The Scissors Effect of the Macromolecular Crosslinker on the Glass Transition of Polystyrene in Its Conetworks with Poly(dimethylsiloxane)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Synthesis of PSt-l-PDMS and PSt-l-PDMS/DVB Conetworks, and Polystyrene Homopolymer
2.3. Differential Scanning Calorimetry (DSC)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erdodi, G.; Kennedy, J.P. Amphiphilic conetworks: Definition, synthesis, applications. Prog. Polym. Sci. 2006, 31, 1–18. [Google Scholar] [CrossRef]
- Patrickios, C.S. (Ed.) Amphiphilic Polymer Co-Networks: Synthesis, Properties, Modelling and Applications; Royal Society of Chemistry: Cambride, UK, 2000. [Google Scholar] [CrossRef]
- Ramazani, A.; Dabbaghi, A.; Gouranlou, F. Synthesis of Amphiphilic Co-network Through Click Chemistry Reactions: A Review. Curr. Org. Chem. 2018, 22, 362–369. [Google Scholar] [CrossRef]
- Patrickios, C.S.; Matyjaszewski, K. Amphiphilic polymer co-networks: 32 years old and growing stronger—A perspective. Polym. Int. 2021, 70, 10–13. [Google Scholar] [CrossRef]
- Ulrich, S.; Osypova, A.; Panzarasa, G.; Rossi, R.M.; Bruns, N.; Boesel, L.F. Pyranine-Modified Amphiphilic Polymer Conetworks as Fluorescent Ratiometric pH Sensors. Macromol. Rapid Commun. 2019, 40, 1900360. [Google Scholar] [CrossRef]
- Huang, C.S.; Jakubowski, K.; Ulrich, S.; Yakunin, S.; Clerc, M.; Toncelli, C.; Rossi, R.M.; Kovalenko, M.V.; Boesel, L.F. Nano-domains assisted energy transfer in amphiphilic polymer conetworks for wearable luminescent solar concentrators. Nano Energy 2020, 76, 105039. [Google Scholar] [CrossRef]
- Huang, C.S.; Yakunin, S.; Avaro, J.; Kang, X.; Bodnarchuk, M.I.; Liebi, M.; Sun, X.; Rossi, R.M.; Kovalenko, M.V.; Boesel, L.F. Amphiphilic Polymer Co-Network: A Versatile Matrix for Tailoring the Photonic Energy Transfer in Wearable Energy Harvesting Devices. Adv. Energy Mater. 2022, 12, 2200441. [Google Scholar] [CrossRef]
- Velasquez, S.T.R.; Jang, D.; Jenkins, P.; Liu, P.; Yang, L.; Korley, L.T.J.; Bruns, N. Peptide-Reinforced Amphiphilic Polymer Conetworks. Adv. Funct. Mater. 2022, 32, 2207317. [Google Scholar] [CrossRef]
- Mugemana, C.; Mertz, G.; Grysan, P.; Dieden, R.; Ruch, D. Adhesive Films from Dopamine-Functionalized Polydimethylsiloxane Polymer Conetworks. Macromol. Chem. Phys. 2023, 224, 2200456. [Google Scholar] [CrossRef]
- Mugemana, C.; Grysan, P.; Dieden, R.; Ruch, D.; Bruns, N.; Dubois, P. Self-Healing Metallo-Supramolecular Amphiphilic Polymer Conetworks. Macromol. Chem. Phys. 2020, 221, 1900432. [Google Scholar] [CrossRef]
- Mugemana, C.; Martin, A.; Grysan, P.; Dieden, R.; Ruch, D.; Dubois, P. Scratch-Healing Surface-Attached Coatings from Metallo-Supramolecular Polymer Conetworks. Macromol. Chem. Phys. 2021, 222, 2000331. [Google Scholar] [CrossRef]
- Fodor, C.; Domján, A.; Iván, B. Unprecedented Scissor Effect of Macromolecular Cross-linkers on the Glass Transition Temperature of Poly(N-vinylimidazole), Crystallinity Suppression of Poly(tetrahydrofuran) and Molecular Mobility by Solid State NMR in Poly(N-vinylimidazole)-l-poly(tetrahydrofuran) Conetworks. Polym. Chem. 2013, 4, 3714–3724. [Google Scholar] [CrossRef]
