Realization of a 27.5 °C Atmospheric Microwave Plasma Jet at 8 W for Surface Modification of Thermosensitive Polymers
Abstract
1. Introduction
2. Methods
2.1. Numerical Design
2.2. Experimental Measurement
3. Results and Discussion
4. Conclusions
- (1)
- The designed MPJ system produces an argon plasma jet with a minimum gas temperature of 27.5 °C at an input power as low as 8 W, which is only approximately 2 °C above ambient temperature.
- (2)
- During a 150 s direct skin contact test, the maximum surface temperature remained around 35 °C without causing thermal discomfort or pain, demonstrating excellent low-temperature performance suitable for long-term treatment of heat-sensitive materials.
- (3)
- Within the microwave power range of 8–35 W and gas flow rates of 10–20 SLM, the gas temperature consistently remained below 56 °C, further confirming the device’s low-temperature adaptability and thermal stability.
- (4)
- The plasma gas temperature increased with rising microwave input power and decreased with increasing gas flow rate. Among these factors, microwave power exerted the most significant influence on temperature variation.
- (5)
- Static water contact angles of POM, TPU, and PVC polymer materials significantly decreased after 60 s of MPJ treatment, demonstrating substantially enhanced surface hydrophilicity. Additionally, all material surfaces were maintained below 50 °C post-treatment.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fricke, K.; Steffen, H.; Von Woedtke, T.; Schröder, K.; Lindequist, U.; Weltmann, K.-D. High rate etching of polymers by means of an atmospheric pressure plasma jet. Plasma Process. Polym. 2011, 8, 51–58. [Google Scholar] [CrossRef]
- Dowling, D.P.; Stallard, C.P. Achieving enhanced material finishing using cold plasma treatments. Trans. IMF 2015, 93, 119–125. [Google Scholar] [CrossRef]
- Bertin, M.; Leitao, E.M.; Bickerton, S.; Bickerton, C.J.R.; Verbeek, A. A review of polymer surface modification by cold plasmas toward bulk functionalization. Plasma Process. Polym. 2024, 21, 2300208. [Google Scholar] [CrossRef]
- Hunke, H.; Soin, N.; Shah, T.H.; Kramer, E.; Pascual, A.; Karuna, M.S.L.; Siores, E. Low-pressure H2, NH3 microwave plasma treatment of polytetrafluoroethylene (PTFE) powders: Chemical, thermal and wettability analysis. Materials 2015, 8, 2258–2275. [Google Scholar] [CrossRef]
- Levchenko, I.; Xu, S.; Baranov, O.; Bazaka, O.; Ivanova, E.P.; Bazaka, K. Plasma and polymers: Recent progress and trends. Molecules 2021, 26, 4091. [Google Scholar] [CrossRef] [PubMed]
- Bárdos, L.; Baránková, H. Cold atmospheric plasma: Sources, processes and applications. Thin Solid Film. 2010, 518, 6705–6713. [Google Scholar] [CrossRef]
- Hrycak, B.; Sikora, A.; Moczała, M.; Czylkowski, D.; Jasiński, M.; Dors, M. Atmospheric pressure microwave argon plasma sheet for wettability modification of polyethylene surfaces. IEEE Trans. Plasma Sci. 2019, 47, 1309–1315. [Google Scholar] [CrossRef]
- Ma, C.; Nikiforov, A.; De Geyter, N.; Dai, X.; Morent, R.; Ostrikov, K. Future antiviral polymers by plasma processing. Prog. Polym. Sci. 2021, 118, 101410. [Google Scholar] [CrossRef]
- Ting, J.A.S.; Rosario, L.M.D.; Lacdan, M.C.C.; Lee, H.V., Jr.; De Vero, J.C.; Ramos, H.J.; Tumlos, R.B. Enhanced adhesion of epoxy-bonded steel surfaces using O2/Ar microwave plasma treatment. Int. J. Adhes. Adhes. 2013, 40, 64–69. [Google Scholar] [CrossRef]
