Viscosity, Morphology, and Thermomechanical Performance of Attapulgite-Reinforced Bio-Based Polyurethane Asphalt Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Bio-Based PUAB/ATT Composites
- (1)
- Masterbatch preparation: CO and ATT were homogenized using an FM300 high-shear mixer (Fluko, Shanghai, China) (50 s−1, 60 °C, 20 min).
- (2)
- Reactive blending: Preheated bitumen (120 °C, 30 min) and IPDI were sequentially introduced into the masterbatch. The mixture was stirred under controlled conditions (3.3 s−1, 120 °C, 5 min).
- (3)
- Curing: The reactive composite was cast into a polytetrafluoroethylene (PTFE) mold (Φ 100 mm × 5 mm) and thermally cured (120 °C, 4 h) to achieve full crosslinking.
2.3. Methods
2.3.1. RV
2.3.2. FTIR Spectroscopy
2.3.3. DMA
2.3.4. DSC
2.3.5. TGA
2.3.6. LSCM
2.3.7. Uniaxial Tensile Testing
3. Results and Discussion
3.1. Structural Characterization
3.2. Cure Behavior
- ANCO,0 and ANCO,t = absorbance of the –NCO peak (2264 cm−1) at initial time (t0) and time t;
- AR,0 and AR,t = absorbance of the internal reference peak (2924 cm−1) at corresponding times.
3.3. Time-Dependent Rotational Viscosity Behavior
3.4. Phase-Separated Morphology
3.5. Dynamic Mechanical Properties
3.6. Damping Properties
3.7. Thermal Stability
3.8. Mechanical Properties
4. Conclusions
- FTIR spectroscopy confirms the reaction between isocyanate groups in PU and hydroxyl groups in ATT, which accelerates the conversion of the polyaddition reaction in PUAB.
- The addition of ATT reduces the rotational viscosity of bio-based PUAB during curing, thereby extending the allowable construction time. This viscosity reduction becomes more pronounced with increasing clay content.
- ATT decreases the bitumen particle size within the continuous polyurethane phase, with further reduction observed at higher clay loadings.
- While ATT incorporation slightly lowers both the glass transition temperature and damping properties of bio-based PUAB, it simultaneously enhances the material’s thermal stability.
- At loadings of 0.5 and 1 wt%, ATT significantly improves the tensile strength and toughness of bio-based PUAB, with only a marginal decrease in elongation at break.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Plastics Europe. Plastics—The Facts 2024. Analysis of European Latest Plastics Production, Demand and Waste Data; Plastics Europe: Brussels, Belgium, 2024. [Google Scholar]
- Engels, H.-W.; Pirkl, H.-G.; Albers, R.; Albach, R.W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 2013, 52, 9422–9441. [Google Scholar] [CrossRef]
- Somarathna, H.M.C.C.; Raman, S.N.; Mohotti, D.; Mutalib, A.A.; Badri, K.H. The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Constr. Build. Mater. 2018, 190, 995–1014. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnam, N.; Yuvaraj, A.R. Polyurethane types, synthesis and applications—A review. RSC Adv. 2016, 6, 114453–114482. [Google Scholar] [CrossRef]
- Cong, P.; Liu, C.; Han, Z.; Zhao, Y. A comprehensive review on polyurethane modified asphalt: Mechanism, characterization and prospect. J. Road Eng. 2023, 3, 315–335. [Google Scholar] [CrossRef]
- Wu, C.; Yang, H.; Cui, X.; Chen, Y.; Xi, Z.; Cai, J.; Zhang, J.; Xie, H. Performance and morphology of waterborne polyurethane asphalt in the vicinity of phase inversion. Materials 2024, 17, 3368. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Ban, X.; Liu, X.; Guo, Y.; Sun, J.; Liu, Y.; Zhang, S.; Lei, J. Thermosetting resin modified asphalt: A comprehensive review. J. Traffic Transp. Eng. (Engl. Ed.) 2023, 10, 1001–1036. [Google Scholar] [CrossRef]
- Sun, M.; Jing, S.; Wu, H.; Zhong, J.; Yang, Y.; Zhu, Y.; Xu, Q. Preparation scheme optimization of thermosetting polyurethane modified asphalt. Polymers 2023, 15, 2327. [Google Scholar] [CrossRef]
