Next-Generation Food Packaging: Progress and Challenges of Biopolymer-Based Materials
Abstract
1. Introduction
2. Recent Developments in Biopolymer-Based Films
3. Properties of Biopolymer-Based Packaging
3.1. Mechanical Properties
3.2. Barrier Properties
3.3. Functional Properties (Active and Smart Packaging)
3.4. Biodegradability and Composability
3.5. Complex Migration Kinetics
3.6. Toxicity
4. Environmental Impact of Biopolymer Packaging
5. Human Health Implications of Biopolymer Packaging
6. Application of Biodegradable Packaging in the Industry
7. Scaling Up Challenges
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinha, S. An overview of biopolymer-derived packaging material. Polym. Renew. Resour. 2024, 15, 193–209. [Google Scholar] [CrossRef]
- Asgher, M.; Qamar, S.A.; Bilal, M.; Iqbal, H.M.N. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res. Int. 2020, 137, 109625. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.W.; Haque, M.A.; Mohibbullah, M.; Khan, M.S.I.; Islam, M.A.; Mondal, M.H.T.; Ahmmed, R. A review on active packaging for quality and safety of foods: Current trends, applications, prospects and challenges. Food Packag. Shelf Life 2022, 33, 100913. [Google Scholar] [CrossRef]
- Eyiz, V.; Tontul, I. Bioactive components structure and their applications in active packaging for shelf stability enhancement. In Active Packaging for Various Food Applications; CRC Press: Boca Raton, FL, USA, 2021; pp. 23–36. [Google Scholar]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-based sustainable food packaging materials: Challenges, solutions, and application. Foods 2023, 12, 2422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zuo, Z.; Zhang, X.; Wang, L. Food biopolymer behaviors in the digestive tract: Implications for nutrient delivery. Crit. Rev. Food Sci. Nutr. 2024, 64, 8709–8727. [Google Scholar] [CrossRef] [PubMed]
- Pinaeva, L.G.; Noskov, A.S. Biodegradable biopolymers: Real impact to environment pollution. Sci. Total Environ. 2024, 947, 174445. [Google Scholar] [CrossRef]
- Donkor, L.; Kontoh, G.; Yaya, A.; Bediako, J.K.; Apalangya, V. Bio-based and sustainable food packaging systems: Relevance, challenges, and prospects. Appl. Food Res. 2023, 3, 100356. [Google Scholar] [CrossRef]
- Stoica, M.; Bichescu, C.I.; Crețu, C.-M.; Dragomir, M.; Ivan, A.S.; Podaru, G.M.; Stoica, D.; Stuparu-Crețu, M. Review of bio-based biodegradable polymers: Smart solutions for sustainable food packaging. Foods 2024, 13, 3027. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, D.; Regenstein, J.M.; Xia, W.; Dong, J. A comprehensive review on natural bioactive films with controlled release characteristics and their applications in foods and pharmaceuticals. Trends Food Sci. Technol. 2021, 112, 690–707. [Google Scholar] [CrossRef]
- Petkoska, A.T.; Daniloski, D.; D’Cunha, N.M.; Naumovski, N.; Broach, A.T. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res. Int. 2021, 140, 109981. [Google Scholar] [CrossRef]
- Kumar, N.; Neeraj. Polysaccharide-based component and their relevance in edible film/coating: A review. Nutr. Food Sci. 2019, 49, 793–823. [Google Scholar] [CrossRef]
- Kumar, N.; Pratibha; Prasad, J.; Yadav, A.; Upadhyay, A.; Neeraj; Shukla, S.; Petkoska, A.T.; Heena; Suri, S.; et al. Recent trends in edible packaging for food applications—Perspective for the future. Food Eng. Rev. 2023, 15, 718–747. [Google Scholar] [CrossRef]
- Khwaldia, K.; Perez, C.; Banon, S.; Desobry, S.; Hardy, J. Milk proteins for films and coatings. Crit. Rev. Food Sci. Nutr. 2004, 44, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Nilsen-Nygaard, J.; Fernández, E.N.; Radusin, T.; Rotabakk, B.T.; Sarfraz, J.; Sharmin, N.; Sivertsvik, M.; Sone, I.; Pettersen, M.K. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1333–1380. [Google Scholar] [CrossRef] [PubMed]
- Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz, A. Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol. 2011, 22, 292–303. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Tang, J.; Adhikari, B.; Cao, P. Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Res. Int. 2019, 116, 90–102. [Google Scholar] [CrossRef]
- Chettri, S.; Sharma, N.; Mohite, A.M. Edible coatings and films for shelf-life extension of fruit and vegetables. Biomater. Adv. 2023, 154, 213632. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Dong, H.; Wu, W.; Yang, X.; He, Q. Functional biopolymers for food packaging: Formation mechanism and performance improvement of chitosan-based composites. Food Biosci. 2023, 54, 102927. [Google Scholar] [CrossRef]
- Periyasamy, T.; Asrafali, S.P.; Lee, J. Recent advances in functional biopolymer films with antimicrobial and antioxidant properties for enhanced food packaging. Polymers 2025, 17, 1257. [Google Scholar] [CrossRef]
- Chawla, R.; Sivakumar, S.; Kaur, H. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- A review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100024. [Google Scholar] [CrossRef]
- Mezemir, S.A.; Solomon, W.K. Effect of bee wax and linseed oil coatings and frequency of dipping on the biochemical and organoleptic quality of fresh orange juice (Citrus sinensis cv. Valencia). J. Postharvest Technol. 2017, 5, 17–28. [Google Scholar]
- Gaspar, M.C.; Braga, M.E.M. Edible films and coatings based on agrifood residues: A new trend in the food packaging research. Curr. Opin. Food Sci. 2023, 50, 101006. [Google Scholar] [CrossRef]
- Prameela, K.; Mohan, C.M.; Ramakrishna, C. Biopolymers for food design: Consumer-friendly natural ingredients. In Biopolymers for Food Design; Holban, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 1–32. [Google Scholar] [CrossRef]
- Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- Teixeira-Costa, B.E.; Andrade, C.T. Natural polymers used in edible food packaging—History, function and application trends as a sustainable alternative to synthetic plastic. Polysaccharides 2021, 3, 32–58. [Google Scholar] [CrossRef]
- Samir, A.; Ashour, F.H.; Hakim, A.A.A.; Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. npj Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Karnwal, A.; Kumar, G.; Singh, R.; Selvaraj, M.; Malik, T.; Al Tawaha, A.R.M. Natural biopolymers in edible coatings: Applications in food preservation. Food Chem. X 2024, 25, 102171. [Google Scholar] [CrossRef]
- Coltelli, M.-B.; Wild, F.; Bugnicourt, E.; Cinelli, P.; Lindner, M.; Schmid, M.; Weckel, V.; Müller, K.; Rodriguez, P.; Staebler, A.; et al. State of the art in the development and properties of protein-based films and coatings and their applicability to cellulose based products: An extensive review. Coatings 2015, 6, 1176. [Google Scholar] [CrossRef]
- Das, A.; Ringu, T.; Ghosh, S.; Pramanik, N. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym. Bull. 2023, 80, 7247–7312. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Karbowiak, T.; Debeaufort, F. Bioactive edible films for food applications: Influence of the bioactive compounds on film structure and properties. Crit. Rev. Food Sci. Nutr. 2019, 59, 1137–1153. [Google Scholar] [CrossRef]
- Chen, W.; Ma, S.; Wang, Q.; McClements, D.J.; Liu, X.; Ngai, T.; Liu, F. Fortification of edible films with bioactive agents: A review of their formation, properties, and application in food preservation. Crit. Rev. Food Sci. Nutr. 2022, 62, 5029–5055. [Google Scholar] [CrossRef]