- Pásztor, S.; Becsei, B.; Szarka, G.; Thomann, Y.; Thomann, R.; Mühlhaupt, R.; Iván, B. The scissors effect in action: The Fox-Flory relationship between the glass transition temperature of crosslinked poly(methyl methacrylate) and Mc in nanophase separated poly(methyl methacrylate)-l-polyisobutylene conetworks. Materials 2020, 13, 4822. [Google Scholar] [CrossRef]
- Stumphauser, T.; Kasza, G.; Domján, A.; Wacha, A.; Varga, Z.; Thomann, Y.; Thomann, R.; Pásztói, B.; Trötschler, T.M.; Kerscher, B.; et al. Nanoconfined Crosslinked Poly(ionic liquid)s with Unprecedented Selective Swelling Properties Obtained by Alkylation in Nanophase-Separated Poly(1-vinylimidazole)-l-poly(tetrahydrofuran) Conetworks. Polymers 2020, 12, 2292. [Google Scholar] [CrossRef] [PubMed]
- Benski, L.; Viran, I.; Katzenberg, F.; Tiller, J.C. Small-Angle X-Ray Scattering Measurements on Amphiphilic Polymer Conetworks Swollen in Orthogonal Solvents. Macromol. Chem. Phys. 2021, 222, 2000292. [Google Scholar] [CrossRef]
- Wilhelm, S.A.; Maricanov, M.; Brandt, V.; Katzenberg, F.; Tiller, J.C. Amphiphilic polymer conetworks with ideal and non-ideal swelling behavior demonstrated by small angle X-ray scattering. Polymer 2022, 242, 124582. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, C.; Zhang, X.; Deng, Y.; Wu, J. Effectiveness of novel amphiphilic co-network coatings in marine antifouling applications and the dynamic succession of early microbial communities on surfaces. Prog. Org. Coat. 2025, 204, 109184. [Google Scholar] [CrossRef]
- Apostolides, D.E.; Michael, G.; Patrickios, C.S.; Sakai, T.; Kyroglou, I.; Kasimatis, M.; Iatrou, H.; Prévost, S.; Gradzielski, M. The First Example of a Model Amphiphilic Polymer Conetwork Containing a Hydrophobic Oligopeptide: The Case of End-Linked Tetra[Poly(ethylene glycol)-b-oligo(L-alanine)]. Gels 2025, 11, 331. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.; Patrickios, C.S.; Jin, J. Synthesis of Amphiphilic Polymer Co-Networks via the Growth of a Living RAFT Network. Macromol. Chem. Phys. 2025, 226, 2500004. [Google Scholar] [CrossRef]
- Velasquez, S.T.; Jang, D.; Thomas, J.A.; Grysan, P.; Korley, L.; Bruns, N. Advanced mechanical properties of amphiphilic polymer conetworks through hierarchical reinforcement with peptides and cellulose nanocrystals. Polym. Chem. 2025, 16, 2618–2628. [Google Scholar] [CrossRef]
- Chiang, M.C.; Clarke, B.R.; Tew, G.N.; Schiffman, J.D. Antifouling Activity of Bottlebrush Network Hydrogels. ACS Appl. Bio Mater. 2025, 8, 4200–4208. [Google Scholar] [CrossRef]
- Biswas, A.; Chandel, A.K.S.; Anuradha; Vadadoriya, N.; Mamtani, V.; Jewrajka, S.K. Structurally Heterogeneous Amphiphilic Conetworks of Poly(vinyl imidazole) Derivatives with Potent Antimicrobial Properties and Cytocompatibility. ACS Appl. Mater. Inter. 2023, 15, 46333–46346. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, S.; Samui, A.B.; Kulkarni, P.S. Crosslinked polymer networks of poly(ethylene glycol) (PEG) and hydroxyl terminated poly(dimethyl siloxane) (HTPDMS) as polymeric phase change material for thermal energy storage. Sol. Energy 2019, 181, 187–194. [Google Scholar] [CrossRef]