- Li, Z.; Yang, F.; Yuan, J.; Cong, L.; Yu, M. Study on preparation and pavement performance of polyurethane modified asphalt based on in-situ synthesis method. Constr. Build. Mater. 2021, 309, 125196. [Google Scholar] [CrossRef]
- Xie, H.; Li, C.; Wang, Q. A critical review on performance and phase separation of thermosetting epoxy asphalt binders and bond coats. Constr. Build. Mater. 2022, 326, 126792. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, J.; Wang, L.; Zhu, Y.; Liu, H.; Huang, T.; Huang, Z. Laboratory investigation of PPG-TDI polyurethane–modified asphalt binders and mixtures. J. Mater. Civ. Eng. 2022, 34, 04022217. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, J.; Jia, M.; Qi, B.; Zhang, H.; Lv, W.; Mao, Z.; Chang, P.; Peng, J.; Liu, Y. Study on a thermosetting polyurethane modified asphalt suitable for bridge deck pavements: Formula and properties. Constr. Build. Mater. 2020, 241, 118122. [Google Scholar] [CrossRef]
- George, J.S.; Uthaman, A.; Reghunadhan, A.; Mayookh Lal, H.; Thomas, S.; Vijayan P, P. Bioderived thermosetting polymers and their nanocomposites: Current trends and future outlook. Emergent Mater. 2022, 5, 3–27. [Google Scholar] [CrossRef]
- Garrison, T.F.; Murawski, A.; Quirino, R.L. Bio-based polymers with potential for biodegradability. Polymers 2016, 8, 262. [Google Scholar] [CrossRef]
- Li, Y.; Luo, X.; Hu, S. Bio-Based Polyols and Polyurethanes; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Kaur, R.; Singh, P.; Tanwar, S.; Varshney, G.; Yadav, S. Assessment of bio-based polyurethanes: Perspective on applications and bio-degradation. Macromol 2022, 2, 284–314. [Google Scholar] [CrossRef]
- Vahabi, H.; Rastin, H.; Movahedifar, E.; Antoun, K.; Brosse, N.; Saeb, M.R. Flame retardancy of bio-based polyurethanes: Opportunities and challenges. Polymers 2020, 12, 1234. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Li, C.; Wang, Q. Thermosetting polymer modified asphalts: Current status and challenges. Polym. Rev. 2024, 64, 690–759. [Google Scholar] [CrossRef]
- Cao, Z.; Hao, Q.; Xu, S.; Han, X.; Yi, J.; Sun, G. Preparation and performance evaluation of bio–based polyurethane modified asphalt binders: Towards greener and more sustainable asphalt modifier. Constr. Build. Mater. 2025, 476, 141209. [Google Scholar] [CrossRef]
- Han, B.; Xing, Y.; Li, C. Investigation on dynamic and static modulus and creep of bio-based polyurethane-modified asphalt mixture. Polymers 2025, 17, 359. [Google Scholar] [CrossRef]
- Xia, L.; Cao, D.; Zhang, H. Rheological and aging properties of vegetable oil-based polyurethane (V-PU) modified asphalt. Polymers 2023, 15, 2158. [Google Scholar] [CrossRef]
- Cuadri, A.A.; García-Morales, M.; Navarro, F.J.; Partal, P. Isocyanate-functionalized castor oil as a novel bitumen modifier. Chem. Eng. Sci. 2013, 97, 320–327. [Google Scholar] [CrossRef]
- Kazemi, M.; Karimi, A.; Goli, A.; Hajikarimi, P.; Mohammadi, A.; Doctorsafaei, A.; Fini, E. Biobased polyurethane: A sustainable asphalt modifier with improved moisture resistance. J. Mater. Civ. Eng. 2024, 36, 04023505. [Google Scholar] [CrossRef]
- An, X.-P.; Chen, J.-H.; Li, Y.-D.; Zhu, J.; Zeng, J.-B. Rational design of sustainable polyurethanes from castor oil: Towards simultaneous reinforcement and toughening. Sci. China Mater. 2018, 61, 993–1000. [Google Scholar] [CrossRef]
- Yang, H.; Cao, S.; Wu, C.; Xi, Z.; Cai, J.; Yuan, Z.; Zhang, J.; Xie, H. Bio-based polyurethane asphalt binder with continuous polymer-phase structure: Critical role of isocyanate index in governing thermomechanical performance and phase morphology. Molecules 2025, 30, 2466. [Google Scholar] [CrossRef] [PubMed]
- GB/T 30598; General Specifications of Epoxy Asphalt Materials for Paving Roads and Bridges. National Standards of People’s Republic of China: Beijing, China, 2014.
