Exploring the Underlying Mechanisms of Reduced Elasticity in PA6/PA66 Bicomponent Melt-Spun Fibers: An Investigation of Viscoelastic Properties and Simulation Analysis
Abstract
1. Introduction
2. Establishment of Melt Spinning Mathematical 2D Model
2.1. Model
2.2. Governing Equations
- Polymer melt is incompressible.
- During the spinning process, the fibers are stretched vertically downward.
- The fiber interface is a standard circular cross-section, and the diameter changes with the spinning process.
- The melt has no slip on the tube wall, and the wall velocity is 0.
- The volume flow rate is constant and the non-isothermal flow is steady laminar flow.
- Ignoring the effects of inertial force and gravity and avoiding neck problems during high speed.
- The surface convection heat transfer coefficient includes the influence of the radiation heat transfer coefficient.
- The effects of fluid dynamics and thermal interactions between adjacent fibers are not considered.
- No in-depth studies on the interface but on mechanical behavior like elasticity.
2.3. Mesh
2.4. Constitutive Equation
2.5. The Kinetics Crystallization Model
2.6. Spinning Process Parameters
2.7. Material Data
2.8. Validation of the Model
3. Results and Discussion
3.1. Pressure
3.2. Prediction of Differences in the Stress Component Along the Fiber
3.3. Tensile Stress (Force/Area) Differences in the Bicomponent Fiber
3.4. Temperature
3.5. Axial Velocity
3.6. Radius
3.7. Crystallinity [2,3]
Prediction of Crystallites Rate Along the Spin Line
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Henson, G.M.; Cao, D.; Bechtel, S.E. A thin-filament melt spinning model with radial resolution of temperature and stress. J. Rheol. 1998, 42, 329–360. [Google Scholar] [CrossRef]
- Fisher, R.J.; Denn, M.M.; Tanner, R.I. Initial profile development in melt spinning. Ind. Eng. Chem. Fundam. 1980, 19, 195–197. [Google Scholar] [CrossRef]
- Keunings, R.; Crochet, M.J.; Denn, M.M. Profile development in continuous drawing of viscoelastic liquids. Ind. Eng. Chem. Fundam. 1983, 22, 347–355. [Google Scholar] [CrossRef]
- Joo, Y.L.; Sun, J.; Smith, M.D.; Armstrong, R.C.; Brown, R.A.; Ross, R.A. Two-dimensional numerical analysis of non-isothermal melt spinning with and without phase transition. J. Non-Newton. Fluid Mech. 2002, 102, 37–70. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Kwon, S. Coupled thermal–mechanical modeling of polyamide melt-spinning and implications for fiber elasticity. J. Appl. Polym. Sci. 2023, 140, e53567. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Wu, H. Simulation and experimental analysis of tensile stress and deformation in bicomponent polyamide fibers. Text. Res. J. 2021, 91, 1452–1464. [Google Scholar]
- Liu, A.W.; Bornside, D.E.; Armstrong, R.C.; Brown, R.A. Viscoelastic flow of polymer solutions around a periodic linear array of cylinders: Comparisons of predictions for microstructure and flow fields. J. Non-Newton. Fluid Mech. 1998, 77, 153–190. [Google Scholar] [CrossRef]
- Sun, J.; Smith, M.D.; Armstrong, R.C.; Brown, R.A.; Ross, R.A. Two-dimensional numerical analysis of melt spinning with phase transition. J. Rheol. 1991, 35, 845–870. [Google Scholar]
- Nakamura, K.; Katayama, K.; Amano, T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition. J. Appl. Polym. Sci. 1973, 17, 1031–1041. [Google Scholar] [CrossRef]