- Deshmukh, R.K.; Gaikwad, K.K. Natural antimicrobial and antioxidant compounds for active food packaging applications. Biomass Convers. Biorefin. 2022, 14, 4419–4440. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T.; Petka-Poniatowska, K. Antimicrobial compounds in food packaging. Int. J. Mol. Sci. 2023, 24, 2457. [Google Scholar] [CrossRef] [PubMed]
- Vasile, C.; Baican, M. Progresses in food packaging, food quality, and safety—Controlled-release antioxidant and/or antimicrobial packaging. Molecules 2021, 26, 1236. [Google Scholar] [CrossRef]
- Singh, A.K.; Kim, J.Y.; Lee, Y.S. Phenolic compounds in active packaging and edible films/coatings: Natural bioactive molecules and novel packaging ingredients. Molecules 2022, 27, 7513. [Google Scholar] [CrossRef]
- Alizadeh-Sani, M.; Mohammadian, E.; Rhim, J.-W.; Jafari, S.M. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci. Technol. 2020, 105, 93–144. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Pu, Y.; Chen, S.; Liu, L.; Cui, Z.; Zhong, Y. Recent advances in pH-responsive freshness indicators using natural food colorants to monitor food freshness. Foods 2022, 11, 1884. [Google Scholar] [CrossRef]
- Jamróz, E.; Kulawik, P.; Kopel, P. The effect of nanofillers on the functional properties of biopolymer-based films: A review. Polymers 2019, 11, 675. [Google Scholar] [CrossRef]
- Dharini, V.; Selvam, S.P.; Jayaramudu, J.; Emmanuel, R.S. Functional properties of clay nanofillers used in the biopolymer-based composite films for active food packaging applications-Review. Appl. Clay Sci. 2022, 226, 106555. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Kulawik, M.; Kwiatek, J.; Bikiaris, D.; Cielecka-Piontek, J. Novel applications of natural biomaterials in dentistry—Properties, uses, and development perspectives. Materials 2025, 18, 2124. [Google Scholar] [CrossRef]
- Klonos, P.A.; Chronaki, K.; Vouyiouka, S.; Kyritsis, A. Effects of high crystallinity on the molecular mobility in poly (lactic acid)-based microcapsules. ACS Appl. Polym. Mater. 2024, 6, 1573–1583. [Google Scholar] [CrossRef]
- Adak, B.; Baidya, S.; Teramoto, Y. Biopolymers and their nanocomposites coated paper-based high barrier and sustainable food packaging materials. Carbohydr. Polym. 2025, 367, 123966. [Google Scholar] [CrossRef]
- Cheng, J.; Gao, R.; Zhu, Y.; Lin, Q. Applications of biodegradable materials in food packaging: A review. Alex. Eng. J. 2024, 91, 70–83. [Google Scholar] [CrossRef]
- Singh, S.; Habib, M.; Rao, E.S.; Kumar, Y.; Bashir, K.; Jan, S.; Jan, K. A comprehensive overview of biodegradable packaging films: Part I—Sources, additives, and preparation methods. Discov. Food 2025, 5, 41. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Y.; Ma, Z.; Rao, Z.; Zheng, X.; Tang, K.; Liu, J. Effect of polyol plasticizers on properties and microstructure of soluble soybean polysaccharide edible films. Food Packag. Shelf Life 2023, 35, 101023. [Google Scholar] [CrossRef]
- Venkatesan, R.; Rajeswari, N. ZnO/PBAT nanocomposite films: Investigation on the mechanical and biological activity for food packaging. Polym. Adv. Technol. 2017, 28, 20–27. [Google Scholar] [CrossRef]
- Venkatesan, R.; Surya, S.; Suganthi, S.; Muthuramamoorthy, M.; Pandiaraj, S.; Kim, S.-C. Biodegradable composites from poly(butylene adipate-co-terephthalate) with carbon nanoparticles: Preparation, characterization and performances. Eniviron. Res. 2023, 235, 116634. [Google Scholar] [CrossRef]
- Venkatesan, R.; Mayakrishnan, M.; Alrashed, M.M.; Kim, S.-C. Recent advances in PBAT (nano) composite materials for food packaging: A comprehensive review. J. Appli. Polym. Sci. 2025, 142, e57163. [Google Scholar] [CrossRef]
