
3. Accelerated Ageing Test and Evaluation of Material Property Changes in NBR with Degradation
3.1. Experimental Equipment and Test Conditions
3.2. Results and Discussion
4. Selection and Validation of Optimal Hyperelastic Models for Design Reliability
4.1. Hyperelastic Constitutive Models
4.1.1. Neo-Hookean Model
4.1.2. Yeoh Secondary Model
4.1.3. Mooney–Rivlin 5-Parameter Model
4.2. FEA Model and Accuracy Validation Method
4.3. Model Accuracy Assessment and Optimal Model Selection
5. Proposal for a Comprehensive Hyperelastic Model Selection Guideline
5.1. Defining the Degradation Inflection Point and Embrittlement Boundary
5.2. Guideline Based on Service Conditions: The Degradation Map
5.3. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NBR | Nitrile-butadiene rubber |
FEA | Finite Element Analysis |
TGA | Thermogravimetric analysis |
DMA | Dynamic mechanical analysis |
TMA | Thermomechanical analysis |
FWO | Flynn–Wall–Ozawa |
CTE | Coefficient of thermal expansion |
Tg | Glass transition temperature |
W | Strain energy density function |
Ea | Activation energy |
I1, I2, I3 | Invariants of the Green stress tensor |
k | Chemical reaction rate |
R | Universal gas constant |
R2 | Coefficient of determination |
T | Absolute temperature |
α | Conversion rate |
β | Constant heating rate |
ϵbreak | Strain at break/Elongation at break |
λ | Main elongation |
ρx | Crosslink density |
σmax | Ultimate tensile strength |
References
- Li, Z.; Cai, D.; Xu, H.; Sun, Y.; Zhao, X.; Hu, W.; Zhang, X.; Zhou, Q.; Zhang, X.; Xu, X. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater. 2021, 33, 2101498. [Google Scholar] [CrossRef]
- Jiang, B.; Jia, X.; Wang, Z.; Wang, T.; Guo, F.; Wang, Y. Influence of thermal aging in oil on the friction and wear properties of nitrile butadiene rubber. Tribol. Lett. 2019, 67, 86. [Google Scholar] [CrossRef]
- Ahmed, F.S.; Shafy, M.; Abd El-Megeed, A.A.; Hegazi, E.M. The effect of γ-irradiation on acrylonitrile–butadiene rubber NBR seal materials with different antioxidants. Mater. Des. 2012, 36, 823–828. [Google Scholar] [CrossRef]
- Bhaumik, S.; Kumaraswamy, A.; Guruprasad, S.; Bhandari, P. Investigation of friction in rectangular nitrile-butadiene rubber hydraulic rod seals for defence applications. J. Mech. Sci. Technol. 2015, 29, 4793–4799. [Google Scholar] [CrossRef]
- Lou, W.; Zhang, W.; Wang, H.; Jin, T.; Liu, X. Influence of hydraulic oil on degradation behavior of nitrile rubber O-rings at elevated temperature. Eng. Fail. Anal. 2018, 92, 1–11. [Google Scholar] [CrossRef]
- Ito, M.; Nagai, K. Degradation issues of polymer materials used in railway field. Polym. Degrad. Stab. 2008, 93, 1723–1735. [Google Scholar] [CrossRef]
- Mo, Y.M.; Gong, Y.; Yang, Z.G. Failure analysis on the O-ring of radial thrust bearing room of main pump in a nuclear power plant. Eng. Fail. Anal. 2020, 115, 104673. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Xu, L.; Zhang, P. Investigation of aging behavior and mechanism of nitrile-butadiene rubber in the accelerated thermal aging environment. Polym. Test. 2016, 54, 59–66. [Google Scholar] [CrossRef]