- Xie, D.-M.; Lu, D.-X.; Zhao, X.-L.; Li, Y.-D.; Zeng, J.-B. Sustainable and malleable polyurethane networks from castor oil and vanillin with tunable mechanical properties. Ind. Crops Prod. 2021, 174, 114198. [Google Scholar] [CrossRef]
- Meng, Y.; Zhan, L.; Hu, C.; Tang, Y.; Großegger, D.; Ye, X. Research on modification mechanism and performance of an innovative bio-based polyurethane modified asphalt: A sustainable way to reducing dependence on petroleum asphalt. Constr. Build. Mater. 2022, 350, 128830. [Google Scholar] [CrossRef]
- Haden, W.L.; Schwint, I.A. Attapulgite: Its properties and applications. Ind. Eng. Chem. 1967, 59, 58–69. [Google Scholar] [CrossRef]
- Wang, W.; Wang, A. Recent progress in dispersion of palygorskite crystal bundles for nanocomposites. Appl. Clay Sci. 2016, 119, 18–30. [Google Scholar] [CrossRef]
- Xu, H.; Ali, M.; Wu, B.; Shi, H.; Gu, S.; Han, E.-H. Anticorrosive behavior of polyurethane coating containing hybrid attapulgite pigment. Prog. Org. Coat. 2025, 200, 109035. [Google Scholar] [CrossRef]
- Dong, K.; Qiu, F.; Guo, X.; Xu, J.; Yang, D.; He, K. Polyurethane–attapulgite porous material: Preparation, characterization, and application for dye adsorption. J. Appl. Polym. Sci. 2013, 129, 1697–1706. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Q.; Wu, S.; Lv, Y.; Wan, P.; Gong, X.; Liu, G. Study of synergistic effect of diatomite and modified attapulgite on reducing asphalt volatile organic compounds emission. Constr. Build. Mater. 2023, 400, 132827. [Google Scholar] [CrossRef]
- Wei, J.; Su, C.; Tang, N.; Geng, X.; Huang, W.; Zhu, H. Tracing the odor source of crumb rubber modified asphalt emissions and evaluating the deodorization effect of attapulgite. Constr. Build. Mater. 2024, 443, 137561. [Google Scholar] [CrossRef]
- Zeng, S.; Gong, X.; Han, X.; Xu, S.; Xu, J.; Li, X.; Yu, J. Effect of organic attapulgite on properties of SBS modified asphalt waterproofing membranes. Constr. Build. Mater. 2022, 360, 129606. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, Y.; Liu, X.; Guo, Y.; Liu, H.; Sun, J.; Yu, X.; Kan, S. Combined modification of asphalt with organic attapulgite (OATT) and polyurethane (PU): Preparation, properties and modification mechanisms. Constr. Build. Mater. 2023, 406, 133435. [Google Scholar] [CrossRef]
- ASTM D5-20; Standard Test Method for Penetration of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM ASTM D113-17; Standard Test Method for Ductility of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM ASTM D36-06; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM ASTM D4402-06; Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM ASTM D3344-90R21; Standard Test Method for Total Wax Content of Corrugated Paperboard. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM ASTM D4124-09R18; Standard Test Method for Separation of Asphalt into Four Fractions. ASTM International: West Conshohocken, PA, USA, 2018.
- Sun, Y.; Zhang, Y.; Xu, K.; Xu, W.; Yu, D.; Zhu, L.; Xie, H.; Cheng, R. Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes. J. Appl. Polym. Sci. 2015, 132, 41694. [Google Scholar] [CrossRef]
- ASTM D638-20; Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2022.