- Pal, S.; Mondal, R.; Guha, S.; Chatterjee, U.; Jewrajka, S.K. Homogeneous Phase Crosslinked Poly(Acrylonitrile-co-2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) Conetwork Cation Exchange Membranes Showing High Electrochemical Properties and Electrodialysis Performance. Polymer 2019, 180, 121680. [Google Scholar] [CrossRef]
- Hossain, I.; Kim, D.; Munsur, A.Z.A.; Roh, J.M.; Park, H.B.; Kim, T.H. PEG/PPG-PDMS-Based Cross-Linked Copolymer Membranes Prepared by ROMP and in Situ Membrane Casting for CO2 Separation: An Approach to Endow Rubbery Materials with Properties of Rigid Polymers. ACS Appl. Mater. Inter. 2020, 12, 27286–27299. [Google Scholar] [CrossRef]
- Kim, D.; Hossain, I.; Kim, Y.; Choi, O.; Kim, T.H. PEG/PPG-PDMS-Adamantane-Based Crosslinked Terpolymer Using the ROMP Technique to Prepare a Highly Permeable and CO2-Selective Polymer Membrane. Polymers 2020, 12, 1674. [Google Scholar] [CrossRef]
- Clarke, B.R.; Tew, G.N. Bottlebrush Amphiphilic Polymer Co-Networks. Macromolecules 2022, 55, 5131–5139. [Google Scholar] [CrossRef]
- Zeng, D.; Hayward, R.C. Effects of Randomly End-Linked Copolymer Network Parameters on the Formation of Disordered Cocontinuous Phases. Macromolecules 2019, 52, 2642–2650. [Google Scholar] [CrossRef]
- De Bruycker, K.; Mertens, C.; Du Prez, F.E. Thiolactone Chemistry for the Synthesis of Functional Silicone-Based Amphiphilic Co-Networks. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 322–333. [Google Scholar] [CrossRef]
- Nutan, B.; Chandel, A.K.S.; Jewrajka, S.K. Liquid Prepolymer-Based in Situ Formation of Degradable Poly(ethylene glycol)-Linked-Poly(caprolactone)-Linked-Poly(2-dimethylaminoethyl)methacrylate Amphiphilic Conetwork Gels Showing Polarity Driven Gelation and Bioadhesion. ACS Appl. Bio Mater. 2018, 1, 1606–1619. [Google Scholar] [CrossRef]
- Clarke, B.R.; Witt, C.L.; Ilton, M.; Crosby, A.J.; Watkins, J.J.; Tew, G.N. Bottlebrush Networks: A Primer for Advanced Architectures. Angew. Chem., Int. Ed. 2024, 63, e202318220. [Google Scholar] [CrossRef]
- Anuradha; Das, A.; Pal, S.; Jewrajka, S.K. Physical, Electrochemical, and Solvent Permeation Properties of Amphiphilic Conetwork Membranes Formed through Interlinking of Poly(vinylidene fluoride)-Graft-Poly[(2-dimethylamino)ethyl Methacrylate] with Telechelic Poly(ethylene glycol) and Small Molecular Weight Cross-Linkers. Langmuir 2022, 38, 15340–15352. [Google Scholar] [CrossRef]
- Nutan, B.; Chandel, A.K.S.; Biswas, A.; Kumar, A.; Yadav, A.; Maiti, P.; Jewrajka, S.K. Gold Nanoparticle Promoted Formation and Biological Properties of Injectable Hydrogels. Biomacromolecules 2020, 21, 3782–3794. [Google Scholar] [CrossRef] [PubMed]
- Chandel, A.K.S.; Nutan, B.; Raval, I.H.; Jewrajka, S.K. Self-Assembly of Partially Alkylated Dextran-graft-poly[(2-dimethylamino)ethyl methacrylate] Copolymer Facilitating Hydrophobic/Hydrophilic Drug Delivery and Improving Conetwork Hydrogel Properties. Biomacromolecules 2018, 19, 1142–1153. [Google Scholar] [CrossRef]
- Kumar, A.; Nutan, B.; Jewrajka, S.K. Modulation of Properties through Covalent Bond Induced Formation of Strong Ion Pairing between Polyelectrolytes in Injectable Conetwork Hydrogels. ACS Appl. Bio Mater. 2021, 4, 3374–3387. [Google Scholar] [CrossRef]
- Lee, H.; Choi, J.-W.; Kyu, T. A Comparative Study on Electrochemical Performance of Single versus Dual Networks in Lithium Metal/Polysulfide-Polyoxide Co-Network/Lithium Titanium Oxide Cathode. Batteries 2024, 10, 163. [Google Scholar] [CrossRef]
