Adsorption Capacity, Reaction Kinetics and Thermodynamic Studies on Ni(II) Removal with GO@Fe3O4@Pluronic-F68 Nanocomposite
Abstract
1. Introduction
2. Experimental Details
2.1. Materials
2.2. Synthesis of GO@Fe3O4@Pluronic F-68 Nonacomposite
2.3. Characterisation
2.4. Adsorption Experiments
2.5. Adsorption Isotherms
2.6. Langmuir Isotherm
- qe = Amount of adsorbed substance per unit adsorbent weight, (mg·g−1)
- Q = Adsorption capacity (mg·g−1)
- KL = Energy related constant (L·mg−1)
- Ce = Concentration of substance remaining in solution after adsorption (mg·L−1)
2.7. Freundlich Isotherm
2.8. The Temkin Isotherm
2.9. The Dubinin–Radushkevich Isotherm
2.10. Kinetic Studies
2.11. Pseudo-First Order Reaction Kinetics Model
2.12. Pseudo-Second Order Reaction Kinetics Model
2.13. Elovich Reaction Kinetics Model
2.14. Intraparticle Diffusion Reaction Kinetics Model
2.15. Thermodynamic Studies
3. Results and Discussion
3.1. Characterisation
3.2. Batch Adsorption Experiments
3.2.1. Effect of pH
3.2.2. Effect of Contact Time and Initial Concentration
3.2.3. Effect of Adsorbent Amount
3.2.4. Effect of Temperature
3.3. Adsorption Isotherm Studies
3.4. Adsorption Kinetics
3.5. Adsorption Thermodynamics
3.6. Adsorption Isotherm Models: Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nguyen Van, T.; Thuy, C.N.; Thu, H.N.T.; Thai, P.K.; Dang, X.T.; Kuwahara, Y. Coconut biochar doped with graphitic carbon nanosheets and α-Fe2O3 shows high adsorption rate for multiple toxic elements in contaminated water. Clean Technol. Environ. Policy 2025, 1–12. [Google Scholar] [CrossRef]
- Namvar-Mahboub, M.; Khodeir, E.; Bahadori, M.; Mahdizadeh, S.M. Preparation of magnetic MgO/Fe3O4 via the green method for competitive removal of Pb and Cd from aqueous solution. Colloids Surfaces A: Physicochem. Eng. Asp. 2020, 589, 124419. [Google Scholar] [CrossRef]
- Muthukrishnaraj, A.; Manokaran, J.; Vanitha, M.; Thiruvengadaravi, K.; Baskaralingam, P.; Balasubramanian, N. Equilibrium, kinetic and thermodynamic studies for the removal of Zn(II) and Ni(II) ions using magnetically recoverable graphene/Fe3O4 composite. Desalination Water Treat. 2015, 56, 2485–2501. [Google Scholar] [CrossRef]
- Kumar, R.; Bhattacharya, S.; Sharma, P. Novel insights into adsorption of heavy metal ions using magnetic graphene composites. J. Environ. Chem. Eng. 2021, 9, 106212. [Google Scholar] [CrossRef]
- Peng, W.; Li, H.; Liu, Y.; Song, S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 2017, 230, 496–504. [Google Scholar] [CrossRef]
- Mefford, O.T.; Carroll, M.R.J.; Vadala, M.L.; Goff, J.D.; Mejia-Ariza, R.; Saunders, M.; Riffle, J.S. Size analysis of PDMS−Magnetite nanoparticle complexes: Experiment and theory. Chem. Mater. 2008, 20, 2184–2191. [Google Scholar] [CrossRef]
- Al Khateb, K.; Ozhmukhametova, E.K.; Mussin, M.N.; Seilkhanov, S.K.; Rakhypbekov, T.K.; Lau, W.M.; Khutoryanskiy, V.V. In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int. J. Pharm. 2016, 502, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Metin, Ö.; Aydoğan, Ş.; Meral, K. A new route for the synthesis of graphene oxide–Fe3O4 (GO–Fe3O4) nanocomposites and their Schottky diode applications. J. Alloys Compd. 2014, 585, 681–688. [Google Scholar] [CrossRef]