- Babayan, S.E.; Jeong, J.Y.; Tu, V.J.; Park, J.; Selwyn, G.S.; Hicks, R.F. Deposition of silicon dioxide films with an atmospheric-pressure plasma jet. Plasma Sources Sci. Technol. 1998, 7, 286. [Google Scholar] [CrossRef]
- Lu, X.; Laroussi, M.; Puech, V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci. Technol. 2012, 21, 034005. [Google Scholar] [CrossRef]
- Peran, J.; Ercegović Ražić, S. Application of atmospheric pressure plasma technology for textile surface modification. Text. Res. J. 2020, 90, 1174–1197. [Google Scholar] [CrossRef]
- Cho, S.J.; Nguyen, T.; Boo, J.H. Polyimide surface modification by using microwave plasma for adhesion enhancement of Cu electroless plating. J. Nanosci. Nanotechnol. 2011, 11, 5328–5333. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Hu, J.; Wang, C.; Chen, Z.; Li, P. Orthokeratology lens care: Surface treatment by an atmospheric pulsed microwave air plasma jet. Appl. Surf. Sci. 2025, 684, 161806. [Google Scholar] [CrossRef]
- Yu, H.; Gong, L.; Qu, Z.; Hao, P.; Liu, J.; Fu, L. Wettability enhancement of hydrophobic artificial sandstones by using the pulsed microwave plasma jet. Colloid Interface Sci. Commun. 2020, 36, 100266. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Iza, F.; Brandenburg, R. Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci. Technol. 2017, 26, 123002. [Google Scholar] [CrossRef]
- Artem’ev, K.V.; Bogachev, N.N.; Gusein-zade, N.G.; Dolmatov, T.V.; Kolik, L.V.; Konchekov, E.M.; Andreev, S.E. Study of characteristics of the cold atmospheric plasma source based on a piezo transformer. Russ. Phys. J. 2020, 62, 2073–2080. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, L.; Liu, Z.; Tao, J.; Huang, K. Experimental investigation on improving the efficiency of power coupling from the incident microwave to the discharge in a plasma torch. Phys. Plasmas 2020, 27, 033510. [Google Scholar] [CrossRef]
- Chen, Z.; Xia, G.; Zhou, Q.; Hu, Y.; Zheng, X.; Zheng, Z.; Hong, L.; Li, P.; Huang, Y.; Liu, M. Filamentary streamer discharges in argon at atmospheric pressure excited by surface plasmon polaritons. Rev. Sci. Instrum. 2012, 83, 083502. [Google Scholar] [CrossRef]
- Moisan, M.; Zakrzewski, Z.; Pantel, R.; Leprince, P. A waveguide-based launcher to sustain long plasma columns through the propagation of an electromagnetic surface wave. IEEE Trans. Plasma Sci. 2007, 12, 203–214. [Google Scholar] [CrossRef]
- Stonies, R.; Schermer, S.; Voges, E.; Broekaert, J.A.C. A new small microwave plasma torch. Plasma Sources Sci. Technol. 2004, 13, 604–609. [Google Scholar] [CrossRef]
- Gregório, J.; Parsons, S.; Hopwood, J. Microwave harmonic generation and nonlinearity in microplasmas. Plasma Sources Sci. Technol. 2016, 25, 035018. [Google Scholar] [CrossRef]
- Hopwood, J.; Hoskinson, A.R.; Gregório, J. Microplasmas ignited and sustained by microwaves. Plasma Sources Sci. Technol. 2014, 23, 064002. [Google Scholar] [CrossRef]
- Kim, J.; Katsurai, M.; Kim, D.; Ohsaki, H. Microwave-excited atmospheric-pressure plasma jets using a microstrip line. Appl. Phys. Lett. 2008, 93, 191501. [Google Scholar] [CrossRef]
- Choi, J.; Iza, F.; Do, H.J.; Lee, J.K.; Cho, J.K. Microwave-excited atmospheric-pressure microplasmas based on a coaxial transmission line resonator. Plasma Sources Sci. Technol. 2009, 18, 025029. [Google Scholar] [CrossRef]
