Effect of Polylactic Acid (PLA) Blends on Cellulose Degradable Plastics from the Lotus Stem (Nelumbo nucifera)
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Lotus Stem Powder
2.2.2. Cellulose Extraction
2.2.3. Synthesis of Degradable Plastics
2.3. Characterization and Analysis
2.3.1. Mechanical Properties
2.3.2. Chemical Properties
2.3.3. Thermal Properties
2.3.4. Water Absorption
2.3.5. Biodegradability Rate
3. Results
3.1. Mechanical Properties Result
3.2. Chemical Properties Result
3.3. Thermal Properties Result
3.4. Water Absorption Result
3.5. Biodegradability Rate with Soil Burial Result
4. Discussion
4.1. Mechanical Properties Analysis
4.2. Chemical Properties Analysis
4.3. Thermal Properties Analysis
4.4. Water Absorption Analysis
4.5. Biodegradability Rate with Soil Burial Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kibria, G.; Masuk, N.I.; Safayet, R.; Nguyen, H.Q.; Mourshed, M. Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. Int. J. Environ. Res. 2023, 17, 20. [Google Scholar] [CrossRef] [PubMed]
- Singagerda, F.S.; Dewi, D.A.; Trisnawati, S.; Septarina, L.; Dhika, M.R. Towards a Circular Economy: Integration of AI in Waste Management for Sustainable Urban Growth. J. Lifestyle SDGs Rev. 2024, 5, e02642. [Google Scholar] [CrossRef]
- Abu Ubaidah, A.S.; Mohamad Puad, N.I.; Hamzah, F.; Azmi, A.S.; Ahmad Nor, Y. Synthesis of Bioplastics and the Effects of Additives on the Mechanical, Thermal and Biodegradable Properties. Polym. Renew. Resour. 2024, 15, 430–490. [Google Scholar] [CrossRef]
- Shaghaleh, H.; Xu, X.; Wang, S. Current Progress in Production of Biopolymeric Materials Based on Cellulose, Cellulose Nanofibers, and Cellulose Derivatives. RSC Adv. 2018, 8, 825–842. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.Z.H.; Sarkar, M.A.R.; Al Imam, F.I.; Khan, M.Z.H.; Malinen, R.O. Paper Making from Banana Pseudo-Stem: Characterization and Comparison. J. Nat. Fibers 2014, 11, 199–211. [Google Scholar] [CrossRef]
- Abera, W.G.; Kasirajan, R.; Majamo, S.L. Synthesis and Characterization of Bioplastic Film from Banana (Musa Cavendish Species) Peel Starch Blending with Banana Pseudo-Stem Cellulosic Fiber. Biomass Convers. Bioref. 2024, 14, 20419–20440. [Google Scholar] [CrossRef]
- Abe, M.M.; Martins, J.R.; Sanvezzo, P.B.; Macedo, J.V.; Branciforti, M.C.; Halley, P.; Botaro, V.R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers 2021, 13, 2484. [Google Scholar] [CrossRef]
- Nigam, S.; Das, A.K.; Patidar, M.K. Valorization of Parthenium Hysterophorus Weed for Cellulose Extraction and Its Application for Bioplastic Preparation. J. Environ. Chem. Eng. 2021, 9, 105424. [Google Scholar] [CrossRef]
- Yusoff, N.H.; Pal, K.; Narayanan, T.; De Souza, F.G. Recent Trends on Bioplastics Synthesis and Characterizations: Polylactic Acid (PLA) Incorporated with Tapioca Starch for Packaging Applications. J. Mol. Struct. 2021, 1232, 129954. [Google Scholar] [CrossRef]
- Lima, E.M.B.; Middea, A.; Neumann, R.; Thiré, R.M.D.S.M.; Pereira, J.F.; De Freitas, S.C.; Penteado, M.S.; Lima, A.M.; Minguita, A.P.D.S.; Mattos, M.D.C.; et al. Biocomposites of PLA and Mango Seed Waste: Potential Material for Food Packaging and a Technological Alternative to Reduce Environmental Impact. Starch-Stärke 2021, 73, 2000118. [Google Scholar] [CrossRef]