- Mengozzi, A.; Carullo, D.; Bot, F.; Farris, S.; Chiavaro, E. Functional properties of food packaging solutions alternative to conventional multilayer systems. J. Food Sci. Technol. 2025, 62, 483–491. [Google Scholar] [CrossRef]
- Mayakrishnan, V.; Venkatesan, R.; Madhavan, A.A. Development and characterization of antimicrobial nisin/MMT K10/AgNPs nanocomposite coatings on oxygen plasma surface-modified polypropylene for food packaging applications. Food. Bioprocess Technol. 2025, 18, 3553–3565. [Google Scholar] [CrossRef]
- Dutta, D.; Sit, N. A comprehensive review on types and properties of biopolymers as sustainable bio-based alternatives for packaging. Food Biomacromol. 2024, 1, 58–87. [Google Scholar] [CrossRef]
- Selvam, T.; Rahman, N.M.M.A.; Olivito, F.; Ilham, Z.; Ahmad, R.; Wan-Mohtar, W.A.A.Q.I. Agricultural waste-derived biopolymers for sustainable food packaging: Challenges and future prospects. Polymers 2025, 17, 1897. [Google Scholar] [CrossRef]
- Venkatesan, R.; Alagumalai, K.; Jebapriya, M.; Dhilipkumar, T.; Almutairi, T.M.; Kim, S.-C. Enhancing PBAT nanocomposite films: The impact of AgVO3 nanorods on mechanical, hydrophobicity, and antibacterial properties. Polym. Compos. 2024, 45, 15340–15355. [Google Scholar] [CrossRef]
- Prasad, J.; Kumar, N.; Pratibha; Jaiswal, R.; Yadav, A.; Sharma, S.P.; Fawole, O.A.; Kaushik, N. Biopolymer based composite packaging: A sustainable approach for fruits and vegetables preservation. Appl. Food Res. 2025, 5, 101211. [Google Scholar] [CrossRef]
- Ștefănescu, B.E.; Socaciu, C.; Vodnar, D.C. Recent progress in functional edible food packaging based on gelatin and chitosan. Coatings 2022, 12, 1815. [Google Scholar] [CrossRef]
- Olabode, O.; Kumar, N.; De, D. Food loss and waste management in the retail food supply chain: Methods and framework to achieve environmental sustainability. J. Environ. Manage. 2025, 387, 125718. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, T.; Ramírez-Rodríguez, S.; Rahmani, D.; Gezahegn, T.W.; Verherbrugghen, H.; Vermeulen, A.; Skourletis, N.; Roig, J.M.G. Healthy but also traceable: Consumer choices for traits of food waste-reducing innovations. J. Clean. Prod. 2025, 521, 146299. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Baloch, A.J.; Chen, C.; Arif, M.; Mubarak, N.M. Bio-based plastics, biodegradable plastics, and compostable plastics: Biodegradation mechanism, biodegradability standards and environmental stratagem. Int. Biodeterior. Biodegradation 2024, 195, 105887. [Google Scholar] [CrossRef]
- Jariyasakoolroj, P.; Chongcharoenyanon, B.; Wadaugsorn, K. Kinetic migration of PBS and PBSA biopolymers prepared by cast film extrusion and biaxial stretching: A combined experimental and modeling approach. J. Appl. Polym. Sci. 2024, 141, e55323. [Google Scholar] [CrossRef]
- Venkatesan, R.; Rajeswari, N.; Tamilselvi, A. Antimicrobial, mechanical, barrier, and thermal properties of bio-based poly (butylene adipate-co-terephthalate) (PBAT)/Ag2O nanocomposite films for packaging application. Polym. Adv. Technol. 2018, 29, 61–68. [Google Scholar] [CrossRef]
- Ali, M.; Horikawa, S.; Venkatesh, S.; Saha, J.; Hong, J.W.; Byrne, M.E. Zero-order therapeutic release from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow. Asian J. Control Release 2007, 124, 154–162. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Rodrigues, P.F.; Duarte, M.P.; Fernando, A.L. Antioxidant migration studies in chitosan films incorporated with plant extracts. J. Renew. Mater. 2018, 6, 548–558. [Google Scholar] [CrossRef]