- Morrell, P.R.; Patel, M.; Skinner, A.R. Accelerated thermal ageing studies on nitrile rubber O-rings. Polym. Test. 2003, 22, 651–656. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, H.; Li, H.; Huang, G.; Lan, J.; Fu, J.; Fan, J.; Liu, Y.; Ke, Z.; Guo, X.; et al. A study on the aging mechanism and anti-aging properties of nitrile butadiene rubber: Experimental characterization and molecular simulation. Polymers 2025, 17, 1446. [Google Scholar] [CrossRef]
- Lou, W.; Zhang, W.; Wang, H.; Jin, T.; Liu, X. Stress–thermal oxidative aging behavior of hydrogenated nitrile rubber seals. J. Appl. Polym. Sci. 2019, 136, 47014. [Google Scholar] [CrossRef]
- Lou, W.; Zhang, W.; Jin, T.; Liu, X.; Dai, W. Synergistic effects of multiple environmental factors on degradation of hydrogenated nitrile rubber seals. Polymers 2018, 10, 897. [Google Scholar] [CrossRef]
- Shao, H.; Guo, Q.; He, A. Evolution of crosslinking network structure and thermo-oxidative aging behavior of unfilled NR/BR blends with TBIR as extra functional compatibilizer. Polym. Test. 2022, 115, 107715. [Google Scholar] [CrossRef]
- da Silva Ruiz, N.M.; de Sousa, A.M.; Calderari, M.R.; de Figueiredo, M.A.; Lima, A.P.; de Azevedo, E.R. Time domain NMR evaluation of thermal and thermochemical aging of nitrile rubber on crosslinking and mechanical properties. Polym. Degrad. Stab. 2024, 224, 110727. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; He, A. Accelerated aging behavior and degradation mechanism of nitrile rubber in thermal air and hydraulic oil environments. Polym. Eng. Sci. 2023, 63, 2218–2232. [Google Scholar] [CrossRef]
- Zanzi, M.S.; de Souza, E.L.; Dutra, G.B.; Paiva, K.V.; Oliveira, J.L.; Cunha, T.V.; Monteiro, A.S. Service lifetime prediction of nitrile butadiene rubber gaskets used in plate heat exchangers. J. Appl. Polym. Sci. 2022, 139, e52523. [Google Scholar] [CrossRef]
- Ammineni, S.P.; Lingaraju, D.; Nagaraju, C. Estimating shelf life and degradation mechanisms of nitrile butadiene rubber for viscoelastic dampers. J. Elastomers Plast. 2024, 56, 434–453. [Google Scholar] [CrossRef]
- Tayefi, M.; Eesaee, M.; Hassanipour, M.; Elkoun, S.; David, E.; Nguyen-Tri, P. Thermal aging behavior and lifetime prediction of industrial elastomeric compounds based on styrene–butadiene rubber. Polym. Eng. Sci. 2025, 65, 3226–3246. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, W.; Chen, Z.; Li, K.; Liu, H.; Li, S. Rubber accelerated ageing life prediction by Peck model considering initial hardness influence. Polym. Test. 2019, 80, 106132. [Google Scholar] [CrossRef]
- Kömmling, A.; Jaunich, M.; Goral, M.; Wolff, D. Insights for lifetime predictions of O-ring seals from five-year long-term aging tests. Polym. Degrad. Stab. 2020, 179, 109278. [Google Scholar] [CrossRef]
- Shi, J.; Yuan, S.; Zhang, W.; Zhang, J.; Chen, H. Hydrothermal aging mechanisms and service life prediction of twisted bamboo fiber wound composites. Mater. Des. 2023, 227, 111716. [Google Scholar] [CrossRef]
- Xie, Z.; Huang, X.; Zhang, K.; Yan, S.; Chen, J.; He, R.; Li, J.; Zhong, W. Thermo-oxidative aging effects on hyperelastic behavior of EPDM rubber: A constitutive modeling approach. Materials 2025, 18, 2236. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, Z.; Wang, X. A general hyperelastic model for rubber-like materials incorporating strain-rate and temperature. J. Elastomers Plast. 2024, 56, 624–651. [Google Scholar] [CrossRef]