- Shamsipur, M.; Farzin, L.; Tabrizi, M.A.; Sheibani, S. Functionalized Fe3O4/graphene oxide nanocomposites with hairpin aptamers for the separation and preconcentration of trace Pb2+ from biological samples prior to determination by ICP MS. Mater. Sci. Eng. C 2017, 77, 459–469. [Google Scholar] [CrossRef]
- Hou, X.; Tang, S.; Wang, J. Recent advances and applications of graphene-based extraction materials in food safety. TrAC Trends Anal. Chem. 2019, 119, 115603. [Google Scholar] [CrossRef]
- Mehrani, Z.; Ebrahimzadeh, H.; Moradi, E. Poly m-aminophenol/nylon 6/graphene oxide electrospun nanofiber as an efficient sorbent for thin film microextraction of phthalate esters in water and milk solutions preserved in baby bottle. J. Chromatogr. A 2019, 1600, 87–94. [Google Scholar] [CrossRef]
- Gümüs, I.; Metin, Ö.; Sevim, M.; Aydoğan, Ş. Analysis on the temperature dependent electrical properties of Cr/Graphene oxide-Fe3O4 nanocomposites/n-Si heterojunction device. Diam. Relat. Mater. 2020, 108, 107933. [Google Scholar] [CrossRef]
- Baltakesmez, A.; Sevim, M.; Güzeldir, B.; Aykaç, C.; Biber, M. Interface application of NiPt alloy nanoparticles decorated rGO nanocomposite to eliminate of contact problem between metal and inorganic/organic semiconductor. J. Alloys Compd. 2021, 867, 158802. [Google Scholar] [CrossRef]
- Khaliq, N.U.; Lee, J.; Kim, S.; Sung, D.; Kim, H. Pluronic F-68 and F-127 Based Nanomedicines for Advancing Combination Cancer Therapy. Pharmaceutics 2023, 15, 2102. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Khan, S.A.; Sahoo, A.; Dubey, P.; Pant, K.K.; Ziora, Z.M.; Blaskovich, M.A. Statistical evaluation of cow-dung derived activated biochar for phenol adsorption: Adsorption isotherms, kinetics, and thermodynamic studies. Bioresour. Technol. 2022, 352, 127030. [Google Scholar] [CrossRef] [PubMed]
- Sevim, F.; Lacin, O.; Ediz, E.F.; Demir, F. Adsorption capacity, isotherm, kinetic, and thermodynamic studies on adsorption behavior of malachite green onto natural red clay. Environ. Prog. Sustain. Energy 2021, 40, e13471. [Google Scholar] [CrossRef]
- Alrefaee, S.H.; Aljohani, M.; Alkhamis, K.; Shaaban, F.; El-Desouky, M.G.; El-Bindary, A.A.; El-Bindary, M.A. Adsorption and effective removal of organophosphorus pesticides from aqueous solution via novel metal-organic framework: Adsorption isotherms, kinetics, and optimization via Box-Behnken design. J. Mol. Liq. 2023, 384, 122206. [Google Scholar] [CrossRef]
- Sevim, F.; Laçin, Ö.; Demir, F.; Erkiliç, Ö.F. Adsorption Capacity, Isotherm, Kinetics, and Thermodynamics Examinations on the Removal of a Textile Azo Dye by Local Natural Adsorbent. Glob. Chall. 2025, 9, 2500024. [Google Scholar] [CrossRef]
- Dąbrowski, A. Adsorption—From theory to practice. Adv. Colloid Interface Sci. 2001, 93, 135–224. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Cheung, C.W.; Porter, J.F.; McKay, G. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. J. Chem. Technol. Biotechnol. 2000, 75, 963–970. [Google Scholar] [CrossRef]
- Hu, Q.; Ma, S.; He, Z.; Liu, H.; Pei, X. A revisit on intraparticle diffusion models with analytical solutions: Underlying assumption, application scope and solving method. J. Water Process Eng. 2024, 60, 105241. [Google Scholar] [CrossRef]