- Wu, X. Using Brownian model to study the effect of temperature on diffusion coefficient. Theor. Nat. Sci. 2024, 36, 8–57. [Google Scholar] [CrossRef]
- Bhunia, K.; Sablani, S.S.; Tang, J.; Rasco, B. Migration of chemical compounds from packaging polymers during microwave, conventional heat treatment, and storage. Compr. Rev. Food Sci. Food Saf. 2013, 5, 523–545. [Google Scholar] [CrossRef]
- Rhim, J.-W.; Ng, P.K.W. Natural biopolymer-based nanocomposite films for packaging applications. Crit. Rev. Food Sci. Nutr. 2007, 47, 411–433. [Google Scholar] [CrossRef]
- Ubeda, S.; Aznar, M.; Alfaro, P.; Nerín, C. Migration of oligomers from a food contact biopolymer based on polylactic acid (PLA) and polyester. Anal. Bioanal. Chem. 2019, 411, 3521–3532. [Google Scholar] [CrossRef]
- Teixeira, S.; Eblagon, K.M.; Miranda, F.; RPereira, M.F.; Figueiredo, J.L. Towards controlled degradation of poly(lactic) acid in technical applications. C 2021, 7, 42. [Google Scholar] [CrossRef]
- Alizadeh-Sani, M.; Mohammadian, E.; McClements, D.J. Eco-friendly active packaging consisting of nanostructured biopolymer matrix reinforced with TiO2 and essential oil: Application for preservation of refrigerated meat. Food Chem. 2020, 322, 126782. [Google Scholar] [CrossRef]
- Taherimehr, M.; YousefniaPasha, H.; Tabatabaeekoloor, R.; Pesaranhajiabbas, E. Trends and challenges of biopolymer-based nanocomposites in food packaging. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5321–5344. [Google Scholar] [CrossRef] [PubMed]
- Bagri, F.; Priyadarshi, R.; Pircheraghi, G.; Imani, M.; Rhim, J.-W. Designing entirely biodegradable active food packaging using natural biopolymers and plant-derived additives: A cradle-to-cradle approach. Mater. Today Commun. 2025, 48, 113549. [Google Scholar] [CrossRef]
- Abang, S.; Wong, F.; Sarbatly, R.; Sariau, J.; Baini, R.; Besar, N.A. Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications. J. Bioresour. Bioprod. 2023, 8, 361–387. [Google Scholar] [CrossRef]
- Islam, M.; Xayachak, T.; Haque, N.; Lau, D.; Bhuiyan, M.; Pramanik, B.K. Impact of bioplastics on environment from its production to end-of-life. Process Saf. Environ. Prot. 2024, 188, 151–166. [Google Scholar] [CrossRef]
- Asim, Z.; Shahzad, H.M.A.; Ghodake, G.; Mahmoud, K.A.; Almomani, F.; Rasool, K. Transforming agricultural food waste into bioplastics: Methods, potential, and technological advances. Adv. Sustain. Syst. 2025, 9, 2400864. [Google Scholar] [CrossRef]
- Westlake, J.R.; Tran, M.W.; Jiang, Y.; Zhang, X.; Burrows, A.D.; Xie, M. Biodegradable biopolymers for active packaging: Demand, development and directions. Sustainable Food Technol. 2023, 1, 50–72. [Google Scholar] [CrossRef]
- Kadirvel, V.; Palanisamy, Y.; Ganesan, N.D. Active packaging system—An overview of recent advances for enhanced food quality and safety. Pack. Tech. Sci. 2025, 38, 145–162. [Google Scholar] [CrossRef]
- Yang, J.; Xiong, D.; Long, M. Zinc oxide nanoparticles as next-generation feed additives: Bridging antimicrobial efficacy, growth promotion, and sustainable strategies in animal nutrition. Nanomaterials 2025, 15, 1030. [Google Scholar] [CrossRef]
- Venkatesan, R.; Rajeswari, N. TiO2 nanoparticles/poly(butylene adipate-co-terephthalate) bionanocomposite films for packaging applications. Polym. Adv. Technol. 2017, 28, 1699–1706. [Google Scholar] [CrossRef]
- Istiqola, A.; Syafiuddin, A. A review of silver nanoparticles in food packaging technologies: Regulation, methods, properties, migration, and future challenges. J. Chin. Chem. Soc. 2020, 67, 1942–1956. [Google Scholar] [CrossRef]
- 2025. Available online: https://www.businessresearchinsights.com/market-reports/biodegradable-packaging-1128market-110971 (accessed on 1 June 2025).