- Zhu, M.; Ma, D.; Zhou, Y.; Huang, H.; Shao, Z.; Wu, F.; Li, B. The change of sealing property in the aging process of NBR sealing equipment based on finite element analysis. Coatings 2024, 14, 1178. [Google Scholar] [CrossRef]
- Shao, Z.; Zhu, M.; Wang, H.; Li, M. Effect of aging of foam rubber on properties and constitutive models. J. Phys. Conf. Ser. 2021, 2011, 107715. [Google Scholar] [CrossRef]
- Marl, S.; Ni, X.; Hornig, T.; Spieker, C.; Giesen, R.-U.; Heim, H.-P.; Fister, M. Correlations between the aging behavior and finite element method simulation of three silicone elastomers. Materials 2024, 17, 3961. [Google Scholar] [CrossRef] [PubMed]
- Korba, A.G.; Kumar, A.; Barkey, M.E. A model for hyper-elastic material behavior under thermal aging with an application to natural rubber. In Proceedings of the ASME 2018 Manufacturing Science and Engineering Conference (MSEC2018), College Station, TX, USA, 18–22 June 2018. [Google Scholar]
- Park, J.; Choun, Y.S.; Kim, M.K.; Hahm, D. Revaluation of the aging property modification factor of lead rubber bearings based on accelerated aging tests and finite element analysis. Nucl. Eng. Des. 2019, 347, 59–66. [Google Scholar] [CrossRef]
- Woo, C.S.; Park, H.S. Useful lifetime prediction of rubber component. Eng. Fail. Anal. 2011, 18, 1645–1651. [Google Scholar] [CrossRef]
- Brown, R.P. Practical Guide to the Assessment of the Useful Life of Rubbers; iSmithers Rapra: Shropshire, UK, 2001. [Google Scholar]
- Ozawa, T. Thermal analysis. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef]
- Chen, S.; Yu, H.; Ren, W.; Zhang, Y. Thermal degradation behavior of hydrogenated nitrile-butadiene rubber/clay nanocomposites. Thermochim. Acta 2009, 491, 103–108. [Google Scholar] [CrossRef]
- Flynn, J.H.; Wall, L.A. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym. Lett. 1966, 4, 323–328. [Google Scholar] [CrossRef]
- Doyle, C.D. Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 1961, 5, 285–292. [Google Scholar] [CrossRef]
- ASTM D638; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
- Zhao, J.; Yang, R.; Iervolino, R.; Barbera, S. Investigation of crosslinking in the thermooxidative aging of nitrile–butadiene rubber. J. Appl. Polym. Sci. 2015, 132, 3. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, R.; Iervolino, R.; Barbera, S. Changes of chemical structure and mechanical property levels during thermo-oxidative aging of NBR. Rubber Chem. Technol. 2013, 86, 591–603. [Google Scholar] [CrossRef]
- Ogden, R.W. Non-Linear Elastic Deformations; Courier Corporation: Amherst, MA, USA, 1997. [Google Scholar]
- Tejasri, P.; Basak, A. Comparative study of computational material models. Int. J. Appl. Eng. Res. 2018, 13, 8588–8595. [Google Scholar]
- Boulanger, P.; Hayes, M. Finite-amplitude waves in Mooney-Rivlin and Hadamard materials. In Topics in Finite Elasticity; Springer: Vienna, Austria, 2001; pp. 131–167. [Google Scholar]
- Kim, B.; Lee, S.B.; Lee, J.; Cho, S.; Park, H.; Yeom, S.; Park, S.H. A comparison among Neo-Hookean, Mooney-Rivlin, and Ogden models for chloroprene rubber. Int. J. Precis. Eng. Manuf. 2012, 13, 759–764. [Google Scholar] [CrossRef]