- Dabbaghi, A.; Rahmani, S. Synthesis and Characterization of Biodegradable Multicomponent Amphiphilic Conetworks with Tunable Swelling Through Combination of Ring-Opening Polymerization and “Click” Chemistry Method as a Controlled Release Formulation for 2,4-Dichlorophenoxyacetic Acid Herbicide. Polym. Advan. Technol. 2019, 30, 368–380. [Google Scholar] [CrossRef]
- Wang, Z.L.; Li, L.Y.; Liu, H.J.; Fan, Y.L.; Shen, Y.X.; Song, F.; Zhu, L.L. Platelet-Rich Plasma/Chitosan/Chondroitin sulfate immunomodulatory hydrogel Co-Networks for diabetic wound Repair: Functions and molecular mechanisms. Chem. Eng. J. 2024, 491, 152138. [Google Scholar] [CrossRef]
- Zeng, D.; Ribbe, A.; Hayward, R.C. Anisotropic and Interconnected Nanoporous Materials from Randomly End-Linked Copolymer Networks. Macromolecules 2017, 50, 4668–4676. [Google Scholar] [CrossRef]
- Wang, D.; Luo, H.; Zhao, S.; Tan, J.; Liang, X.; Yang, J.; Zhou, S. Seawater-triggered self-renewable amphiphilic coatings with low water swelling and excellent biofilm prevention properties. Prog. Org. Coat. 2023, 175, 107351. [Google Scholar] [CrossRef]
- Apostolides, D.E.; Patrickios, C.S.; Sakai, T.; Guerre, M.; Lopez, G.; Ameéduri, B.; Ladmiral, V.; Simon, M.; Gradzielski, M.; Clemens, D.; et al. Near-Model Amphiphilic Polymer Conetworks Based on Four-Arm Stars of Poly(Vinylidene Fluoride) and Poly(Ethylene Glycol): Synthesis and Characterization. Macromolecules 2018, 51, 2476–2488. [Google Scholar] [CrossRef]
- Apostolides, D.E.; Patrickios, C.S.; Simon, M.; Gradzielski, M.; Blanazs, A.; Mussault, C.; Marcellan, A.; Alexander, N.; Wesdemiotis, C. Model dynamic covalent thermoresponsive amphiphilic polymer co-networks based on acylhydrazone end-linked Tetronic T904 star block copolymers. Polym. Chem. 2023, 14, 201–211. [Google Scholar] [CrossRef]
- Bunk, C.; Löser, L.; Fribiczer, N.; Komber, H.; Jakisch, L.; Scholz, R.; Voit, B.; Seiffert, S.; Saalwächter, K.; Lang, M.; et al. Amphiphilic Model Networks Based on PEG and PCL Tetra-arm Star Polymers with Complementary Reactivity. Macromolecules 2022, 55, 6573–6589. [Google Scholar] [CrossRef]
- Hagmann, K.; Bunk, C.; Böhme, F.; von Klitzing, R. Amphiphilic Polymer Conetwork Gel Films Based on Tetra-Poly(ethylene Glycol) and Tetra-Poly(ε-Caprolactone). Polymers 2022, 14, 2555. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Z.; Wang, H.; Feng, X.; He, C. Novel Anti-Biofouling Soft Contact Lens: L-Cysteine Conjugated Amphiphilic Conetworks via RAFT and Thiol–Ene Click Chemistry. Macromol. Biosci. 2017, 17, 1600444. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Yeh, Y.H.; Lin, W.C.; Yang, M.C. Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids Surf. B 2014, 123, 986–994. [Google Scholar] [CrossRef]
- Sittko, I.; Kremser, K.; Roth, M.; Kuehne, S.; Stuhr, S.; Tiller, J.C. Amphiphilic polymer conetworks with defined nanostructure and tailored swelling behavior for exploring the activation of an entrapped lipase in organic solvents. Polymer 2015, 64, 122–129. [Google Scholar] [CrossRef]
