Investigation into PVDF-HFP and PVP Polymer Blend Electrolytes with Lithium Ions for Energy Storage Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PVDF-HFP/PVP/LiI-Based Solid Polymer Electrolyte
2.3. Characterization of Solid Polymer Electrolyte Films
3. Result and Discussion
3.1. XRD Analysis
3.2. FTIR Studies
3.3. AC Impedance Studies
3.4. Measurements of Conductance Spectra
3.5. Temperature-Dependent Conductivity Studies
3.6. Dielectric Constant Studies
3.7. Real and Imaginary Modulus Studies
3.8. Tangent Studies
3.9. Argand Plot Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, I.-D.; Chang, F.-C. Determination of the interaction within polyester-based solid polymer electrolyte using FTIR spectroscopy. Polymer 2007, 48, 989–996. [Google Scholar] [CrossRef]
- Hirankumar, G.; Selvasekarapandian, S.; Bhuvaneswari, M.S.; Baskaran, R.; Vijayakumar, M. Ag+ ion transport studies in a polyvinyl alcohol-based polymer electrolyte system. J. Solid State Electrochem. 2006, 10, 193–197. [Google Scholar] [CrossRef]
- Rudhziah, S.; Muda, N.; Ibrahim, S.; Rahman, A.A.; Mohamed, N.S. Proton conducting polymer electrolytes based on PVDF-HEP and PVDF-HFP/PEMA blend. Sains Malays. 2011, 40, 707–712. [Google Scholar]
- Subba Reddy, C.V.; Sharma, A.K.; Narasimha Rao, V.V.R. Conductivity and discharge characteristics of polyblend (PVP+PVA+KIO3) electrolyte. J. Power Sources 2003, 114, 338–345. [Google Scholar] [CrossRef]
- Ramesh, S.; Yahaya, A.H.; Arof, A.K. Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ion. 2002, 152–153, 291–294. [Google Scholar] [CrossRef]
- Jacob, M.M.E.; Arof, A.K. FTIR studies of DMF plasticized polyvinylidene fluoride based polymer electrolytes. Electrochim. Acta 2000, 45, 1701–1706. [Google Scholar] [CrossRef]
- Subramanian, V.; Prasad, K.H.; Das, H.T.; Ganapathy, K.; Nallani, S.; Maiyalagan, T. Novel dispersion of 1D nanofiber fillers for fast ion-conducting nanocomposite polymer blend quasi-solid electrolytes for dye-sensitized solar cells. ACS Omega 2022, 7, 1658–1670. [Google Scholar] [CrossRef]
- Gohel, K.; Kanchan, D.F. Ionic conductivity and relaxation studies in PVDF-HEP:PMMA-based gel polymer blend electrolyte with LiClO4 salt. J. Adv. Dielectr. 2018, 8, 1850005. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, Z. Characterization of the polymer electrolyte based on the blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(vinyl pyrrolidone) for lithium ion battery. Mater. Chem. Phys. 2003, 82, 16–20. [Google Scholar] [CrossRef]
- Rajendran, S.; Mahendran, O.; Kannan, R. Lithium ion conduction in plasticized PMMA-PVdF polymer blend electrolytes. Mater. Chem. Phys. 2002, 74, 52–57. [Google Scholar] [CrossRef]
- Guo, X.; Li, S.; Chen, F.; Chu, Y.; Wang, X.; Wan, W.; Zhao, L.; Zhu, Y. Performance improvement of PVDF-HFP-based gel polymer electrolyte with the dopant of octavinyl-polyhedral oligomeric silsesquioxane. Materials 2021, 14, 2701. [Google Scholar] [CrossRef] [PubMed]