- Dhrangdhariya, P.; Maiti, S.; Rai, B. Effect of spoke design and material nonlinearity on non-pneumatic tire stiffness and durability performance. arXiv 2021, arXiv:2103.03637. [Google Scholar] [CrossRef]
- Amatoury, J.; Cheng, S.; Kairaitis, K.; Wheatley, J.R.; Amis, T.C.; Bilston, L.E. Development and validation of a computational finite element model of the rabbit upper airway: Simulations of mandibular advancement and tracheal displacement. J. Appl. Physiol. 2016, 120, 743–757. [Google Scholar] [CrossRef]
- Hejazi, F.; Farahpour, H.; Ayyash, N.; Chong, T. Development of a volumetric compression restrainer for structures subjected to vibration. J. Build. Eng. 2022, 46, 103735. [Google Scholar] [CrossRef]
- Okeke, C.P.; Thite, A.N.; Durodola, J.F.; Greenrod, M.T. Hyperelastic polymer material models for robust fatigue performance of automotive LED lamps. Procedia Struct. Integr. 2017, 5, 600–607. [Google Scholar] [CrossRef]
- York, D. Least squares fitting of a straight line with correlated errors. Earth Planet. Sci. Lett. 1968, 5, 320–324. [Google Scholar] [CrossRef]
- Treloar, L.R.G. The elasticity of a network of long-chain molecules—II. Trans. Faraday Soc. 1943, 39, 241–246. [Google Scholar] [CrossRef]
- Rivlin, R.S. Large elastic deformations of isotropic materials IV. Philos. Trans. R. Soc. Lond. A 1948, 241, 379–397. [Google Scholar]
Test # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Target service time [year] | Unaged | 1 | 3 | 1 | 5 | 3 | 1 | 5 | 3 | 5 |
Target service temperature [°C] | Unaged | 70 | 70 | 80 | 70 | 80 | 90 | 80 | 90 | 90 |
Accelerated-ageing time [h] | Unaged | 1.4 | 4.45 | 5.35 | 7.27 | 16.2 | 18.35 | 26.77 | 55.12 | 91.77 |
Category | Equipment/Model | Manufacturer (Country) | Main Test Conditions | Standard/Mode and Application |
---|---|---|---|---|
Accelerated Ageing | Temperature Chamber SH-662 | ESPEC (Osaka, Japan) | 150 °C, constant high-temperature exposure | Ageing steps from 1.4 to 91.8 h based on Arrhenius equivalent lifetime design |
Tensile Test | Universal Testing Machine KDMT-156 | KDMT (Seoul, Republic of Korea) | ASTM D638 type IV specimens cross-head 300 mm min−1, measured until fracture ≥5 specimens per condition | - |
TGA | TGA N-1000 | Sinco (Seoul, Republic of Korea) | Sample 10–11 mg, heating rate 20 °C min−1 N2 atmosphere | Data acquisition for FWO activation energy calculation |
DMA | Q800 DMA | TA Instruments (New Castle, DE, USA) | Tension mode, −40–150 °C heating rate 5 °C min−1 sinusoidal loading | Calculation of Storage/Loss modulus, tan δ, and cross-link density |
TMA | Q400 TMA | TA Instruments (New Castle, DE, USA) | Expansion mode, −50–150 °C heating rate 5 °C min−1 50 mN load | Measurement of Tg and CTE, rubbery plateau analysis |
Sample # | Ageing Time (h) | σ Max (MPa) | ϵ Break (%) | Elastic Modulus (MPa) |
---|---|---|---|---|
1 | unaged | 16.4 ± 1.16 | 273.46 ± 20.08 | 6.01 ± 0.14 |
4 | 7.2 | 15.11 ± 0.90 | 187.60 ± 12.89 | 8.06 ± 0.32 |
7 | 26.8 | 13.02 ± 0.32 | 135.51 ± 3.90 | 9.62 ± 0.30 |
10 | 91.8 | 4.17 ± 0.17 | 5.55 ± 0.66 | 76.71 ± 5.98 |
Test # | Using Year | Using Temperature | Accelerated Aging Time | Storage Modulus at Rubbery Plateau Region (Tg + 50 °C) | Crosslink Density |
---|---|---|---|---|---|
[year] | [°C] | [h·min] | [MPa] | [mol/m3] | |
1 | 0 | 0 | 0 | 14.53 | 2006.46 |
2 | 1 | 70 | 1.4 | 16.29 | 2269.97 |