- Kassaee, M.; Motamedi, E.; Majdi, M. Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite. Chem. Eng. J. 2011, 172, 540–549. [Google Scholar] [CrossRef]
- Liu, R.; Zhu, X.; Chen, B. A New Insight of Graphene oxide-Fe(III) Complex Photochemical Behaviors under Visible Light Irradiation. Sci. Rep. 2017, 7, 40711. [Google Scholar] [CrossRef] [PubMed]
- Rarokar, N.; Agrawal, R.; Yadav, S.; Khedekar, P.; Ravikumar, C.; Telange, D.; Gurav, S. Pteroyl-γ-l-glutamate/Pluronic® F68 modified polymeric micelles loaded with docetaxel for targeted delivery and reduced toxicity. J. Mol. Liq. 2023, 369, 120842. [Google Scholar] [CrossRef]
- Islam, A.; Javed, H.; Chauhan, A.; Ahmad, I.; Rais, S. Triethylenetetramine-Grafted Magnetite Graphene Oxide-Based Surface-Imprinted Polymer for the Adsorption of Ni(II) in Food Samples. J. Chem. Eng. Data 2020, 66, 456–465. [Google Scholar] [CrossRef]
- Wang, G.; Xu, H.; Lu, L.; Zhao, H. Magnetization-induced double-layer capacitance enhancement in active carbon/Fe3O4 nanocomposites. J. Energy Chem. 2014, 23, 809–815. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, G.; Guo, Y.; Yu, J.C. Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon 2013, 60, 437–444. [Google Scholar] [CrossRef]
- Li, S.; Guo, J.; Patel, R.A.; Dadlani, A.L.; Leblanc, R.M. Interaction between Graphene Oxide and Pluronic F127 at the Air–Water Interface. Langmuir 2013, 29, 5742–5748. [Google Scholar] [CrossRef]
- Lin, Y.; Alexandridis, P. Temperature-Dependent Adsorption of Pluronic F127 Block Copolymers onto Carbon Black Particles Dispersed in Aqueous Media. J. Phys. Chem. B 2002, 106, 10834–10844. [Google Scholar] [CrossRef]
- Hen, J.; Sheng, Y.; Song, Y.; Chang, M.; Zhang, X.; Cui, L.; Meng, D.; Zhu, H.; Shi, Z.; Zou, H. Multimorphology Mesoporous Silica Nanoparticles for Dye Adsorption and Multicolor Luminescence Applications. ACS Sustain. Chem. Eng. 2018, 6, 3533–3545. [Google Scholar] [CrossRef]
- Zhang, W.; An, Y.; Li, S.; Liu, Z.; Chen, Z.; Ren, Y.; Wang, S.; Zhang, X.; Wang, X. Enhanced heavy metal removal from an aqueous environment using an eco-friendly and sustainable adsorbent. Sci. Rep. 2020, 10, 16453. [Google Scholar] [CrossRef]
- Chen, H.-W.; Chiou, C.-S.; Wu, Y.-P.; Chang, C.-H.; Lai, Y.-H. Magnetic nanoadsorbents derived from magnetite and graphene oxide for simultaneous adsorption of nickel ion, methylparaben, and reactive black 5. Desalination Water Treat. 2021, 224, 168–177. [Google Scholar] [CrossRef]
- Ngomsik, A.-F.; Bee, A.; Siaugue, J.-M.; Cabuil, V.; Cote, G. Nickel adsorption by magnetic alginate microcapsules containing an extractant. Water Res. 2006, 40, 1848–1856. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Younesi, H.; Bahramifar, N.; Mehraban, Z. A novel facile synthesis of the amine-functionalized magnetic core coated carboxylated nanochitosan shells as an amphoteric nanobiosupport. Carbohydr. Polym. 2019, 221, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Martín-Lara, M.; Calero, M.; Ronda, A.; Iáñez-Rodríguez, I.; Escudero, C. Adsorptive Behavior of an Activated Carbon for Bisphenol A Removal in Single and Binary (Bisphenol A—Heavy Metal) Solutions. Water 2020, 12, 2150. [Google Scholar] [CrossRef]