- Alaghemandi, M. Sustainable solutions through innovative plastic waste recycling technologies. Sustainability 2024, 16, 10401. [Google Scholar] [CrossRef]
- Ashiwaju, B.I.; Orikpete, O.F.; Fawole, A.A.; Alade, E.Y.; Odogwu, C. A step toward sustainability: A review of biodegradable packaging in the pharmaceutical industry. Matrix Sci. Pharma 2023, 7, 73–84. [Google Scholar] [CrossRef]
- Khezerlou, A.; Tavassoli, M.; Alizadeh Sani, M.; Mohammadi, K.; Ehsani, A.; McClements, D.J. Application of nanotechnology to improve the performance of biodegradable biopolymer-based packaging materials. Polymers 2021, 13, 4399. [Google Scholar] [CrossRef]
- Thakur, V.; Satapathy, B.K. Migration concerns of biopolymer-based food packaging. In Agro-Waste Derived Biopolymers and Biocomposites: Innovations and Sustainability in Food Packaging; Kumar, S., Mukherjee, A., Katiyar, V., Eds.; Scrivener Publishing: Beverly, MA, USA, 2024; pp. 421–450. [Google Scholar]
- Khan, A.A.; Ullah, M.W.; Qayum, A.; Khalifa, I.; Ul-Islam, M.; Bacha, S.A.S.; Zeb, U.; Yao, F.-J.; Alharbi, S.A.; Shrahili, M.; et al. Structure-property relationship of ultrasound-assisted nanoemulsion-impregnated bioactive polysaccharide films for enhanced shelf life of mushrooms. Food Packag. Shelf Life 2024, 46, 101372. [Google Scholar] [CrossRef]
- Khan, A.A.; Chi, F.-J.; Ullah, M.W.; Qayum, A.; Khalifa, I.; Bacha, S.A.S.; Ying, Z.-Z.; Khan, I.; Zeb, U.; Alarfaj, A.A.; et al. Fabrication and characterization of bioactive curdlan and sodium alginate films for enhancing the shelf life of Volvariella volvacea. Food Biosci. 2024, 62, 105137. [Google Scholar] [CrossRef]
- Khan, A.A.; Cui, F.-J.; Ullah, S.; Ali, K. Food production and food-related CO2 emissions in China: An examination of the role of economic governance insights from innovative fourier approach. In Environment Development and Sustainability; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Khan, A.A.; Yao, F.-J.; Cui, F.-J.; Li, Y.; Lu, L.; Khan, I.; Jalal, A.; Fang, M.; Alabbosh, K.F.; Awad, M.F.; et al. Comparative analysis of physicochemical properties and biological activities of crude polysaccharides isolated from selected Auricularia cornea strains. Food Biosci. 2024, 60, 104486. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, X.; Zhou, L.; Jia, M.; Xiong, Y. Nanofillers in novel food packaging systems and their toxicity issues. Foods 2024, 13, 2014. [Google Scholar] [CrossRef]
- Juikar, S.K.; Warkar, S.G. Biopolymers for packaging applications: An overview. Packag. Technol. Sci. 2023, 36, 229–251. [Google Scholar] [CrossRef]
- Chatterjee, N.; Nandi, S.K.; Dhar, P. The future of green biopolymers in packaging applications. In Green Biopolymers for Packaging Applications; Ullah, A., Ahmed, S., Eds.; CRC Press: Boca Raton, FL, USA, 2025; pp. 378–402. [Google Scholar]
S. No | Biopolymer | Source | Toxicity Concerns | Toxic By-Products | Toxicity Assessment |
---|---|---|---|---|---|
1. | Polylactic Acid (PLA) | Corn starch, sugarcane | Generally considered safe; some concerns with degradation by-products under heat | Lactide monomer, additives like plasticizers | Low toxicity; FDA-approved for food contact |
2. | Polyhydroxyalkanoates (PHA) | Bacterial fermentation of sugars | Biocompatible and biodegradable; minimal toxicity | Require plasticizers or solvents in process | Generally non-toxic; safe for medical applications |