- Arun, K.J.; Muthukrishnan, M.; Thiagamani, S.M.K.; Khan, A.; Alzahrani, K.A. Use of Syzygium Cumini Biomass as Reinforcing Filler in Polyvinyl Chloride and Their Antibacterial and Biodegradation Properties. Vinyl Addit. Technol. 2025, 31, 682–695. [Google Scholar] [CrossRef]
- Hemsri, S.; Puttiwanit, K.; Saeaung, K.; Satung, P. Low Density Polyethylene/Poly(Butylene Adipate-Co-Terephthalate) Films: Effect of a Compatibilizer on Morphology and Properties. IOP Conf. Ser. Mater. Sci. Eng. 2020, 965, 012020. [Google Scholar] [CrossRef]
- Ferreira, E.D.S.B.; Luna, C.B.B.; Siqueira, D.D.; Dos Santos Filho, E.A.; Araújo, E.M.; Wellen, R.M.R. Production of Eco-Sustainable Materials: Compatibilizing Action in Poly (Lactic Acid)/High-Density Biopolyethylene Bioblends. Sustainability 2021, 13, 12157. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, R.; Wu, S.; Wang, X.; Cheng, D.; Weng, B.; Wang, C.; Li, J.; Chen, Y.; Guo, Y. Novel Natural Cellulosic Fiber from Lotus Stem: Structure and Performance Characterization. J. Nat. Fibers 2022, 19, 15704–15715. [Google Scholar] [CrossRef]
- Sruthi, A.; Panjikkaran, S.T.; Aneena, E.R.; Pathrose, B.; Mathew, D. Insights into the composition of lotus rhizome. J. Pharmacogn. Phytochem. 2019, 8, 3550–3555. [Google Scholar]
- Sasimowski, E.; Majewski, Ł.; Grochowicz, M. Influence of the Conditions of Corotating Twin-Screw Extrusion for Talc-Filled Polypropylene on Selected Properties of the Extrudate. Polymers 2019, 11, 1460. [Google Scholar] [CrossRef]
- Melo, P.M.A.; Macêdo, O.B.; Barbosa, G.P.; Ueki, M.M.; Silva, L.B. High-Density Polyethylene/Mollusk Shell-Waste Composites: Effects of Particle Size and Coupling Agent on Morphology, Mechanical and Thermal Properties. J. Mater. Res. Technol. 2019, 8, 1915–1925. [Google Scholar] [CrossRef]
- Darie-Niță, R.N.; Râpă, M.; Frąckowiak, S. Special Features of Polyester-Based Materials for Medical Applications. Polymers 2022, 14, 951. [Google Scholar] [CrossRef] [PubMed]
- Allizond, V.; Comini, S.; Cuffini, A.M.; Banche, G. Current Knowledge on Biomaterials for Orthopedic Applications Modified to Reduce Bacterial Adhesive Ability. Antibiotics 2022, 11, 529. [Google Scholar] [CrossRef]
- Hussain, M.; Khan, S.M.; Shafiq, M.; Abbas, N. A Review on PLA-Based Biodegradable Materials for Biomedical Applications. Giant 2024, 18, 100261. [Google Scholar] [CrossRef]
- Pandey, A.; Wong, J.W.C.; Tyagi, R.D. (Eds.) Current Developments in Biotechnology and Dioengineering: Solid Waste Management; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780444636751. [Google Scholar]
- Akbari, M.; Zadhoush, A.; Haghighat, M. PET/PP Blending by Using PP-g-MA Synthesized by Solid Phase. J. Appl. Polym. Sci. 2007, 104, 3986–3993. [Google Scholar] [CrossRef]
- Nam, B.U.; Son, Y. Evaluations of PP-g-GMA and PP-g-HEMA as a Compatibilizer for Polypropylene/Clay Nanocomposites. Polym. Bull. 2010, 65, 837–847. [Google Scholar] [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2022.
- ASTM D2765-16; Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics. ASTM: West Conshohocken, PA, USA, 2024.