- Erdoğan, S.; Önal, Y.; Akmil-Başar, C.; Bilmez-Erdemoğlu, S.; Sarıcı-Özdemir, Ç.; Köseoğlu, E.; İçDuygu, G. Optimization of nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation. Appl. Surf. Sci. 2005, 252, 1324–1331. [Google Scholar] [CrossRef]
- Ewecharoen, A.; Thiravetyan, P.; Wendel, E.; Bertagnolli, H. Nickel adsorption by sodium polyacrylate-grafted activated carbon. J. Hazard. Mater. 2009, 171, 335–339. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.; Shao, D.; Hu, J.; Wang, X. Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 2009, 166, 109–116. [Google Scholar] [CrossRef]
- Gautam, R.K.; Gautam, P.K.; Banerjee, S.; Soni, S.; Singh, S.K.; Chattopadhyaya, M.C. Removal of Ni(II) by magnetic nanoparticles. J. Mol. Liq. 2015, 204, 60–69. [Google Scholar] [CrossRef]
- Xiao, F.; Jin, B.; Golovko, S.A.; Golovko, M.Y.; Xing, B. Sorption and desorption mechanisms of cationic and zwitterionic per-and polyfluoroalkyl substances in natural soils: Thermodynamics and hysteresis. Environ. Sci. Technol. 2019, 53, 11818–11827. [Google Scholar] [CrossRef]
- Guechi, E.-K.; Hamdaoui, O. Evaluation of potato peel as a novel adsorbent for the removal of Cu(II) from aqueous solutions: Equilibrium, kinetic, and thermodynamic studies. Desalination Water Treat. 2016, 57, 10677–10688. [Google Scholar] [CrossRef]
- Shayesteh, H.; Rahbar-Kelishami, A.; Norouzbeigi, R. Evaluation of natural and cationic surfactant modified pumice for congo red removal in batch mode: Kinetic, equilibrium, and thermodynamic studies. J. Mol. Liq. 2016, 221, 1–11. [Google Scholar] [CrossRef]
- Xie, Z.; Diao, S.; Xu, R.; Wei, G.; Wen, J.; Hu, G.; Tang, T.; Jiang, L.; Li, X.; Li, M.; et al. Construction of carboxylated-GO and MOFs composites for efficient removal of heavy metal ions. Appl. Surf. Sci. 2023, 636, 157827. [Google Scholar] [CrossRef]
- Wang, L.-G.; Yan, G.-B. Adsorptive removal of direct yellow 161dye from aqueous solution using bamboo charcoals activated with different chemicals. Desalination 2011, 274, 81–90. [Google Scholar] [CrossRef]
- Aslan, S.; Yildiz, S.; Ozturk, M. Biosorption of Cu2+ and Ni2+ ions from aqueous solutions using waste dried activated sludge biomass. Pol. J. Chem. Technol. 2018, 20, 20–28. [Google Scholar] [CrossRef]
- Kiruba, U.P.; Kumar, P.S.; Prabhakaran, C.; Aditya, V. Characteristics of thermodynamic, isotherm, kinetic, mechanism and design equations for the analysis of adsorption in Cd(II) ions-surface modified Eucalyptus seeds system. J. Taiwan Inst. Chem. Eng. 2014, 45, 2957–2968. [Google Scholar] [CrossRef]
- Misran, E.; Bani, O.; Situmeang, E.M.; Purba, A.S. Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: Isotherm, kinetics, and reusability. Alex. Eng. J. 2022, 61, 1946–1955. [Google Scholar] [CrossRef]
- Tharaneedhar, V.; Kumar, P.S.; Saravanan, A.; Ravikumar, C.; Jaikumar, V. Prediction and interpretation of adsorption parameters for the sequestration of methylene blue dye from aqueous solution using microwave assisted corncob activated carbon. Sustain. Mater. Technol. 2017, 11, 1–11. [Google Scholar] [CrossRef]
- Hoan, N.T.V.; Thu, N.T.A.; Van Duc, H.; Cuong, N.D.; Khieu, D.Q.; Vo, V. Fe3O4/Reduced Graphene Oxide Nanocomposite: Synthesis and Its Application for Toxic Metal Ion Removal. J. Chem. 2016, 2016, 2418172. [Google Scholar] [CrossRef]