- Dech, S.; Wruk, V.; Fik, C.P.; Tiller, J.C. Amphiphilic polymer conetworks derived from aqueous solutions for biocatalysis in organic solvents. Polymer 2012, 53, 701–707. [Google Scholar] [CrossRef]
- Bruns, N.; Bannwarth, W.; Tiller, J.C. Amphiphilic conetworks as activating carriers for the enhancement of enzymatic activity in supercritical CO2. Biotechnol. Bioeng. 2008, 101, 19–26. [Google Scholar] [CrossRef]
- Pásztor, S.; Iván, B.; Kali, G. Extreme Difference of Polarities in a Single Material: Poly(Acrylic Acid)-Based Amphiphilic Conetworks with Polyisobutylene Cross-linker. J. Polym. Sci. Poly. Chem. 2017, 55, 1818–1821. [Google Scholar] [CrossRef]
- Domján, A.; Erdödi, G.; Wilhelm, M.; Neidhöfer, M.; Landfester, K.; Iván, B.; Spiess, H.W. Structural studies of nanophase-separated poly(2-hydroxyethyl methacrylate)-l-polyisobutylene amphiphilic conetworks by solid-state NMR and small-angle X-ray scattering. Macromolecules 2003, 36, 9107–9114. [Google Scholar] [CrossRef]
- Iván, B.; Almdal, K.; Mortensen, K.; Johannsen, I.; Kops, J. Synthesis, Characterization, and Structural Investigations of Poly(ethylacrylate)-l-polyisobutylene Bicomponent Conetwork. Macromolecules 2001, 34, 1579–1585. [Google Scholar] [CrossRef]
- Fodor, C.; Kali, G.; Thomann, R.; Thomann, Y.; Iván, B.; Mülhaupt, R. Nanophasic Morphologies as a Function of the Composition and Molecular Weight of the Macromolecular Cross-linker in Poly(N-vinylimidazole)-l-poly(tetrahydrofuran) Amphiphilic Conetworks: Bicontinuous Domain Structure in Broad Composition Ranges. RSC Adv. 2017, 7, 6827–6837. [Google Scholar] [CrossRef]
- Fodor, C.; Kali, G.; Iván, B. Poly(N-vinylimidazole)-l-poly(tetrahydrofuran) Amphiphilic Conetworks and Gels: Synthesis, Characterization, Thermal and Swelling Behavior. Macromolecules 2011, 44, 4496–4502. [Google Scholar] [CrossRef]
- Tobis, J.; Thomann, Y.; Tiller, J.C. Synthesis and characterization of chiral and thermo responsive amphiphilic conetworks. Polymer 2010, 51, 35–45. [Google Scholar] [CrossRef]
- Kizhnyaev, V.N.; Pokatilov, F.A.; Shabalin, A.I.; Zhitov, R.G. Conetworks on the Base of Polystyrene with Poly(Methyl Methacrylate) paired polymers. e-Polymers 2019, 19, 421–429. [Google Scholar] [CrossRef]
- Velasquez, S.T.; Belluati, A.; Tervoort, E.; Mattich, I.; Hertel, B.; Russell, S.; Gouveia, M.G.; Grysan, P.; Mugemana, C.; Studart, A.R.; et al. Microfluidically produced microcapsules with amphiphilic polymer conetwork shells. Adv. Mater. Technol. 2024, 9, 2400109. [Google Scholar] [CrossRef]
- Getya, D.; Lucas, A.; Gitsov, I. Composite hydrogels based on poly(ethylene glycol) and cellulose macromonomers as fortified materials for environmental cleanup and clean water safeguarding. Int. J. Mol. Sci. 2023, 24, 7558. [Google Scholar] [CrossRef]
- Hamurcu, E.E.; Hazer, B.; Baysal, B.M. Polystyrene-b-polydimethyl siloxane (PDMS) multicomponent polymer networks: Styrene polymerization with macromonomeric initiators (macroinimers) having PDMS units. Polymer 1997, 38, 2981–2987. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, Y.; Tang, Z.; Zhang, C.; Wu, J.; Wu, B. Surface Reconstruction of Silicone-Based Amphiphilic Polymers for Mitigating Marine Biofouling. Polymers 2024, 16, 1570. [Google Scholar] [CrossRef]