- ASTM G21-13; Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi. ASTM: West Conshohocken, PA, USA, 2015.
- Dewi, R.; Sylvia, N.; Zulnazri, Z.; Fithra, H.; Riza, M.; Siregar, J.P.; Cionita, T.; Fitriyana, D.F.; Anis, S. The Optimization of Avocado-Seed-Starch-Based Degradable Plastic Synthesis with a Polylactic Acid (PLA) Blend Using Response Surface Methodology (RSM). Polymers 2024, 16, 2384. [Google Scholar] [CrossRef]
- Boey, J.Y.; Lee, C.K.; Tay, G.S. Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers 2022, 14, 3737. [Google Scholar] [CrossRef]
- Ismail, H.; Zaaba, N.F. Effect of Unmodified and Modified Sago Starch on Properties of (Sago Starch)/Silica/PVA Plastic Films. Vinyl Addit. Technol. 2014, 20, 185–192. [Google Scholar] [CrossRef]
- Cao, X.; Li, L.; Zhang, F.; Shi, L.; Zhang, F.; Song, X.; Zhao, W.; Dai, F. Optimization of the Green Fibre Paper Film Preparation Process Based on Box–Behnken Response Surface Methodology. Coatings 2023, 13, 2025. [Google Scholar] [CrossRef]
- Werchefani, M.; Lacoste, C.; Belguith, H.; Gargouri, A.; Bradai, C. Effect of Chemical and Enzymatic Treatments of Alfa Fibers on Polylactic Acid Bio-Composites Properties. J. Compos. Mater. 2020, 54, 4959–4967. [Google Scholar] [CrossRef]
- Dewi, R.; Sylvia, N.; Zulnazri, Z.; Riza, M.; Parlaungan Siregar, J.; Cionita, T.; Santri Kusuma, B. Characterization of Sago Starch-Based Degradable Plastic with Agricultural Waste Cellulose Fiber as Filler. AIMS Environ. Sci. 2024, 11, 304–323. [Google Scholar] [CrossRef]
- Singh, A.A.; Genovese, M.E.; Mancini, G.; Marini, L.; Athanassiou, A. Green Processing Route for Polylactic Acid–Cellulose Fiber Biocomposites. ACS Sustain. Chem. Eng. 2020, 8, 4128–4136. [Google Scholar] [CrossRef]
- Wojciechowska, P. The Effect of Concentration and Type of Plasticizer on the Mechanical Properties of Cellulose Acetate Butyrate Organic-Inorganic Hybrids. In Recent Advances in Plasticizers; Luqman, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9789535103639. [Google Scholar]
- Lin, J.-H.; Huang, C.-L.; Liu, C.-F.; Chen, C.-K.; Lin, Z.-I.; Lou, C.-W. Polypropylene/Short Glass Fibers Composites: Effects of Coupling Agents on Mechanical Properties, Thermal Behaviors, and Morphology. Materials 2015, 8, 8279–8291. [Google Scholar] [CrossRef]
- Yaghoobi, H.; Fereidoon, A. Modeling and Optimization of Tensile Strength and Modulus of Polypropylene/Kenaf Fiber Biocomposites Using Box–Behnken Response Surface Method. Polym. Compos. 2018, 39, E463–E479. [Google Scholar] [CrossRef]
- Tipboonsri, P.; Memon, A. The Impact of PP-g-MAH on Mechanical Properties of Injection Molding of Long Glass Fiber/Polypropylene Pellets from Thermoplastic Pultrusion Process. JMMP 2024, 8, 53. [Google Scholar] [CrossRef]
- Razali, N.A.M.; Mohd Sohaimi, R.; Othman, R.N.I.R.; Abdullah, N.; Demon, S.Z.N.; Jasmani, L.; Yunus, W.M.Z.W.; Ya’acob, W.M.H.W.; Salleh, E.M.; Norizan, M.N.; et al. Comparative Study on Extraction of Cellulose Fiber from Rice Straw Waste from Chemo-Mechanical and Pulping Method. Polymers 2022, 14, 387. [Google Scholar] [CrossRef]