- Aslan, S.; Polat, A.; Topcu, U.S. Assessment of the adsorption kinetics, equilibrium and thermodynamics for the potential removal of Ni2+ from aqueous solution using waste eggshell. J. Environ. Eng. Landsc. Manag. 2015, 23, 221–229. [Google Scholar] [CrossRef]
- Morgan, H.M., Jr.; Jiang, T.-J.; Tsai, W.-T.; Yen, T.-B. Initial physiochemical characterization of Djulis (Chenopodium formosanum) spent mushroom substrate biochar and its application for methylene blue dye adsorption, isotherm, kinetics, and parameters. Biomass Convers. Biorefinery 2025, 1–15. [Google Scholar] [CrossRef]
- Ghasemi, M.; Mashhadi, S.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Microwave-assisted synthesis of tetraethylenepentamine functionalized activated carbon with high adsorption capacity for Malachite green dye. J. Mol. Liq. 2016, 213, 317–325. [Google Scholar] [CrossRef]
- Ncibi, M.C. Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. J. Hazard. Mater. 2008, 153, 207–212. [Google Scholar] [CrossRef] [PubMed]
Isotherm Parameters | GO@Fe3O4@Pluronic-F68 |
---|---|
Langmuir | |
Qm (mg·g−1) | 151.5 |
KL (L·mg−1) | 0.06 |
RL | 0.05 |
R2 | 0.989 |
Freundlich | |
Kf [(mg·g−1)(L·mg−1)−1/n] | 33.1 |
n | 3.6 |
R2 | 0.994 |
Temkin | |
KT (L·mg−1) | 1.59 |
BT | 23.9 |
R2 | 0.98 |
Dubinin-Radushkevich | |
βDR (×10−6 mol2·kj−2) | −0.3 |
qm (mg·g−1) | 116.80 |
R2 | 0.828 |
Kinetic Model | Parameters | Concentration (mg·L−1) | |||
---|---|---|---|---|---|
100 | 200 | 300 | 400 | ||
pseudo first order | k1 | 0.031 | 0.036 | 0.024 | 0.046 |
R2 | 0.85 | 0.89 | 0.63 | 0.64 | |
pseudo second order | k2 | 0.0048 | 0.0013 | 0.0011 | 0.016 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | |
Intraparticle diffusion | ki | 2.33 | 4 | 5.3 | 4 |
C | 27.1 | 50.5 | 65.4 | 92.4 | |
R2 | 0.76 | 0.76 | 0.63 | 0.69 | |
Elovich model | α | 87.36 | 210.29 | 115.94 | 204.7 |
Β | 0.14 | 0.08 | 0.02 | 0.01 | |
R2 | 0.9 | 0.9 | 0.79 | 0.86 |
T | (kJ·mol−1) | (J·mol−1·K−1) | (kJ·mol−1) |
---|---|---|---|
293 | 9.38 | 39.14 | −2.06 |
298 | −2.26 | ||
303 | −2.57 | ||
308 | −2.61 |
Isotherm Model | R2 | p-Test | F-Test |
---|---|---|---|
Langmuir | 0.985 | <0.001 | 271.464 |
Freundlich | 0.995 | <0.001 | 582.661 |
Temkin | 0.989 | 0.001 | 262.065 |
Dubinin–Radushkevich | 0.828 | 0.032 | 14.467 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çiçekçi, A.; Sevim, F.; Sevim, M.; Kavcı, E. Adsorption Capacity, Reaction Kinetics and Thermodynamic Studies on Ni(II) Removal with GO@Fe3O4@Pluronic-F68 Nanocomposite. Polymers 2025, 17, 2141. https://doi.org/10.3390/polym17152141
Çiçekçi A, Sevim F, Sevim M, Kavcı E. Adsorption Capacity, Reaction Kinetics and Thermodynamic Studies on Ni(II) Removal with GO@Fe3O4@Pluronic-F68 Nanocomposite. Polymers. 2025; 17(15):2141. https://doi.org/10.3390/polym17152141
Chicago/Turabian StyleÇiçekçi, Ali, Fatih Sevim, Melike Sevim, and Erbil Kavcı. 2025. "Adsorption Capacity, Reaction Kinetics and Thermodynamic Studies on Ni(II) Removal with GO@Fe3O4@Pluronic-F68 Nanocomposite" Polymers 17, no. 15: 2141. https://doi.org/10.3390/polym17152141
APA StyleÇiçekçi, A., Sevim, F., Sevim, M., & Kavcı, E. (2025). Adsorption Capacity, Reaction Kinetics and Thermodynamic Studies on Ni(II) Removal with GO@Fe3O4@Pluronic-F68 Nanocomposite. Polymers, 17(15), 2141. https://doi.org/10.3390/polym17152141