3. | Starch-based polymers | Corn, potato, wheat starch | Potential for microbial contamination and degradation products | Glycerol (plasticizer), residual solvents | Low toxicity if properly processed |
4. | Cellulose derivatives | Wood pulp, cotton linters | Non-toxic, biodegradable; degradation by-products are not harmful | Acetylation chemicals (for cellulose acetate) | Non-toxic; widely used in pharmaceutical coatings |
5. | Chitosan | Chitin (shellfish exoskeleton) | Generally non-toxic; potential allergen for people with shellfish allergies | Acidic solvents used in preparation | Low toxicity, but allergenicity is a concern |
6. | Gelatin-based films | Animal collagen | Biodegradable and non-toxic; microbial growth if not properly preserved | Cross-linking agents (e.g., glutaraldehyde) | Safe if additives are controlled |
7. | Protein-based films | Soy, whey, casein | Biodegradable; risk of allergenicity or microbial degradation | Cross-linkers or preservatives | Generally safe; allergenic potential must be assessed |
8. | Alginates | Seaweed | Low toxicity; widely used in food and pharma | Calcium salts (used in gelation) | Safe for ingestion; FDA-approved |
9. | Agar | Red algae | Safe and widely used in food packaging | No harmful additives | Non-toxic |
10. | Carrageenan | Red seaweed | Some types linked to gastrointestinal inflammation in high doses (e.g., degraded form) | Processing residues | Food-grade form is considered safe in moderation |
Challenge Category | Key Issues | Details | References |
---|---|---|---|
Release kinetics | Inconsistent compound release | Difficulty in achieving controlled, uniform release of active compounds for food preservation | [83] |
Substance migration | Migration of plasticizers, nanoparticles, and other additives into food poses safety risks | [84] | |
Toxicity | Additive leaching | Substances like stabilizers and antimicrobial agents can leach into food, impacting health and safety | [35] |
Byproduct release | Degradation of biopolymers may release reactive or acidic compounds harmful to food and humans | [7] | |
Nanoparticle migration | Nanofillers like titanium dioxide may migrate into food, raising health concerns | [88] | |
Machinability | Thermal stability issues | Poor thermal properties hinder use in extrusion, molding, and high-speed industrial processes | [89] |
Mechanical limitations | Brittleness and low mechanical strength restrict biopolymer applications | [90] | |
Compatibility issues | Difficult to adapt biopolymers to existing manufacturing systems | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkatesan, R.; Alrashed, M.M.; Vetcher, A.A.; Kim, S.-C. Next-Generation Food Packaging: Progress and Challenges of Biopolymer-Based Materials. Polymers 2025, 17, 2299. https://doi.org/10.3390/polym17172299
Venkatesan R, Alrashed MM, Vetcher AA, Kim S-C. Next-Generation Food Packaging: Progress and Challenges of Biopolymer-Based Materials. Polymers. 2025; 17(17):2299. https://doi.org/10.3390/polym17172299
Chicago/Turabian StyleVenkatesan, Raja, Maher M. Alrashed, Alexandre A. Vetcher, and Seong-Cheol Kim. 2025. "Next-Generation Food Packaging: Progress and Challenges of Biopolymer-Based Materials" Polymers 17, no. 17: 2299. https://doi.org/10.3390/polym17172299
APA StyleVenkatesan, R., Alrashed, M. M., Vetcher, A. A., & Kim, S.-C. (2025). Next-Generation Food Packaging: Progress and Challenges of Biopolymer-Based Materials. Polymers, 17(17), 2299. https://doi.org/10.3390/polym17172299