- Florido-Moreno, P.; Benítez, J.J.; González-Buesa, J.; Porras-Vázquez, J.M.; Hierrezuelo, J.; Grifé-Ruiz, M.; Romero, D.; Athanassiou, A.; Heredia-Guerrero, J.A.; Guzmán-Puyol, S. Plasticized Cellulose Bioplastics with Beeswax for the Fabrication of Multifunctional, Biodegradable Active Food Packaging. Food Hydrocoll. 2025, 162, 110933. [Google Scholar] [CrossRef]
- Pedroso, A.G.; Rosa, D.S. Mechanical, Thermal and Morphological Characterization of Recycled LDPE/Corn Starch Blends. Carbohydr. Polym. 2005, 59, 1–9. [Google Scholar] [CrossRef]
- Gbadeyan, O.J.; Linganiso, L.Z.; Deenadayalu, N. Assessment and Optimization of Thermal Stability and Water Absorption of Loading Snail Shell Nanoparticles and Sugarcane Bagasse Cellulose Fibers on Polylactic Acid Bioplastic Films. Polymers 2023, 15, 1557. [Google Scholar] [CrossRef]
- Sanyang, M.; Sapuan, S.; Jawaid, M.; Ishak, M.; Sahari, J. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga Pinnata) Starch. Polymers 2015, 7, 1106–1124. [Google Scholar] [CrossRef]
- Mohammed, A.A.B.A.; Hasan, Z.; Omran, A.A.B.; Elfaghi, A.M.; Khattak, M.A.; Ilyas, R.A.; Sapuan, S.M. Effect of Various Plasticizers in Different Concentrations on Physical, Thermal, Mechanical, and Structural Properties of Wheat Starch-Based Films. Polymers 2022, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Gunti, R.; Ratna Prasad, A.V.; Gupta, A.V.S.S.K.S. Mechanical and Degradation Properties of Natural Fiber-reinforced PLA Composites: Jute, Sisal, and Elephant Grass. Polym. Compos. 2018, 39, 1125–1136. [Google Scholar] [CrossRef]
- Steven, S.; Fauza, A.N.; Mardiyati, Y.; Santosa, S.P.; Shoimah, S.M. Facile Preparation of Cellulose Bioplastic from Cladophora Sp. Algae via Hydrogel Method. Polymers 2022, 14, 4699. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, M.; Piorkowska, E.; Kulpinski, P.; Pracella, M. Mechanical and Thermal Properties of PLA Composites with Cellulose Nanofibers and Standard Size Fibers. Compos. Part. A Appl. Sci. Manuf. 2011, 42, 1509–1514. [Google Scholar] [CrossRef]
- Oliver, I.; Conesa, J.A.; Fullana, A. Thermal Decomposition of Bio-Based Plastic Materials. Molecules 2024, 29, 3195. [Google Scholar] [CrossRef]
- Zor, M.; Şen, F.; Yazıcı, H.; Candan, Z. Thermal, Mechanical and Morphological Properties of Cellulose/Lignin Nanocomposites. Forests 2023, 14, 1715. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Shafi, A.R.; Aisyah, H.A.; Radzi, M.H.M.; Sabaruddin, F.A.; et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers 2021, 13, 2710. [Google Scholar] [CrossRef]
- Anwer, M.A.S.; Naguib, H.E.; Celzard, A.; Fierro, V. Comparison of the Thermal, Dynamic Mechanical and Morphological Properties of PLA-Lignin & PLA-Tannin Particulate Green Composites. Compos. Part. B Eng. 2015, 82, 92–99. [Google Scholar] [CrossRef]