- Suárez, M.; García-Romero, E. FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet. Appl. Clay Sci. 2006, 31, 154–163. [Google Scholar] [CrossRef]
- Frost, R.L.; Cash, G.A.; Kloprogge, J.T. `Rocky Mountain leather’, sepiolite and attapulgite—An infrared emission spectroscopic study. Vib. Spectrosc. 1998, 16, 173–184. [Google Scholar] [CrossRef]
- Frost, R.L.; Locos, O.B.; Ruan, H.; Kloprogge, J.T. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites. Vib. Spectrosc. 2001, 27, 1–13. [Google Scholar] [CrossRef]
- Yan, W.; Liu, D.; Tan, D.; Yuan, P.; Chen, M. FTIR spectroscopy study of the structure changes of palygorskite under heating. Spectrochim. Acta Part. A 2012, 97, 1052–1057. [Google Scholar] [CrossRef]
- Feng, Z.-G.; Bian, H.-J.; Li, X.-J.; Yu, J.-Y. FTIR analysis of UV aging on bitumen and its fractions. Mater. Struct. 2016, 49, 1381–1389. [Google Scholar] [CrossRef]
- Sardari, A.; Sabbagh Alvani, A.A.; Ghaffarian, S.R. Castor oil-derived water-based polyurethane coatings: Structure manipulation for property enhancement. Prog. Org. Coat. 2019, 133, 198–205. [Google Scholar] [CrossRef]
- Duan, S.; Hu, J.; Cui, J.; Chen, Y.; Ma, T.; Wu, X. Acrylate composite polyurethane binder for steel bridge deck pavements: Process optimization by response surface methodology and microanalysis. J. Appl. Polym. Sci. 2024, 141, e55228. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization. Prog. Org. Coat. 2015, 80, 39–48. [Google Scholar] [CrossRef]
- Nies, C.; Fug, F.; Otto, C.; Possart, W. Adhesion of polyurethanes on native metal surfaces—Stability and the role of urea-like species. Int. J. Adhes. Adhes. 2014, 52, 19–25. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Jiang, Y.; Xu, K.; Xi, Z.; Xie, H. Thermal and mechanical properties of natural fibrous nanoclay reinforced epoxy asphalt adhesives. Int. J. Adhes. Adhes. 2018, 85, 308–314. [Google Scholar] [CrossRef]
- Asphalt Institute. Performance Graded Asphalt Binder Specification and Testing Superpave; Asphalt Institute: Lexington, KY, USA, 2003. [Google Scholar]
- Huang, W.; Guo, W.; Wei, Y. Prediction of paving performance for epoxy asphalt mixture by its time- and temperature-dependent properties. J. Mater. Civ. Eng. 2020, 32, 04020017. [Google Scholar] [CrossRef]
- Wu, C.; Jing, F.; Yang, H.; Li, C.; Xi, Z.; Cai, J.; Wang, Q.; Xie, H. Epoxy asphalt binder reinforced with waste polyethylene terephthalate (PET) for improving toughness. Int. J. Pavement Eng. 2024, 25, 2400547. [Google Scholar] [CrossRef]
- Wu, C.; Yang, H.; Cui, X.; Cai, J.; Yuan, Z.; Zhang, J.; Xie, H. Thermo-mechanical properties and phase-separated morphology of warm-mix epoxy asphalt binders with different epoxy resin concentrations. Molecules 2024, 29, 3251. [Google Scholar] [CrossRef] [PubMed]
- Taguet, A.; Cassagnau, P.; Lopez-Cuesta, J.M. Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog. Polym. Sci. 2014, 39, 1526–1563. [Google Scholar] [CrossRef]
- Ajitha, A.R.; Thomas, S. Introduction: Polymer blends, thermodynamics, miscibility, phase separation, and compatibilization. In Compatibilization of Polymer Blends; Ajitha, A.R., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–29. [Google Scholar]
