Structural Analysis of Regenerated Cellulose Textile Covered with Cellulose Nano Fibers
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements
3. Results and Discussion
3.1. Mechanical Properties
3.2. SEM Images of Fiber Surface
3.3. Microbeam XRD Measurements
3.4. Higher-Ordered Structure Between Dried and Wet Conditions
3.5. FT-IR Spectra of Various Humidity Conditions
3.6. Schematic Drawing of Water Absorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNF | Cellulose nano fiber |
SEM | Scanning electron microscopy |
SAXS | Small-angle X-ray scattering |
FT-IR | Fourier transform infrared |
XRD | X-ray diffraction |
RH | Relative humidity |
References
- Sharpe, S.; Martinez-Ferneandez, C. Taking Climate Action: Measuring Carbon Emissions in the Garment Sector in Asia. In ILO Working Paper; ILO: Geneva, Switzerland, 2022; Volume 53. [Google Scholar] [CrossRef]
- Yano, J.; Kinugawa, Y.; Koshiba, J.; Asari, M.; Hirai, Y.; Sakai, S. The actual state of clothing and textile waste from households in Japan. Mater. Cycles Waste Manag. Res. 2023, 34, 168–177. [Google Scholar] [CrossRef]
- Fan, T.; Daniels, R. Preparation and characterization of electrospun polylactic acid (PLA) fiber loaded with birch bark triterpene extract for wound dressing. AAPS PharmSciTech 2021, 22, 205. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Ju, Z.; Tam, P.Y.; Hua, T.; Younas, M.W.; Kamrul, H.; Hu, H. Poly(lactic acid) fibers, yarns and fabrics: Manufacturing, properties and applications. Text. Res. J. 2021, 91, 1641–1669. [Google Scholar] [CrossRef]
- Azimi, B.; Maleki, H.; Gigante, V.; Bagherzadeh, R.; Mezzetta, A.; Milazzo, M.; Guazzelli, L.; Cinelli, P.; Lazzeri, A.; Danti, S. Cellulose-based fiber spinning processes using ionic liquids. Cellulose 2022, 29, 3079–3129. [Google Scholar] [CrossRef]
- Hermanutz, F.; Vocht, M.P.; Panzier, N.; Buchmeiser, M.R. Processing of cellulose using ionic liquids. Macromol. Mater. Eng. 2019, 304, 1800450. [Google Scholar] [CrossRef]
- Liu, J.; Sixta, H.; Ogawa, Y.; Hummel, M.; Sztucki, M.; Nishiyama, Y.; Burghammer, M. Multiscale structure of cellulose microfibrils in regenerated cellulose fibers. Carbohydr. Polym. 2024, 324, 121512. [Google Scholar] [CrossRef]
- Varnaite-Žuravliova, S.; Baltušnikaite-Guzaitiene, J. Properties, Production, and Recycling of Regenerated Cellulose Fibers: Special Medical Applications. J. Funct. Biomater. 2024, 15, 348. [Google Scholar] [CrossRef]
- Garces, I.; Ngo, T.-G.; Ayranci, C.; Boluk, Y. Regenerated cellulose in additive manufacturing. Cellulose 2024, 31, 1773–1785. [Google Scholar] [CrossRef]
- Ji, B.; Qi, H.; Yan, K.; Sun, G. Catalytic actions of alkaline salts in reactions between 1,2,3,4-butanetetracarboxylic acid and cellulose: I. Anhydride formation. Cellulose 2016, 23, 259–267. [Google Scholar] [CrossRef]
- Ma, Y.; You, X.; Rissanen, M.; Schlapp-Hackl, I.; Sixta, H. Sustainable cross-linking of man-made cellulosic fibers with poly(carboxylic acids) for fibrillation control. ACS Sustain. Chem. Eng. 2021, 9, 16749–16756. [Google Scholar] [CrossRef]
- Xue, Y.; Li, W.; Yang, G.; Lin, Z.; Qi, L.; Zhu, P.; Yu, J.; Chen, J. Strength Enhancement of Regenerated Cellulose Fibers by Adjustment of Hydrogen Bond Distribution in Ionic Liquid. Polymers 2022, 14, 2030. [Google Scholar] [CrossRef]
- Zhang, S.; He, H.; Jiang, Y. A strategy for introducing biomass naringin molecules into regenerated cellulose fibers: Construction of both low fibrillation tendency and high strength lyocell fibers. Ind. Crops Prod. 2024, 218, 118989. [Google Scholar] [CrossRef]
- Amini, E.; Valls, C.; Blanca Roncero, M. Ionic liquid-assisted bioconversion of lignocellulosic biomass for the development of value-added products. J. Clean. Prod. 2021, 326, 129275. [Google Scholar] [CrossRef]
- Edgar, K.J.; Zhang, H. Antibacterial modification of Lyocel fiber: A review. Carbohydr. Polym. 2020, 250, 116932. [Google Scholar] [CrossRef]
- Aida, H. Method for Processing Recycled Cellulose Fibers, and Processed Recycled Cellulose Fibers. WO2021149826A1, 29 July 2021. [Google Scholar]
- Liu, Y.-H.; Lin, H.-H.; Tsai, T.-Y.; Hsu, C.-H. Electrochemical fabrication and evaluation of a self-standing carbon nanotube/carbon fiber composite electrode for lithium-ion batteries. RSC Adv. 2019, 9, 33117–33123. [Google Scholar] [CrossRef]
- Tesema, G.B.; Drieling, A. Statistical analysis and instrumental characterization of commercial Ethiopian cotton varieties. J. Text. Appar. Technol. Manag. 2019, 11, 1–16. Available online: https://jtatm.textiles.ncsu.edu/index.php/JTATM/article/view/15845 (accessed on 19 July 2025).