- Mahendrakar, S.; Anna, M.; Jaipal Reddy, M. Structural, Morphological and FTIR of PVDF-HFP and lithium tetrafluoroborate salt as polymer electrolyte membrane in lithium ion batteries. Int. J. ChemTech Res. 2015, 8, 319–328. [Google Scholar]
- He, J.; Liu, J.; Li, J.; Lai, Y.; Wu, X. Enhanced ionic conductivity and electrochemical capacity of lithium ion battery based on PVDF-HEP/HDPE membrane. Mater. Lett. 2016, 170, 126–129. [Google Scholar] [CrossRef]
- Wei, N.; Hu, J.; Zhang, M.; He, J.; Ni, P. Cross-linked porous polymer separator using vinyl-modified aluminium oxide nanoparticles as cross-linker for lithium-ion batteries. Electrochim. Acta 2019, 307, 495–502. [Google Scholar] [CrossRef]
- Yang, H.; Bright, J.; Chen, B.; Zheng, P.; Gao, X.; Liu, B.; Kasani, S.; Zhang, X.; Wu, N. Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber-polymer composite electrolyte for aoo-solid-state lithium metal batteries. J. Mater. Chem. A 2020, 8, 7261–7272. [Google Scholar] [CrossRef]
- Abbrent, S.; Plestil, J.; Hlavata, D.; Lindgren, J.; Tegenfeldt, J.; Wendsjo, A. Crystallinity and morphology of PVdF-HEP-based gel electrolytes. Polymer 2001, 42, 1407–1416. [Google Scholar] [CrossRef]
- Karpagavel, K.; Sundaramahalingam, K.; Manikandan, A.; Vanitha, D.; Manohar, A.; Nagarajan, E.R.; Nallamuthu, N. Electrical properties of lithium-ion conducting Poly (Vinylidene Fluoride-Co-hexafluoropropylene) (PVDF-HEP)/Polyvinylpyrrolidone (PVP) solid polymer electrolyte. J. Electron. Mater. 2021, 50, 4415–4425. [Google Scholar] [CrossRef]
- Ubarhande, R.M.; Bhattacharya, S.; Rani, M.U.; Babu, R.S.; Krishnaveni, S. Investigations on PVdF-HFP-PEMA polymer blend electrolytes doped with different lithium salts. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 022004. [Google Scholar] [CrossRef]
- Sangeetha, M.; Mallikarjun, A.; Jaipal Reddy, M.; Siva Kumar, J. FTIR spectroscopic and DC ionic conductivity studies of PVDF-HEP:LiBF4:EC plasticized polymer electrolyte membrane. IOP Conf. Ser. Mater. Sci. Eng. 2017, 225, 012049. [Google Scholar] [CrossRef]
- Ulaganathan, M.; Rajendran, S. Effect of different salts on PVAc/PVdF-co-HEP based polymer blend electrolytes. J. Appl. Polym. Sci. 2010, 118, 646–651. [Google Scholar] [CrossRef]
- Karger, J. Fast ion transport in solids. Zeitsschrift Phys. Chemie 1995, 189, 274–275. [Google Scholar] [CrossRef]
- Shyly, P.M.; Dawn Dharma Roy, S.; Thiravetyan, P.; Thanikaikarasan, S.; Sebastian, P.J.; Eapen, D.; Sahaya Shajan, X.J. Investigations on the effect of chitin nanofiber in PMMA based solid polymer electrolyte systems. New Mater Electrochem. Syst. 2014, 17, 133. [Google Scholar]
- Shalu, S.K.; Chaurasia, S.K.; Singh, R.K.; Chandra, S. Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4]. J. Phys. Chem. B 2013, 117, 897–906. [Google Scholar] [CrossRef]
- Sim, L.N.; Majid, S.R.; Arof, A.K. FTIR studies on PEMA/PVdF-HEP blend polymer electrolytes system incorporated with LiCF3SO3 salt. Vib. Spectrosc. 2012, 58, 57–66. [Google Scholar] [CrossRef]