- Zhou, L.; Ke, K.; Yang, M.-B.; Yang, W. Recent Progress on Chemical Modification of Cellulose for High Mechanical-Performance Poly(Lactic Acid)/Cellulose Composite: A Review. Compos. Commun. 2021, 23, 100548. [Google Scholar] [CrossRef]
- Szatkowski, P.; Gralewski, J.; Suchorowiec, K.; Kosowska, K.; Mielan, B.; Kisilewicz, M. Aging Process of Biocomposites with the PLA Matrix Modified with Different Types of Cellulose. Materials 2023, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Rosli, N.A.; Ahmad, I.; Anuar, F.H.; Abdullah, I. Effectiveness of Cellulosic Agave Angustifolia Fibres on the Performance of Compatibilised Poly(Lactic Acid)-Natural Rubber Blends. Cellulose 2019, 26, 3205–3218. [Google Scholar] [CrossRef]
- Kanakannavar, S.; Pitchaimani, J. Relation between Water Absorption and Mechanical Properties of Flax 3D Braided Yarn Woven Fabric PLA Bio-Degradable Composites. Plast. Rubber Compos. Macromol. Eng. 2024, 53, 3–12. [Google Scholar] [CrossRef]
- Amaba, A.S.; Villanueva, K.C.; Tan, N.P.; Siacor, F.D.; Paler, M.K. Preparation of Bioplastic Film from Chitosan and Mango (Mangifera Indica, L. Anacardiaceae) Kernel Starch by Casting Method. Appl. Chem. Eng. 2023, 6, 10-24294. [Google Scholar] [CrossRef]
- Brunšek, R.; Kopitar, D.; Schwarz, I.; Marasović, P. Biodegradation Properties of Cellulose Fibers and PLA Biopolymer. Polymers 2023, 15, 3532. [Google Scholar] [CrossRef]
- ASTM D6002-96; Standard Guide for Assessing the Compostability of Environmentally Degradable Plastics. ASTM: West Conshohocken, PA, USA, 2017.
- Post, W.; Kuijpers, L.J.; Zijlstra, M.; Van Der Zee, M.; Molenveld, K. Effect of Mineral Fillers on the Mechanical Properties of Commercially Available Biodegradable Polymers. Polymers 2021, 13, 394. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, M.; Jawaid, M.; Parveez, B. Bamboo Fiber Based Cellulose Nanocrystals/Poly(Lactic Acid)/Poly(Butylene Succinate) Nanocomposites: Morphological, Mechanical and Thermal Properties. Polymers 2021, 13, 1076. [Google Scholar] [CrossRef]
- Kong, U.; Mohammad Rawi, N.F.; Tay, G.S. The Potential Applications of Reinforced Bioplastics in Various Industries: A Review. Polymers 2023, 15, 2399. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Davies, I.J.; Fornari Junior, C.C.M. Biodegradability and Water Absorption of Macadamia Nutshell Powder-Reinforced Poly(Lactic Acid) Biocomposites. Sustainability 2024, 16, 3139. [Google Scholar] [CrossRef]
- Coppola, G.; Gaudio, M.T.; Lopresto, C.G.; Calabro, V.; Curcio, S.; Chakraborty, S. Bioplastic from Renewable Biomass: A Facile Solution for a Greener Environment. Earth Syst. Environ. 2021, 5, 231–251. [Google Scholar] [CrossRef]
- Lors, C.; Leleux, P.; Park, C.H. State of the Art on Biodegradability of Bio-Based Plastics Containing Polylactic Acid. Front. Mater. 2025, 11, 1476484. [Google Scholar] [CrossRef]
- Selwin, M.; Nagarajan, R.; Ponsuriyaprakash, S.; Ayrilmis, N.; Krishnan, K.; Mohammad, F. Optimization of wear behavior of additively manufactured green biocomposites from printed polylactic acid (PLA) and microcrystalline cellulose. Wood Material Science Eng. 2025, 1–10. [Google Scholar] [CrossRef]