- JSA—JIS L 1930; Textiles—Domestic washing and drying procedures for textile testing. Japan Standards Associations: Tokyo, Japan, 2014. Available online: https://standards.globalspec.com/std/9964301/jis-l-1930 (accessed on 19 July 2025).
- Yagi, N.; Ohta, N.; Matsuo, T.; Tanaka, T.; Terada, Y.; Kamasaka, H.; Kometani, T. A microbeam small-angle X-ray scattering study on enamel crystallites in subsurface lesion. J. Phys. Conf. Ser. 2010, 247, 012024. [Google Scholar] [CrossRef]
- Osaka, K.; Matsumoto, T.; Taniguchi, Y.; Inoue, D.; Sato, M.; Sano, N. High throughput and automated SAXS/USAXS experiment for industrial use at BL19B2 in SPring-8. AIP Conf. Proc. 2016, 1741, 030003. [Google Scholar] [CrossRef]
- Ikemoto, Y.; Ishikawa, M.; Nakashima, S.; Okamura, H.; Haruyama, Y.; Matsui, S.; Moriwaki, T.; Kinoshita, T. Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source. Opt. Commun. 2012, 285, 2212–2217. [Google Scholar] [CrossRef]
- Ikemoto, Y.; Moriwaki, T.; Hirono, T.; Kimura, S.; Shinoda, K.; Matsunami, M.; Nagai, N.; Nanba, T.; Kobayashi, K.; Kimura, H. Infrared microspectroscopy station at BL4 3IR of SPring-8. Infrared Phys. Technol. 2004, 45, 369–373. [Google Scholar] [CrossRef]
- Kokuzawa, T.; Hirabayashi, S.; Ikemoto, Y.; Park, J.; Ikura, R.; Takashima, Y.; Higuchi, Y.; Matsuba, G. Absorption of water molecules on the surface of stereocomplex-crystal spherulites of polylactides: An in-situ FT-IR spectroscopy investigation. Polymer 2024, 298, 126922. [Google Scholar] [CrossRef]
- Nagasaki, A.; Matsuba, G.; Ikemoto, Y.; Moriwaki, T.; Ohta, N.; Osaka, K. Analysis of the sol and gel structures of potato starch over a wide spatial scale. Food Sci. Nutr. 2021, 9, 4916–4926. [Google Scholar] [CrossRef]
- Miwa, Y.; Nagahama, T.; Sato, H.; Tani, A.; Takeya, K. Intermolecular interaction of tetrabutylammonium and tetrabutylphosphonium salt hydrates by low-frequency Raman observation. Molecules 2022, 27, 4743. [Google Scholar] [CrossRef]
- Mohammadi, P.; Toivonen, M.S.; Ikkala, O.; Wagermaier, W.; Linder, M.B. Aligning cellulose nanofibril dispersions for tougher fibers. Sci. Rep. 2017, 7, 11860. [Google Scholar] [CrossRef]
- Jiang, G.; Huang, W.; Li, L.; Wang, X.; Pang, F.; Zhang, Y.; Wang, H. Structure and properties of regenerated cellulose fibers from different technology processes. Carbohydr. Polym. 2012, 87, 2012–2018. [Google Scholar] [CrossRef]
- Langan, P.; Nishiyama, Y.; Chanzy, H. X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2001, 2, 410–416. [Google Scholar] [CrossRef]
- Xue, Y.; Qi, L.; Lin, Z.; Yang, G.; He, M.; Chen, J. High-strength regenerated cellulose fiber reinforced with cellulose nanofibril and nanosilica. Nanomaterials 2021, 11, 2664. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Sugiyama, J.; Chanzy, H.; Langan, P. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2003, 125, 14300–14306. [Google Scholar] [CrossRef]
- Isogai, A.; Usuda, M. Crystallinity indexes of cellulosic materials. Sen’i Gakkaishi 1989, 46, 324–329. [Google Scholar] [CrossRef]
- Kafle, K.; Greeson, K.; Lee, C.; Kim, S.H. Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Text. Res. J. 2014, 84, 1692–1699. [Google Scholar] [CrossRef]
- Dassanayake, R.S.; Dissanayake, N.; Fierro, J.S.; Abidi, N.; Quitevis, E.L.; Boggavarappu, K.; Thalangamaarachchige, V.D. Characterization of cellulose nanocrystals by current spectroscopic techniques. Appl. Spectrosc. Rev. 2023, 58, 180–205. [Google Scholar] [CrossRef]