- Manjuladevi, R.; Thamilselvan, M.; Selvasekarapandian, S.; Mangalam, R.; Premalatha, M.; Monisha, S. Mg-ion conducting blend polymer electrolyte based on poly(vinyl alcohol)-poly(acrylonitrile) with magnesium perchlorate. Solid State Ion. 2017, 308, 90–100. [Google Scholar] [CrossRef]
- Sundaramahalingam, K.; Vanitha, D.; Nallamuthu, N.; Manikandan, A.; Muthuvinayagam, M. Electrical properties of lithium bromide poly ethylene oxide/poly pyrrolidone polymer blend electrolyte. Phys. B Condens. Matter 2019, 553, 120–126. [Google Scholar] [CrossRef]
- Inbavalli, D.; Selvasekarapandian, S.; Sanjeeviraja, C.; Baskaran, R.; Nithya, S.; Kawamura, J.; Masuda, Y. Analysis of P(VdCl-co-AN-co-MMA)-LiClO4-EC triblock copolymer electrolytes. Bull. Mater. Sci. 2015, 38, 183–190. [Google Scholar] [CrossRef]
- Chen-Yang, Y.W.; Chen, H.C.; Lin, F.J.; Liao, C.W.; Chen, T.L. Preparation and conductivity of the composite polymer electrolytes based on poly[bis(methoxyethoxyethoxy)phosphazerne], LiClO4 and α-Al2O3. Solid State Ion. 2003, 156, 383–392. [Google Scholar] [CrossRef]
- Liao, C.S.; Ye, W.-B. Structural and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes. Electrochim. Acta 2004, 49, 4993–4998. [Google Scholar] [CrossRef]
- Zain, N.M.; Arof, A.K. Structural and electrical properties of poly(ethylene oxide)-cadmium sulphate complexes. Mater. Sci. Eng. B 1998, 52, 40–46. [Google Scholar] [CrossRef]
- Shen, Z.; Simon, G.P.; Cheng, Y.B. Saturation ratio of poly(ethylene oxide) to silicate in melt intercalated nanocomposites. Eur. Polym. J. 2003, 39, 1917–1924. [Google Scholar] [CrossRef]
- Papke, B.L.; Ratner, M.A.; Shriver, D.F. Vibrational spectroscopic determination of structure and ion pairing in complexes of poly(ethylene oxide) with lithium salts. J. Electrochem. Soc. 1982, 129, 1434. [Google Scholar] [CrossRef]
- Dey, A.; Karan, S.; De, S.K. Effect of nanofillers on thermal and transport properties of potassium iodide-polyethylene oxide solid polymer electrolyte. Solid State Commun. 2009, 149, 1282–1287. [Google Scholar] [CrossRef]
- Sundaramahalingam, K.; Nallamuthu, N.; Manikandan, A.; Vanitha, D.; Muthuvinayagam, M. Studies on sodium nitrate based polyethylene oxide/polyvinyl pyrrolidone polymer blend electrolytes. Phys. B Condens. Matter 2018, 547, 55–63. [Google Scholar] [CrossRef]
- Sapri, M.N.Z.M.; Ahmad, A.H. Conductivity and dielectric studies of pure and doped poly (Ethylene oxide) (PEO) solid polymer electrolyte films. J. Teknolpgi 2015, 76, 47–51. [Google Scholar]
- Arya, A.; Sharma, S.; Sharma, A.L.; Kumar, D.; Sadiq, M. Structural and Dielectric Behaviour of Blend Polymer Electrolyte based on PEO-PAN + LiPF6. Asian J. Eng. Appl. Technol. 2016, 5, 4–7. [Google Scholar] [CrossRef]
- Shyly, P.M.; Karuppasamy, K.; Linda, T.; Thiravetyan, P. Ionic Conductivity and Dielectric Studies of Chitin Nanofiber (CNF) Incorporated PMMA Based Polymer Electrolytes. IOSR J. Appl. Phys. 2012, 1, 47–51. [Google Scholar]
- Mahalakshmi, P.; Chitra, S.; Radha, K.P. Dielectric and ionic conductivity analysis of solid polymer electrolyte based on PMMA. Int. J. Adv. Sci. Res. 2016, 1, 21–24. [Google Scholar]