- Ju, J.; Hayward, R.C. Cocontinuous Nanostructures by Microphase Separation of Statistically Cross-Linked Polystyrene/Poly (2-vinylpyridine) Networks. ACS Appl. Mater. Inter. 2023, 15, 49633–49641. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Li, Y.; Ma, X.; Xie, Y.; Zhou, G.; Liu, S. Dual-Temperature/pH-Sensitive Hydrogels with Excellent Strength and Toughness Crosslinked Using Three Crosslinking Methods. Gels 2024, 10, 480. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, J.; Jia, L.; Li, J.; Liu, S. Stereo-Complex and Click-Chemical Bicrosslinked Amphiphilic Network Gels with Temperature/pH Response. Gels 2023, 9, 647. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Hayward, R.C. Interconnected Nanoporous Polysulfone by the Self-Assembly of Randomly Linked Copolymer Networks and Linear Multiblocks. ACS Appl. Mater. Inter. 2024, 16, 34079–34088. [Google Scholar] [CrossRef] [PubMed]
- Apostolides, D.E.; Michael, G.; Patrickios, C.S.; Notredame, B.; Zhang, Y.; Gohy, J.F.; Prévost, S.; Gradzielski, M.; Jung, F.A.; Papadakis, C.M. Dynamic Covalent Amphiphilic Polymer Conetworks Based on End-Linked Pluronic F108: Preparation, Characterization, and Evaluation as Matrices for Gel Polymer Electrolytes. ACS Appl. Mater. Inter. 2024, 16, 23813–23825. [Google Scholar] [CrossRef]
- Fribiczer, N.; Hagmann, K.; Bunk, C.; Böhme, F.; von Klitzing, R.; Seiffert, S. Impact of Swelling on Macroscopic and Nanoscopic Mechanical Properties of Amphiphilic Polymer Co-Networks in Non-Selective and Selective Solvents. Macromol. Chem. Phys. 2024, 225, 2300389. [Google Scholar] [CrossRef]
- Brelle, L.; Fay, F.; Ozturk, T.; Didier, N.; Renard, E.; Langlois, V. Hydrogel based on Polyhydroxyalkanoate Sulfonate: Control of the Swelling Rate by the Ionic Group content. Biomacromolecules 2023, 24, 1871–1880. [Google Scholar] [CrossRef]
- Löser, L.; Bunk, C.; Scholz, R.; Lang, M.; Böhme, F.; Saalwachter, K. Structural Characterization of Amphiphilic Conetworks in Selective and Nonselective Solvents Using 1H NMR and SAXS. Macromolecules 2024, 57, 940–954. [Google Scholar] [CrossRef]
- Strasser, P.; Walliser, C.; Ajvazi, E.; Bauer, F.; Bruggemann, O.; Lammermann, S.; Major, Z.; Minarcikova, A.; Majercikova, M.; Micusík, M.; et al. Metal-Free Curing of 3D Printable Silicone Elastomers via Thermally Triggered 2-Oxazoline Cross-Linkers. Macromolecules 2025, 58, 2709–2718. [Google Scholar] [CrossRef]
- Admoni, S.; Cohen, O.; Matyjaszewski, K.; Silverstein, M.S. Hierarchical Porosity in Emulsion-Templated Triblock Copolymer-like Structures: Mid-block Degradation and End-block Hypercrosslinking. Polymer 2025, 323, 128158. [Google Scholar] [CrossRef]
- Tenhu, H.; Vaahtera, K. Phase Separation in Polystyrene Crosslinked with Samples of Poly(dimethylsiloxane) of Various Chain Length. Eur. Polym. J. 1991, 27, 717–722. [Google Scholar] [CrossRef]
- Tenhu, H.; Heino, E.L. Polystyrene Crosslinked with Oligomeric and Polymeric Poly(dimethylsiloxane) Derivatives. Thermal and Dynamic Mechanical Studies. J. Appl. Polym. Sci. 1992, 44, 55–64. [Google Scholar] [CrossRef]
- Petróczy, A.; Szanka, I.; Wacha, A.; Varga, Z.; Thomann, Y.; Thomann, R.; Mülhaupt, R.; Bereczki, L.; Hegyesi, N.; Iván, B. Bicontinuous Nanophasic Conetworks of Polystyrene with Poly(dimethylsiloxane) and Divinylbenzene: From Macrocrosslinked to Hypercrosslinked Double-Hydrophobic Conetworks and Their Organogels with Solvent-Selective Swelling. Gels 2025, 11, 318. [Google Scholar] [CrossRef]