- Durany, A.; Anantharamaiah, N.; Pourdeyhimi, B. High surface area nonwovens via fibrillating spunbonded nonwovens comprising Islands-in-the-Sea bicomponent filaments: Structure-process-property relationships. J. Mater. Sci. 2009, 21, 5926–5934. [Google Scholar] [CrossRef]
- Jeffrey, S.D.; Frank, O.H. Splittable Multicomponent Polyester Fibers. U.S. Patent 6780357 B2, 30 August 2004. [Google Scholar]
- Pourdeyhimi, B.; Nataliya, V.F.; Stephen, R.S. High Strength, Durable Micro and Nanofiber Fabrics Produced by Fibrillating Bicomponent Islands in the Sea Fibers. U.S. Patent 7981226 B2, 23 June 2006. [Google Scholar]
- Krishnamurthy, L. Bicomponent Spunbond Nonwoven Web. U.S. Patent 0156461 A1, 17 December 2010. [Google Scholar]
- Gong, R.H.; Nikoukhesal, A. Hydro-entangled bi-component microfiber nonwovens. Polym. Eng. Sci. 2009, 10, 1703–1709. [Google Scholar] [CrossRef]
- Pourdeyhimi, B. Splitting of islands-in-the-sea fibers (PA6/COPET) during hydroentangling of nonwovens. J. Eng. Fibers Fabr. 2008, 3, 32–35. [Google Scholar]
- Suvari, F.; Ulcay, Y.; Maze, B. Acoustical absorptive properties of spunbonded nonwovens made from islands-in-the-sea bicomponent filaments. J. Text. Inst. 2013, 104, 438–445. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, C.Q.; Song, H. An investigation of fiber splitting of bicomponent meltblown/microfiber nonwovens by water treatment. J. Appl. Polym. Sci. 2004, 94, 1218–1226. [Google Scholar] [CrossRef]
- Hollowell, K.B.; Anantharamaiah, N.; Pourdeyhimi, B. Hybrid mixed media nonwovens composed of macrofibers and microfibers. Part I: Three-layer segmented pie configuration. J. Text. Inst. 2013, 11, 972–979. [Google Scholar] [CrossRef]
- Lu, Z.M.; Qian, X.M. Spunbonded nonwovens made from segmented pie filaments. Adv. Mater. Res. 2010, 194, 726–729. [Google Scholar]
- Ziabicki, A. Fundamentals of Fiber Formation; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Bheda, J.H.; Spruiell, J.E. Dynamics and structure development during high speed melt spinning of Nylon 6. I. On-line experimental measurements. J. Appl. Polym. Sci. 1990, 39, 447–463. [Google Scholar] [CrossRef]
- Lu, Z.M.; Qian, X.M. Combination technology of spunbond & spunlace. Adv. Mater. Res. 2011, 331, 241–244. [Google Scholar]
- Yeom, B.Y.; Pourdeyhimi, B. Aerosol filtration properties of PA6/PE islands-in-in-sea bicomponent spunbond web fibrillated by high-pressure water jets. J. Mater. Sci. 2011, 46, 5761–5767. [Google Scholar] [CrossRef]
- Fedorova, N.; Pourdeyhimi, B. High strength nylon micro- and nanofiber based nonwovens via spunbonding. J. Appl. Polym. Sci. 2007, 104, 3434–3442. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Liu, Y. The preparation of spunbonded PA6/PET segments bicomponent fiber. J. Text. Sci. Eng. 2012, 2, 2165–2169. [Google Scholar] [CrossRef]
- Zhang, C.L.; Qiu, X.P.; Xue, Y.H.; Gao, L.; Ding, M.; Ji, X. Effect of draw ratio on the morphology, orientationand properties of biphenyl-type polyimide fibers. Chem. J. Chin. Univ. 2011, 32, 952–956. [Google Scholar]
- Ma, W.; Sun, H. Technical Foundation and Application of Plastic Molding Simulation Software; China Railway Publishing House: Beijing, China, 2006. [Google Scholar]