- Sharma, A.; Sen, D.; Thakre, S.; Kumaraswamy, G. Characterizing microvoids in regenerated cellulose fibers obtained from viscose and lyocell processes. Macromolecules 2019, 52, 3987–3994. [Google Scholar] [CrossRef]
- Ba, Z.; Chen, G.; Luo, H.; Luo, J. In situ SAXS analysis of the water effects on the thickness evolution of nanocellulose within bamboo fiber. Wood Sci. Technol. 2021, 55, 351–360. [Google Scholar] [CrossRef]
- Funai, E.; Sakurai, S.; Hara, S.; Yamamoto, K.; Okamoto, S.; Kojima, J.; Kikutani, T. Synchrotron X-ray scattering and Precise Structural Analyses of poly(ethylene terephthalate) Fibers Prepared by High Speed Melt Spinning. Sen’i Gakkaishi 2004, 60, 322–330. [Google Scholar] [CrossRef]
- Stribeck, N. Analysis of SAXS fiber patterns by means of projections. ACS Symp. Ser. 1999, 739, 41–56. [Google Scholar] [CrossRef]
- Carrillo, F.; Colom, X.; Suñol, J.J.; Saurina, J. Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Eur. Polym. J. 2004, 40, 2229–2234. [Google Scholar] [CrossRef]
- Etale, A.; Onyianta, A.J.; Turner, S.R.; Eichhorn, S.J. Cellulose: A review of water interactions, applications in composites, and water treatment. Chem. Rev. 2023, 123, 2016–2048. [Google Scholar] [CrossRef]
- Guo, X.; Liu, L.; Wu, J.; Fan, J.; Wu, Y. Qualitatively and quantitatively characterizing water adsorption of a cellulose nanofiber film using micro-FTIR spectroscopy. RSC Adv. 2018, 8, 4214–4220. [Google Scholar] [CrossRef]
- Zhou, S.; Tashiro, K.; Hongo, T.; Shirataki, H.; Yamane, C.; Ii, T. Influence of water on structure and mechanical properties of regenerated cellulose studied by an organized combination of infrared spectra, X-ray diffraction, and dynamic viscoelastic data measured as functions of temperature and humidity. Macromolecules 2001, 34, 1274–1280. [Google Scholar] [CrossRef]
- Geminiani, L.; Campione, F.P.; Corti, C.; Luraschi, M.; Motella, S.; Recchia, S.; Rampazzi, L. Differentiating between natural and modified cellulosic fibres using ATR-FTIR spectroscopy. Heritage 2022, 5, 4114–4139. [Google Scholar] [CrossRef]
- Åkerholm, M.; Salmén, L. Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 2001, 42, 963–969. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaji, A.; Okuda, Y.; Kobayashi, C.; Kurahashi, R.; Kazuma, K.; Chiba, K.; Hirata, M.; Ikemoto, Y.; Osaka, K.; Gao, J.; et al. Structural Analysis of Regenerated Cellulose Textile Covered with Cellulose Nano Fibers. Polymers 2025, 17, 2015. https://doi.org/10.3390/polym17152015
Yamaji A, Okuda Y, Kobayashi C, Kurahashi R, Kazuma K, Chiba K, Hirata M, Ikemoto Y, Osaka K, Gao J, et al. Structural Analysis of Regenerated Cellulose Textile Covered with Cellulose Nano Fibers. Polymers. 2025; 17(15):2015. https://doi.org/10.3390/polym17152015
Chicago/Turabian StyleYamaji, Ayaka, Yui Okuda, Chikaho Kobayashi, Rikako Kurahashi, Kyoko Kazuma, Kazuki Chiba, Mitsuhiro Hirata, Yuka Ikemoto, Keiichi Osaka, Jiacheng Gao, and et al. 2025. "Structural Analysis of Regenerated Cellulose Textile Covered with Cellulose Nano Fibers" Polymers 17, no. 15: 2015. https://doi.org/10.3390/polym17152015
APA StyleYamaji, A., Okuda, Y., Kobayashi, C., Kurahashi, R., Kazuma, K., Chiba, K., Hirata, M., Ikemoto, Y., Osaka, K., Gao, J., Sato, H., & Matsuba, G. (2025). Structural Analysis of Regenerated Cellulose Textile Covered with Cellulose Nano Fibers. Polymers, 17(15), 2015. https://doi.org/10.3390/polym17152015