- Robeson, L.M. Polymer Blends a Comprehensive Review; Hanser Publishers: München, Germany, 2007. [Google Scholar]
- Xu, B.; Huang, W.M.; Pei, Y.T.; Chen, Z.G.; Kraft, A.; Reuben, R.; De Hosson, J.T.M.; Fu, Y.Q. Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites. Eur. Polym. J. 2009, 45, 1904–1911. [Google Scholar] [CrossRef]
- Yang, B.; Min Huang, W.; Li, C.; Hoe Chor, J. Effects of moisture on the glass transition temperature of polyurethane shape memory polymer filled with nano-carbon powder. Eur. Polym. J. 2005, 41, 1123–1128. [Google Scholar] [CrossRef]
- Lei, Z.; Bahia, H.; Yi-qiu, T. Effect of bio-based and refined waste oil modifiers on low temperature performance of asphalt binders. Constr. Build. Mater. 2015, 86, 95–100. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Q.; Liu, F.; An, J.; Lu, R.; Xie, H.; Cheng, R. Synthesis and characterization of soy polyol-based polyurethane nanocomposites reinforced with silylated palygorskite. Appl. Clay Sci. 2014, 101, 246–252. [Google Scholar] [CrossRef]
- Wang, C.; Dai, L.; Yang, Z.; Ge, C.; Li, S.; He, M.; Ding, L.; Xie, H. Reinforcement of castor oil-based polyurethane with surface modification of attapulgite. Polymers 2018, 10, 1236. [Google Scholar] [CrossRef]
- Frost, R.L.; Ding, Z. Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochim. Acta 2003, 397, 119–128. [Google Scholar] [CrossRef]
- Li, C.; Gong, J.; Zhao, R.; Xi, Z.; Wang, Q.; Xie, H. Laboratory performance of recycled polyethylene modified epoxy asphalt binders. Int. J. Pavement Eng. 2023, 24, 2101055. [Google Scholar] [CrossRef]
- Hablot, E.; Zheng, D.; Bouquey, M.; Avérous, L. Polyurethanes based on castor oil: Kinetics, chemical, mechanical and thermal properties. Macromol. Mater. Eng. 2008, 293, 922–929. [Google Scholar] [CrossRef]
Properties | Standard | Value |
---|---|---|
Physical properties | ||
Penetration (25 °C, 0.1 mm) | ASTM D5-20 [37] | 73.0 |
Ductility (10 °C, cm) | ASTM D113-17 [38] | 15.8 |
Softening point (°C) | ASTM D36-06 [39] | 48.2 |
Viscosity (60 °C, Pa·s) | ASTM D4402-06 [40] | 173.0 |
Wax content (%) | ASTM D3344-90R21 [41] | 1.83 |
Chemical components | ||
Saturates (%) | ASTM D4124-09R18 [42] | 20.0 |
Aromatics (%) | 31.5 | |
Resins (%) | 37.1 | |
Asphaltenes (%) | 6.8 |
Oxides | SiO2 | MgO | Al2O3 | Fe2O3 | K2O | TiO2 | CaO | SO3 | P2O5 | MnO |
---|---|---|---|---|---|---|---|---|---|---|
Content (wt%) | 57.72 | 9.75 | 9.12 | 4.70 | 1.07 | 0.86 | 0.34 | 0.15 | 0.08 | 0.05 |
Stage | Process |
---|---|
First heating | After rapid cooling to −50 °C at maximum instrument capacity, heating to 100 °C at 20 °C/min |
Thermal history erasure | 3 min isothermal hold at 100 °C |
Controlled cooling | 20 °C/min ramp to −50 °C |
Temperature equilibration | 5 min isothermal hold at −50 °C |
Second heating | 20 °C/min ramp to 100 °C for glass transition temperature (Tg) determination |
Peak Position (cm−1) | Assignment |
---|---|
3615 | Stretching vibration of Al–Al–OH |
3586 | Stretching vibration of Al–Fe–OH |
3550 | Stretching vibration of bound water |
3424 | –OH group |
3356 | Stretching vibration of –NH |