- Fox, T.G.; Flory, P.J. Second-Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight. J. Appl. Phys. 1950, 21, 581–591. [Google Scholar] [CrossRef]
- Stutz, H.; Illers, K.H.; Mertes, J. A Generalized Theory for the Glass Transition Temperature of Crosslinked and Uncrosslinked Polymers. J. Polym. Sci. Part B Polym. Phys. 1990, 28, 1483–1498. [Google Scholar] [CrossRef]
- Sasaki, T.; Uchida, T.; Sakurai, K. Effect of Crosslink on the Characteristic Length of Glass Transition of Network Polymers. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 1958–1966. [Google Scholar] [CrossRef]
- Glatz-Reichenbach, J.K.W.; Sorriero, L.J.; Fitzgerald, J.J. Influence of Cross-Linking on the Molecular Relaxation of an Amorphous Copolymer Near Its Glass-Transition Temperature. Macromolecules 1994, 27, 1338–1343. Available online: https://pubs.acs.org/doi/pdf/10.1021/ma00084a010 (accessed on 21 September 2023). [CrossRef]
- Clarson, S.J.; Dodgso, K.; Semlyen, J.A. Studies of cyclic and linear poly(dimethylsiloxanes): 19. Glass transition temperatures and crystallization behaviour. Polymer 1985, 26, 930–934. [Google Scholar] [CrossRef]
- Brown, D.A.; Pice, G.J. Preparation and thermal properties of block copolymers of PDMS with styrene or methyl methacrylate using ATRP. Polymer 2001, 42, 4767–4771. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, H.; Cai, M.; Liang, Y.; Li, B.; Zhang, H.; Song, R. Synthesis and characterization of PS-b-PDMS-b-PS triblock copolymer. J. Appl. Polym. Sci. 2013, 129, 247–252. [Google Scholar] [CrossRef]
- Barrie, J.A.; Munday, K. Gas transport in heterogeneous polymer blends: I. Polydimethylsiloxane-g-polystyrene and polydimethylsiloxane-b-polystyrene. J. Membr. Sci. 1983, 13, 175–195. [Google Scholar] [CrossRef]
- Cameron, G.G.; Chisholm, M.S. Polymerization of poly(dimethylsiloxane) macromers: 2. Glass transition temperatures of macromer/styrene copolymers. Polymer 1986, 27, 437–440. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Yu, L.; Skov, A.L. Revisting the Thermal Transitions of Poly(dimethylsiloxane) (PDMS) Elastomers: Addressing Common Misconceptions with Comprehensive Data. Macromol. Mater. Eng. 2025, 2500075. [Google Scholar] [CrossRef]
- Claudy, P.; Létoffé, J.M.; Camberlain, Y.; Pascault, J.P. Glass Transition of Polystyrene Versus Molecular Weight. Polym. Bull. 1983, 9, 208–215. [Google Scholar] [CrossRef]
- Kumler, P.L.; Keinath, S.E.; Boyer, R.F. ESR studies of polymer transitions. III. Effect of molecular weight and molecular weight distribution on Tg values of polystyrene as determined by ESR spin-probe studies. J. Macromol. Sci. Part B Phys. 1977, 13, 631–646. [Google Scholar] [CrossRef]
- Blanchard, L.P.; Hesse, J.; Malhotra, S.L. Effect of Molecular Weight on Glass Transition by Differential Scanning Calorimetry. Can. J. Chem. 1974, 52, 3170–3175. [Google Scholar] [CrossRef]
- Roland, C.M.; Casalini, R. Temperature dependence of local segmental motion in polystyrene and its variation with molecular weight. J. Chem. Phys. 2003, 119, 1838–1842. [Google Scholar] [CrossRef]