- Chen, Z.; Xia, G.; Zou, C.; Liu, X.; Feng, D.; Li, P.; Hu, Y.; Stepanova, O.; Kudryavtsev, A.A. Bullet-shaped ionization front of plasma jet plumes driven by microwave pulses at atmospheric gas pressure. J. Appl. Phys. 2017, 122, 093301. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Y.; Peng, R.; Han, D.; Luo, W.; Zhu, H.; Wu, L.; Tian, W.; Zhang, W. A high-efficiency room-temperature surface wave plasma jet based on a rectangular waveguide. Phys. Plasmas 2024, 31, 063510. [Google Scholar] [CrossRef]
- Zhao, C.; Li, X.; Agrawal, D.K.; Yan, Z.; Qi, S.; Liu, Y.; Ma, T.; Chen, Q.; Zhang, Y.; Wang, C.; et al. Microwave atmospheric pressure plasma jet generated from substrate integrated waveguide resonator. Plasma Process. Polym. 2023, 20, e2200230. [Google Scholar] [CrossRef]
- Qu, A.; Chen, Y.; Zhang, N.; Li, W. Design of an adjustable low-temperature linear microwave plasma source for atmospheric pressure applications. Phys. Plasmas 2025, 32, 013507. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Zhang, W.; Tao, J.; Liu, X.; Wu, L. Design of a flexible microwave-induced room-temperature atmospheric-pressure microplasma source. IEEE Trans. Plasma Sci. 2024, 52, 652–656. [Google Scholar] [CrossRef]
- Eom, I.S.; Kang, H.Y.; Kwon, S.K. Plasma diagnosis and biomedical application using linear microwave atmospheric-pressure plasma generator. IEEE Trans. Plasma Sci. 2020, 48, 3054–3060. [Google Scholar] [CrossRef]
- Fu, W.; Zhang, C.; Nie, C.; Li, X.; Yan, Y. A high efficiency low-temperature microwave-driven atmospheric pressure plasma jet. Appl. Phys. Lett. 2019, 114, 254102. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Liu, T.; Zhang, W.; Tao, J.; Cheng, F. A low power microwave room-temperature air plasma jet at atmospheric pressure. Appl. Phys. Lett. 2023, 123, 033501. [Google Scholar] [CrossRef]
- Zhong, N.; Wei, X.; Zhong, Y.; Wang, Y.; Chen, W.; Huang, K. A novel self-excited atmospheric pressure microwave plasma jet using rectangular coaxial line. IEEE Trans. Plasma Sci. 2023, 51, 1239–1246. [Google Scholar] [CrossRef]
- Choi, J.; Mohamed, A.A.H.; Kang, S.K.; Woo, K.C.; Kim, K.T.; Lee, J.K. 900 MHz nonthermal atmospheric pressure plasma jet for biomedical applications. Plasma Process. Polym. 2010, 7, 258–263. [Google Scholar] [CrossRef]
- Kang, S.K.; Kim, H.Y.; Yun, G.S.; Lee, J.K. Portable microwave air plasma device for wound healing. Plasma Sources Sci. Technol. 2015, 24, 035020. [Google Scholar] [CrossRef]
- Im, H.W.; Kang, S.K.; Sim, J.-Y.; Lee, J.K. Ozone-free portable microwave atmospheric air plasma jet. IEEE Trans. Plasma Sci. 2014, 42, 2788–2789. [Google Scholar] [CrossRef]
- Semnani, A.; Kabir, K.S. A highly efficient microwave plasma jet based on evanescent-mode cavity resonator technology. IEEE Trans. Plasma Sci. 2022, 50, 3516–3524. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, M.S.; Won, I.H.; Yun, G.S.; Lee, J.K. Self-prevention of instability in a low-power microwave Ar plasma jet for biomedical applications. J. Phys. D Appl. Phys. 2015, 48, 155203. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, K. An arrowhead-type microwave low-temperature plasma jet at atmospheric pressure. IEEE Trans. Plasma Sci. 2024, 52, 5533–5537. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, W.; Tao, J.; Wu, L.; Huang, K. A microwave-induced room-temperature atmospheric-pressure plasma jet. IEEE Trans. Plasma Sci. 2019, 47, 1749–1753. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, L.; Tao, J.; Huang, K. Three-dimensional modeling of microwave discharges in a waveguide-based plasma source with experimental comparison. Phys. Rev. E 2023, 108, 065209. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, L.; Huang, K.; Tao, J. Propagating modes of the travelling wave in a microwave plasma torch with metallic enclosure. Phys. Plasmas 2019, 26, 042101. [Google Scholar] [CrossRef]