- Smith, M.D.; Armstrong, R.C.; Brown, R.A. The Influence of die length on nonisothermal viscoelastic extrudate swell. In Proceedings of the 68th Annual Meeting of the Society of Rheology, Galveston, TX, USA, 16–20 February 1997. [Google Scholar]
- Dasdemir, M.; Maze, B.; Anantharamaiah, N. Infuence of polymer type, composition, and interface on the structural and mechanical properties of core/sheath type bicomponent nonwoven Ebers. J. Mater. Sci. 2012, 47, 5955–5969. [Google Scholar] [CrossRef]
- Vassilatos, G.; Schmelzer, E.R.; Denn, M.M. Issues concerning the rate of heat transfer from a spinline. Int. Polym. Process. 1992, 7, 144–150. [Google Scholar] [CrossRef]
- Tang, J.; He, X.; Yang, Y.; Wang, L.; Zhang, H.; Li, Q.; Chen, S.; Liu, F.; Gao, J.; Xu, Z.; et al. Coupled thermal–mechanical simulations of bicomponent fiber spinning. J. Appl. Polym. Sci. 2022, 139, e52124. [Google Scholar] [CrossRef]
- Xu, P. Fundamentals of Polymer Rheology; Chemical Industry Press: Beijing, China, 2009. [Google Scholar]
- Wang, H. Melt Spinning Theory and Preparation of HMLS Polyester Fiber. Ph.D. Thesis, Donghua University, Shanghai, China, 2001. [Google Scholar]
- Cao, J. Simulation Study on Melt Flow and Fiber Forming Process of Multi-Component Composite Spinning. Master’s Thesis, Donghua University, Shanghai, China, 2010. [Google Scholar]
- Li, N. Research and Application of Dynamic Engineering Model for Melt Spinning of Fine Denier Polyester Filament. Master’s Thesis, Donghua University, Shanghai, China, 2012. [Google Scholar]
- Yang, J.; Zhao, Y.; Li, X. Flow-induced crystallization and mechanical behavior of PA6/PA66 polyamide blends during fiber spinning. Polymer 2022, 245, 124704. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C. Multiphysics modeling of melt spinning processes: State-of-the-art and future prospects. Polym. Rev. 2023, 63, 663–706. [Google Scholar]
- Wang, H.; Yang, C.; Yu, X.; Hu, X. Effect of heat transfer coefficient on circumferential and radial temperature gradient distribution of hollow fibers. Synth. Fiber Ind. 2001, 3, 9–13. [Google Scholar]
- Ziabicki, A.; Jarecki, L.; Wasiak, A. Dynamic modelling of melt spinning. Comput. Theor. Polym. Sci. 1998, 8, 143–157. [Google Scholar] [CrossRef]
- Patel, R.M.; Bheda, J.H.; Spruiell, J.E. Dynamics and structure development during high-speed melt spinning of nylon 6 II Mathematical modeling. J. Appl. Polym. Sci. 1991, 42, 1671–1682. [Google Scholar] [CrossRef]
- Hoffman, J.; Lauritzen, J. Treatise on solid State Chemistry; Plenum Press: New York, NY, USA, 1976; Volume 3, Chapter 7. [Google Scholar]
- Spruiell, J.E. Structure Formation During Melt Spinning. Struct. Form. Polym. Fibers 2000, 578, 5–93. [Google Scholar]
- Gregory, D.R. Note: Departure from Newtonian Behavior of Molten Poly (ethylene terephthalate). Trans. Soc. Rheol. 1973, 17, 191–195. [Google Scholar] [CrossRef]
- Zhang, C.X.; Wang, H.P.; Wang, C.S. Poly (trimethylene terephthalate) fiber melt-spinning: Material parameters and computer simulation. Fibers Polym. 2007, 8, 295–301. [Google Scholar] [CrossRef]
- Huynh, B.P.; Tanner, R.I. Study of the non-isothermal glass fibre drawing process. Rheol. Acta 1983, 22, 482–499. [Google Scholar] [CrossRef]
- Guenette, R.; Fortin, M. A new mixed finite element method for computing viscoelastic flows. J. Non-Newton. Fluid Mech. 1995, 60, 27–52. [Google Scholar] [CrossRef]