2965, 2924 | Stretching –CH vibration of –CH2 |
2858 | Symmetric stretching of –CH2 |
2247, 2264 | –NCO group |
1749 | C=O group for ester |
1712 | Amide I: C=O stretching vibrations |
1653 | Bending vibration of bond water |
1603, 866, 814 | Vibration of aromatic rings |
1508 | –N–H in-plane bending |
1460 | Scissoring vibration of –CH2– |
1452 | Deforming vibrations of –CH– |
1380 | Umbrella vibration of –CH3 |
1366 | Bending vibration of –CH2 |
1195 | Stretching vibration of Si–O–Si |
1166 | C–O–C group |
973 | Deformation of M–OH |
800 | Si–O–Si symmetric stretching vibration of quartz |
772 | N–H out-of-plane bending |
720 | Sympathetic vibration of –(CH2)n–, n ≥ 4 |
645 | Stretching vibration of H2O–Mg–H2O |
581 | Stretching vibration of AlO6 octahedron |
ATT (wt%) | Conversion at 240 min (%) |
---|---|
0 | 92.0 |
0.5 | 92.4 |
1 | 92.1 |
2 | 94.6 |
ATT (wt%) | Time to Reach 1 Pa·s (min) | Time to Reach 3 Pa·s (min) |
---|---|---|
0 | 60 | 90 |
0.5 | 63 | 96 |
1 | 68 | 101 |
2 | 69 | 105 |
ATT (wt%) | Dn (μm) | Dw (μm) | Ɖ |
---|---|---|---|
0 | 41.4 ± 2.0 | 50.7 ± 4.6 | 1.22 |
0.5 | 25.2 ± 0.7 | 36.0 ± 1.6 | 1.43 |
1 | 20.0 ± 0.6 | 25.7 ± 0.4 | 1.28 |
2 | 15.8 ± 0.2 | 21.6 ± 1.6 | 1.36 |
ATT (wt%) | υe (mol/m3) | Tg obtained from DSC (°C) | Tg obtained from DMA (°C) | |
---|---|---|---|---|
E″ | tan δ | |||
0 | 24.8 | −15.5 | −5.4 | 10.7 |
0.5 | 34.5 | −17.9 | −7.2 | 9.4 |
1 | 25.4 | −17.8 | −6.7 | 9.4 |
2 | 20.4 | −19.4 | −6.8 | 9.3 |
ATT (wt%) | (tan δ)max | ΔT (°C) | TA (K) |
---|---|---|---|
0 | 1.06 | 59.8 (−8.0~51.8) | 41.8 |
0.5 | 1.06 | 59.1 (−8.7~50.4) | 42.0 |
1 | 0.98 | 57.6 (−7.1~50.5) | 38.4 |
2 | 0.93 | 59.1 (−7.9~51.2) | 38.2 |
ATT (wt%) | Ti (°C) | T1dmax (°C) | T2dmax (°C) | T3dmax (°C) | Char Residue at 600 °C (%) |
---|---|---|---|---|---|
0 | 317.4 | 344.0 | 435.6 | - | 9.1 |
0.5 | 312.0 | 344.9 | 439.9 | - | 9.7 |
1 | 313.8 | 344.4 | 439.1 | - | 12.0 |
2 | 316.1 | 342.9 | 440.0 | - | 13.4 |
100 | 93.4 | 74.5 | 119.4 | 489.0 | 84.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Cao, S.; Cui, X.; Xi, Z.; Cai, J.; Yuan, Z.; Zhang, J.; Xie, H. Viscosity, Morphology, and Thermomechanical Performance of Attapulgite-Reinforced Bio-Based Polyurethane Asphalt Composites. Polymers 2025, 17, 2045. https://doi.org/10.3390/polym17152045
Yang H, Cao S, Cui X, Xi Z, Cai J, Yuan Z, Zhang J, Xie H. Viscosity, Morphology, and Thermomechanical Performance of Attapulgite-Reinforced Bio-Based Polyurethane Asphalt Composites. Polymers. 2025; 17(15):2045. https://doi.org/10.3390/polym17152045
Chicago/Turabian StyleYang, Haocheng, Suzhou Cao, Xinpeng Cui, Zhonghua Xi, Jun Cai, Zuanru Yuan, Junsheng Zhang, and Hongfeng Xie. 2025. "Viscosity, Morphology, and Thermomechanical Performance of Attapulgite-Reinforced Bio-Based Polyurethane Asphalt Composites" Polymers 17, no. 15: 2045. https://doi.org/10.3390/polym17152045
APA StyleYang, H., Cao, S., Cui, X., Xi, Z., Cai, J., Yuan, Z., Zhang, J., & Xie, H. (2025). Viscosity, Morphology, and Thermomechanical Performance of Attapulgite-Reinforced Bio-Based Polyurethane Asphalt Composites. Polymers, 17(15), 2045. https://doi.org/10.3390/polym17152045