Lotus Stem Cellulose Mass (g) | PLA Mass (g) |
---|---|
1 | 2 |
1 | 4 |
1 | 6 |
1 | 8 |
3 | 2 |
3 | 4 |
3 | 6 |
3 | 8 |
5 | 2 |
5 | 4 |
5 | 6 |
5 | 8 |
7 | 2 |
7 | 4 |
7 | 6 |
7 | 8 |
Cellulose Mass (g) | PLA Mass (g) | Tensile Strength (MPa) | Elongation (%) | Young’s Modulus (MPa) | Standard Deviation Tensile Strength-Elongation |
---|---|---|---|---|---|
1 | 8 | 0.9561 | 0.70 | 153.6248 | 0.12805 |
3 | 8 | 0.7703 | 1.08 | 78.7894 | 0.15485 |
5 | 8 | 3.3212 | 0.58 | 364.6118 | 1.3706 |
7 | 8 | 3.1258 | 1.16 | 255.7704 | 0.9829 |
0 | Pure PLA | 5.00–42.0 | 15.0–100 | 2960–3600 | - |
Bonding | Compound Type | Wave Numbers (cm−1) | Peak |
---|---|---|---|
O-H | Alcohol Monomer | 3331.07, 2962.66, 2727.35, 2347.37, 2083.12 | Sharp and Witdh |
C-H | Aromatic | 592.15, 856.39 | Width |
C=O | Carbonyl | 1764.87, 1456.26 | Sharp |
C-O | Alkena | 1205.51, 1120.64 | Sharp |
Cellulose Mass (g) | PLA Mass (g) | Biodegradability Analysis (%) | ||
---|---|---|---|---|
4 | 8 | 12 | ||
1 | 2 | 5.882 | 9.598 | 13.827 |
4 | 4.302 | 7.553 | 11.673 | |
6 | 3.059 | 6.312 | 9.494 | |
8 | 2.564 | 5.639 | 8.366 | |
3 | 2 | 7.210 | 15.202 | 21.713 |
4 | 6.802 | 12.287 | 18.585 | |
6 | 5.765 | 9.493 | 13.053 | |
8 | 4.467 | 7.960 | 10.486 | |
5 | 2 | 8.958 | 18.850 | 25.495 |
4 | 7.692 | 17.531 | 22.125 | |
6 | 5.097 | 10.433 | 17.204 | |
8 | 4.674 | 9.267 | 15.320 | |
7 | 2 | 10.367 | 19.070 | 27.190 |
4 | 9.981 | 16.294 | 25.600 | |
6 | 8.493 | 15.686 | 23.467 | |
8 | 7.013 | 13.927 | 19.533 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewi, R.; Sylvia, N.; Subhan, M.; Kusuma, B.S.; Ananda, A.; Riza, M.; Siregar, J.P.; Chan, C.K.; Cionita, T.; Abdelrahman, E.E.A. Effect of Polylactic Acid (PLA) Blends on Cellulose Degradable Plastics from the Lotus Stem (Nelumbo nucifera). Polymers 2025, 17, 2281. https://doi.org/10.3390/polym17172281
Dewi R, Sylvia N, Subhan M, Kusuma BS, Ananda A, Riza M, Siregar JP, Chan CK, Cionita T, Abdelrahman EEA. Effect of Polylactic Acid (PLA) Blends on Cellulose Degradable Plastics from the Lotus Stem (Nelumbo nucifera). Polymers. 2025; 17(17):2281. https://doi.org/10.3390/polym17172281
Chicago/Turabian StyleDewi, Rozanna, Novi Sylvia, Muhammad Subhan, Budhi Santri Kusuma, Aldila Ananda, Medyan Riza, Januar Parlaungan Siregar, Choon Kit Chan, Tezara Cionita, and Elsherif Emad Ahmed Abdelrahman. 2025. "Effect of Polylactic Acid (PLA) Blends on Cellulose Degradable Plastics from the Lotus Stem (Nelumbo nucifera)" Polymers 17, no. 17: 2281. https://doi.org/10.3390/polym17172281
APA StyleDewi, R., Sylvia, N., Subhan, M., Kusuma, B. S., Ananda, A., Riza, M., Siregar, J. P., Chan, C. K., Cionita, T., & Abdelrahman, E. E. A. (2025). Effect of Polylactic Acid (PLA) Blends on Cellulose Degradable Plastics from the Lotus Stem (Nelumbo nucifera). Polymers, 17(17), 2281. https://doi.org/10.3390/polym17172281