- Zieminski, K.F.; Spruiell, J.E. On-line studies and computer simulation of the melt spinning of nylon-66 filaments. J. Appl. Polym. Sci. 1988, 35, 2223–2245. [Google Scholar] [CrossRef]
- Doufas, A.K.; McHugh, A.J.; Miller, C. Simulation of melt spinning including flow-induced crystallization: Part I. Model development and predictions. J. Non-Newton. Fluid Mech. 2000, 92, 27–66. [Google Scholar] [CrossRef]
- Sun, J.; Subbiah, S.; Marchal, J.M. Numerical analysis of nonisothermal viscoelastic melt spinning with ongoing crystallization. J. Non-Newton. Fluid Mech. 2000, 93, 133–151. [Google Scholar] [CrossRef]
- Shin, D.M.; Lee, J.S.; Jung, H.W.; Hyun, J.C. High-speed fiber spinning process with spinline flow-induced crystallization and neck-like deformation. Rheol. Acta 2006, 45, 575–582. [Google Scholar] [CrossRef]
- Kannan, K.; Rajagopal, K.R. Simulation of fiber spinning including flow-induced crystallization. J. Rheol. 2005, 49, 683–703. [Google Scholar] [CrossRef]
- Denn, M.M.; Pearson, J.R.A. Computational Analysis of Polymer Processing; Pearson, J.R.A., Richardson, S.M., Eds.; Applied Science Publishers: London, UK, 1983; p. 179. [Google Scholar]
- Rybnikář, F.; Geil, P.H. Interactions at the PA-6/PA-66 interface. J. Appl. Polym. Sci. 1992, 46, 797–803. [Google Scholar] [CrossRef]
- Haberkorn, H.; Hahn, K.; Breuer, H.; Dorrer, H.D.; Matthies, P. On the neck-like deformation in high-speed spun polyamides. J. Appl. Polym. Sci. 1993, 47, 1551–1579. [Google Scholar] [CrossRef]
PA6 | PA66 | Spinneret Orifice No. | (Dia × Length of Orifice) mm |
---|---|---|---|
533 K temperature | 556 K temperature | 36 | 0.28 × 0.84 |
Winding speed: 1000 m/min | Winding speed: 1000 m/min |
Material Properties | PA6 | PA66 |
---|---|---|
Intrinsic viscosity, IV, | 2.40 | 2.40 |
Specific heat capacity, | 1891 | 2553 |
Density, | 973 | 1000 |
Thermal conductivity, | 0.20 | 0.21 |
Melting temperature, | 533 | 556 |
λ(s) | 0.03 | 0.01 |
ε | 0.008 | 0.001 |
ξ | 0.175 | 0.15 |
Ratio | 0.20 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.; Zhang, S.; Wang, H.; Wu, J.; Ji, P.; Wang, C. Exploring the Underlying Mechanisms of Reduced Elasticity in PA6/PA66 Bicomponent Melt-Spun Fibers: An Investigation of Viscoelastic Properties and Simulation Analysis. Polymers 2025, 17, 2312. https://doi.org/10.3390/polym17172312
Abbas A, Zhang S, Wang H, Wu J, Ji P, Wang C. Exploring the Underlying Mechanisms of Reduced Elasticity in PA6/PA66 Bicomponent Melt-Spun Fibers: An Investigation of Viscoelastic Properties and Simulation Analysis. Polymers. 2025; 17(17):2312. https://doi.org/10.3390/polym17172312
Chicago/Turabian StyleAbbas, Ali, Shengming Zhang, Huaping Wang, Jing Wu, Peng Ji, and Chaosheng Wang. 2025. "Exploring the Underlying Mechanisms of Reduced Elasticity in PA6/PA66 Bicomponent Melt-Spun Fibers: An Investigation of Viscoelastic Properties and Simulation Analysis" Polymers 17, no. 17: 2312. https://doi.org/10.3390/polym17172312
APA StyleAbbas, A., Zhang, S., Wang, H., Wu, J., Ji, P., & Wang, C. (2025). Exploring the Underlying Mechanisms of Reduced Elasticity in PA6/PA66 Bicomponent Melt-Spun Fibers: An Investigation of Viscoelastic Properties and Simulation Analysis. Polymers, 17(17), 2312. https://doi.org/10.3390/polym17172312