- Gao, L.; Oh, J.; Tu, Y.; Chang, T.; Li, C.Y. Glass transition temperature of cyclic polystyrene and the linear counterpart contamination effect. Polymer 2019, 170, 198–203. [Google Scholar] [CrossRef]
- Feng, D.; Wilkes, G.L.; Crivello, J.V. Structure-property behaviour of free radical synthesized polydimethylsiloxane-polystyrene multiblock polymers: 1. Effect of the siloxane block length. Polymer 1989, 60, 1800–1813. [Google Scholar] [CrossRef]
- Chu, J.H.; Rangarajan, P.; LaMonte Adams, J.; Register, R.A. Morphologies of strongly segregated polystyrene-poly(dimethylsiIoxane) diblock copolymers. Polymer 1995, 36, 1569–1575. [Google Scholar] [CrossRef]
- Panda, P.K.; Hsieh, C.Y.; Shen, Y.T.; Tsai, Y.H.; Tsai, H.W.; Yao, C.L.; Chen, Y.; Yang, P.C. Synthesis and physicochemical properties of doxorubicin-loaded PEGA containing amphiphilic block polymeric micelles. J. Polym. Res. 2024, 31, 306. [Google Scholar] [CrossRef]
- Domján, A.; Mezey, P.; Varga, J. Behavior of the Interphase Region of an Amphiphilic Polymer Conetwork Swollen in Polar and Nonpolar Solvent. Macromolecules 2012, 45, 1037–1040. [Google Scholar] [CrossRef]
Sample ID | Gel Fraction (%) | PDMS (wt%) | Mc (Equation (2)) (g/mol) | Mc (Equation (3)) (g/mol) | Tg (°C) |
---|---|---|---|---|---|
S-4.7-48 | 55.9 | 48.4 | 2510 | - | 83 |
S-4.7-59 | 60.4 | 59.3 | 1610 | - | 69 |
S-4.7-67 | 60.2 | 67.4 | 1140 | - | 62 |
S-4.7-76 | 63.0 | 76.4 | 730 | - | n.d. |
S-4.7-84 | 53.2 | 84.1 | 440 | - | n.d. |
S-22.2-51 | 41.3 | 51.4 | 10500 | - | 96 |
S-22.2-57 | 59.6 | 57.2 | 8310 | - | 90 |
S-22.2-68 | 54.1 | 67.9 | 5250 | - | 88 |
S-22.2-79 | 61.1 | 78.9 | 2970 | - | 81 |
S-22.2-89 | 59.6 | 89.0 | 1370 | - | n.d. |
SD36-4.7-33 | 88.1 | 33.4 | 4690 | 1550 | 90 |
SD36-4.7-44 | 86.3 | 44.3 | 2960 | 1290 | 79 |
SD36-4.7-55 | 86.7 | 55.4 | 1890 | 1030 | 72 |
SD36-4.7-65 | 87.1 | 65.2 | 1250 | 800 | 59 |
SD36-4.7-75 | 86.8 | 75.4 | 770 | 570 | n.d. |
SD36-9-65 | 94.6 | 65.3 | 2390 | 1170 | 70 |
SD36-22.2-66 | 91.1 | 65.6 | 5820 | 1660 | 83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petróczy, A.; Szanka, I.; Bereczki, L.; Hegyesi, N.; Madarász, J.; Iván, B. The Scissors Effect of the Macromolecular Crosslinker on the Glass Transition of Polystyrene in Its Conetworks with Poly(dimethylsiloxane). Polymers 2025, 17, 1656. https://doi.org/10.3390/polym17121656
Petróczy A, Szanka I, Bereczki L, Hegyesi N, Madarász J, Iván B. The Scissors Effect of the Macromolecular Crosslinker on the Glass Transition of Polystyrene in Its Conetworks with Poly(dimethylsiloxane). Polymers. 2025; 17(12):1656. https://doi.org/10.3390/polym17121656
Chicago/Turabian StylePetróczy, Anna, István Szanka, Laura Bereczki, Nóra Hegyesi, János Madarász, and Béla Iván. 2025. "The Scissors Effect of the Macromolecular Crosslinker on the Glass Transition of Polystyrene in Its Conetworks with Poly(dimethylsiloxane)" Polymers 17, no. 12: 1656. https://doi.org/10.3390/polym17121656
APA StylePetróczy, A., Szanka, I., Bereczki, L., Hegyesi, N., Madarász, J., & Iván, B. (2025). The Scissors Effect of the Macromolecular Crosslinker on the Glass Transition of Polystyrene in Its Conetworks with Poly(dimethylsiloxane). Polymers, 17(12), 1656. https://doi.org/10.3390/polym17121656