- Sangeetha, R.S.D.; Arasu, P.T.; Hirankumar, G.; Bella, R.S.D. Analysis of dielectric, modulus, electro chemical stability of PVP—ABSA polymer electrolyte systems. Int. J. Chem. Sci. 2016, 14, 477–481. [Google Scholar]
- Woo, H.J.; Majid, S.R.; Arof, A.K. Dielectric properties and morphology of polymer electrolyte based on poly(ε-caprolactone) and ammonium thiocyanate. Mater. Chem. Phys. 2012, 134, 755–761. [Google Scholar] [CrossRef]
- Radha, K.P.; Selvasekarapandian, S.; Karthikeyan, S.; Hema, M.; Sanjeeviraj, C. Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F. Ionics 2013, 19, 1437–1447. [Google Scholar] [CrossRef]
- Aziz, S.B.; Abidin, Z.H.Z.; Arof, A.K. Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan silver triflate electrolyte membrane. Express Polym. Lett. 2010, 4, 300–310. [Google Scholar] [CrossRef]
- Pradhan, D.K.; Choudhary, R.N.P.; Samantaray, B.K. Studies of structural, thermal and electrical behavior of polymer nanocomposite electrolytes. Express Polym. Lett. 2008, 2, 630–638. [Google Scholar] [CrossRef]
- Hill, R.M.; Dissado, L.A. Debye and non-D ebye relaxation. J. Phys. C Solid State Phys. 1985, 18, 3829. [Google Scholar] [CrossRef]
- Aziz, B.S.; Abdullah, O.G.; Hussein, S.A.; Ahmed, H.M. Effect of PVA Blending on Structural and Ion Transport Properties of CS:AgNt-Based Polymer Electrolyte Membrane. Polymers 2017, 9, 622. [Google Scholar] [CrossRef]
Sample | Conductivity (S·cm−1) | Activation Energy | Dielectric Constant | Relaxation Time (S) |
---|---|---|---|---|
PPHLI 5% | 1.2385 × 10−7 | −2.843 × 10−9 | 2.876 × 103 | 2.517 × 10−4 |
PPHLI 10% | 6.8678 × 10−7 | −7.529 × 10−7 | 2.918 × 104 | 3.942 × 10−4 |
PPHLI 15% | 7.504 × 10−5 | −6.824 × 10−5 | 1.586 × 106 | 1.740 × 10−4 |
PPHLI 20% | 2.837 × 10−5 | −8.195 × 10−6 | 1.21173 × 105 | 1.440 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gogoi, B.J.; Murugesan, M.; Nallamuthu, N.; Devendran, P.; Murugan, A.; Blange, R.; Shellaiah, M. Investigation into PVDF-HFP and PVP Polymer Blend Electrolytes with Lithium Ions for Energy Storage Application. Polymers 2025, 17, 1758. https://doi.org/10.3390/polym17131758
Gogoi BJ, Murugesan M, Nallamuthu N, Devendran P, Murugan A, Blange R, Shellaiah M. Investigation into PVDF-HFP and PVP Polymer Blend Electrolytes with Lithium Ions for Energy Storage Application. Polymers. 2025; 17(13):1758. https://doi.org/10.3390/polym17131758
Chicago/Turabian StyleGogoi, Bilash Jyoti, M. Murugesan, N. Nallamuthu, P. Devendran, Arumugam Murugan, Radak Blange, and Muthaiah Shellaiah. 2025. "Investigation into PVDF-HFP and PVP Polymer Blend Electrolytes with Lithium Ions for Energy Storage Application" Polymers 17, no. 13: 1758. https://doi.org/10.3390/polym17131758
APA StyleGogoi, B. J., Murugesan, M., Nallamuthu, N., Devendran, P., Murugan, A., Blange, R., & Shellaiah, M. (2025). Investigation into PVDF-HFP and PVP Polymer Blend Electrolytes with Lithium Ions for Energy Storage Application. Polymers, 17(13), 1758. https://doi.org/10.3390/polym17131758