3 | 3 | 70 | 4.45 | 16.70 | 2334.16 |
4 | 1 | 80 | 5.35 | 21.09 | 2946.25 |
5 | 5 | 70 | 7.27 | 21.45 | 3007.15 |
6 | 3 | 80 | 16.2 | 27.26 | 3807.24 |
7 | 1 | 90 | 18.35 | 24.99 | 3483.47 |
8 | 5 | 80 | 26.77 | 29.78 | 4146.81 |
9 | 3 | 90 | 55.12 | 41.39 | 5747.51 |
10 | 5 | 90 | 91.77 | 49.16 | 6794.17 |
Hyperelastic Constant of NBR Neo-Hookean and Yeoh 2nd Order Model at Different Aging Time | |||||
---|---|---|---|---|---|
Test # | Neo-Hookean Model | Yeoh Secondary Order | |||
Initial Shear Modulus | C10 | C20 | |||
[Mpa] | [Mpa] | [Mpa] | |||
1 | 0.319 | 0.135 | 0.004 | ||
2 | 0.339 | 0.142 | 0.006 | ||
3 | 0.358 | 0.149 | 0.008 | ||
4 | 0.365 | 0.158 | 0.007 | ||
5 | 0.380 | 0.159 | 0.008 | ||
6 | 0.402 | 0.190 | 0.005 | ||
7 | 0.434 | 0.199 | 0.007 | ||
8 | 0.473 | 0.243 | −0.004 | ||
9 | 0.872 | 0.607 | −0.735 | ||
10 | 3.967 | 3.266 | −145.391 | ||
Hyperelastic Constant of NBR Mooney–Rivlin 5 Parameter at Different Aging Time | |||||
Test # | C10 | C01 | C20 | C11 | C02 |
[Mpa] | [Mpa] | [Mpa] | [Mpa] | [Mpa] | |
1 | −1.65 | 2.04 | 0.04 | −0.26 | 0.96 |
2 | −2.28 | 2.74 | 0.14 | −0.72 | 1.71 |
3 | −2.59 | 3.08 | 0.23 | −1.09 | 2.22 |
4 | −3.23 | 3.80 | 0.38 | −1.69 | 3.05 |
5 | −2.76 | 3.30 | 0.21 | −1.02 | 2.20 |
6 | −4.87 | 5.60 | 1.17 | −4.69 | 6.49 |
7 | −4.63 | 5.35 | 0.96 | −3.94 | 5.76 |
8 | −7.50 | 8.41 | 3.86 | −13.84 | 15.43 |
9 | −44.41 | 46.60 | 467.01 | −1213.50 | 818.52 |
10 | −1140.14 | 1151.15 | 1,978,220.32 | −4,174,395.94 | 2,205,309.53 |
Test # | Neo-Hookean Model | Mooney–Rivlin 5 Parameter | Yeoh Secondary Order |
---|---|---|---|
1 | 0.0188 | 0.0129 | 0.0130 |
2 | 0.0019 | 0.0096 | 0.0053 |
3 | 0.0056 | 0.0165 | 0.0151 |
4 | 0.0046 | 0.0092 | 0.0102 |
5 | 0.0062 | 0.0158 | 0.0062 |
6 | 0.0069 | 0.0028 | 0.0095 |
7 | 0.0087 | 0.0068 | 0.0144 |
8 | 0.0138 | 0.0037 | 0.0126 |
9 | 0.0161 | 0.0017 | 0.0067 |
10 | 0.0015 | 0.0024 | 0.0064 |
Response Variable | Regression Equation | R2 | Adj. R2 | Pred. R2 | p-Value (Year) | p-Value (Temp) |
---|---|---|---|---|---|---|
Strain at Maximum Tensile Strength | 6.57 − 0.3292Y − 0.0519T | 80.2% | 75.8% | 59.6% | 0.001 | 0.008 |
Ultimate Tensile Strength | 37.85 − 1.266Y − 0.2718T | 75.9% | 70.5% | 46.8% | 0.003 | 0.006 |
Crosslink Density | −6196 + 517Y + 105.2 | 78.4% | 73.6% | 54.2% | 0.002 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, N.-Y.; Kim, D.-S.; Zhang, S.-U. Design-Oriented Degradation Mapping and Hyperelastic Model-Switch Guidelines for Nitrile-Butadiene Rubber Seals. Polymers 2025, 17, 2316. https://doi.org/10.3390/polym17172316
Choi N-Y, Kim D-S, Zhang S-U. Design-Oriented Degradation Mapping and Hyperelastic Model-Switch Guidelines for Nitrile-Butadiene Rubber Seals. Polymers. 2025; 17(17):2316. https://doi.org/10.3390/polym17172316
Chicago/Turabian StyleChoi, Na-Yeon, Dong-Seok Kim, and Sung-Uk Zhang. 2025. "Design-Oriented Degradation Mapping and Hyperelastic Model-Switch Guidelines for Nitrile-Butadiene Rubber Seals" Polymers 17, no. 17: 2316. https://doi.org/10.3390/polym17172316
APA StyleChoi, N.-Y., Kim, D.-S., & Zhang, S.-U. (2025). Design-Oriented Degradation Mapping and Hyperelastic Model-Switch Guidelines for Nitrile-Butadiene Rubber Seals. Polymers, 17(17), 2316. https://doi.org/10.3390/polym17172316