- Jie, Z.; Liu, C.; Huang, S.; Zhang, G. Mechanisms of Gas Temperature Variation of the Atmospheric Microwave Plasma Torch. J. Appl. Phys. 2021, 129, 235902. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, W.; Yu, J.; Wu, L.; Huang, K. Rotating discharges in a coaxial microwave plasma source under atmospheric pressure. J. Appl. Phys. 2019, 126, 113301. [Google Scholar] [CrossRef]
- Zhang, W.; Tao, J.; Huang, K.; Wu, L. Numerical investigation of the surface wave formation in a microwave plasma torch. IEEE Trans. Plasma Sci. 2017, 45, 2929–2939. [Google Scholar] [CrossRef]
- Ikada, Y.; Tsuji, H. Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun. 2000, 21, 117–132. [Google Scholar] [CrossRef]
- Morent, R.; De Geyter, N.; Desmet, T.; Dubruel, P.; Leys, C.; Gengembre, L.; Payen, E. Plasma surface modification of biodegradable polymers: A review. Plasma Process. Polym. 2011, 8, 171–190. [Google Scholar] [CrossRef]
- Adesina, O.T.; Sadiku, E.R.; Jamiru, T.; Ogunbiyi, O.F.; Adesina, O.S. Thermal properties of spark plasma-sintered polylactide/graphene composites. Mater. Chem. Phys. 2020, 242, 122545. [Google Scholar] [CrossRef]
- Lofthus, A.; Krupenie, P.H. The Spectrum of Molecular Nitrogen. J. Phys. Chem. Ref. Data 1977, 6, 113–307. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Zhou, R.; Feng, K.; Yang, S. Ablation of Liver Cancer Cells In Vitro by a Plasma Needle. Appl. Phys. Lett. 2008, 93, 021502. [Google Scholar] [CrossRef]
- Shen, J.; Park, J.; Park, M.R.; Choi, E.H.; Kim, G.C.; Lee, H.J. Sterilization of Bacillus subtilis Spores Using an Atmospheric Plasma Jet with Argon and Oxygen Mixture Gas. Appl. Phys. Express 2012, 5, 036201. [Google Scholar] [CrossRef]
Pin (W) | 10 L/min | 15 L/min | 20 L/min |
---|---|---|---|
8 | 11 | 9 | 7 |
11 | 19 | 19 | 17 |
14 | 24 | 23 | 21 |
17 | 26 | 25 | 23 |
20 | 27 | 28 | 27 |
23 | 29 | 27 | 28 |
26 | 30 | 29 | 29 |
29 | 31 | 30 | 30 |
32 | 31 | 30 | 31 |
35 | 32 | 30 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Zhang, W.; Yang, Y.; Huang, Y.; Yu, J.; Wu, L.; Tian, W.; Zhu, H. Realization of a 27.5 °C Atmospheric Microwave Plasma Jet at 8 W for Surface Modification of Thermosensitive Polymers. Polymers 2025, 17, 2183. https://doi.org/10.3390/polym17162183
Han D, Zhang W, Yang Y, Huang Y, Yu J, Wu L, Tian W, Zhu H. Realization of a 27.5 °C Atmospheric Microwave Plasma Jet at 8 W for Surface Modification of Thermosensitive Polymers. Polymers. 2025; 17(16):2183. https://doi.org/10.3390/polym17162183
Chicago/Turabian StyleHan, Dongxue, Wencong Zhang, Yong Yang, Yuantao Huang, Jiangqi Yu, Li Wu, Wenyan Tian, and Huacheng Zhu. 2025. "Realization of a 27.5 °C Atmospheric Microwave Plasma Jet at 8 W for Surface Modification of Thermosensitive Polymers" Polymers 17, no. 16: 2183. https://doi.org/10.3390/polym17162183
APA StyleHan, D., Zhang, W., Yang, Y., Huang, Y., Yu, J., Wu, L., Tian, W., & Zhu, H. (2025). Realization of a 27.5 °C Atmospheric Microwave Plasma Jet at 8 W for Surface Modification of Thermosensitive Polymers. Polymers, 17(16), 2183. https://doi.org/10.3390/polym17162183