Heat-Treated Ni-Coated Fibers for EMI Shielding: Balancing Electrical Performance and Interfacial Integrity
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electroless Ni Plating
2.3. Post-Heat Treatment and Fabrication
2.4. Surface and Structure Characterization
2.5. Electrical Conductivity
2.6. EMI-SE
2.7. Mechanical Test
3. Results and Discussion
3.1. Surface Morphology
3.2. Structural Properties
3.3. Electrical Properties
3.4. EMI Shielding Properties
3.5. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Heo, J.S.; Eom, J.; Kim, Y.H.; Park, S.K. Recent progress of textile-based wearable electronics: A comprehensive review of materials, devices, and applications. Small 2018, 14, 1703034. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.M.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in healthcare wearable devices. NPJ Flex. Electron. 2021, 5, 9. [Google Scholar] [CrossRef]
- Nižetić, S.; Šolić, P.; Gonzalez-De, D.L.-d.-I.; Patrono, L. Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. J. Clean. Prod. 2020, 274, 122877. [Google Scholar] [CrossRef]
- Ometov, A.; Shubina, V.; Klus, L.; Skibińska, J.; Saafi, S.; Pascacio, P.; Flueratoru, L.; Gaibor, D.Q.; Chukhno, N.; Chukhno, O. A survey on wearable technology: History, state-of-the-art and current challenges. Comput. Netw. 2021, 193, 108074. [Google Scholar] [CrossRef]
- Beall, C.; Delzell, E.; Cole, P.; Brill, I. Brain tumors among electronics industry workers. Epidemiology 1996, 7, 125–130. [Google Scholar] [CrossRef]
- Grayson, J.K. Radiation exposure, socioeconomic status, and brain tumor risk in the US Air Force: A nested case-control study. Am. J. Epidemiol. 1996, 143, 480–486. [Google Scholar] [CrossRef]
- Miller, A.B.; Sears, M.E.; Morgan, L.L.; Davis, D.L.; Hardell, L.; Oremus, M.; Soskolne, C.L. Risks to health and well-being from radio-frequency radiation emitted by cell phones and other wireless devices. Front. Public Health 2019, 7, 223. [Google Scholar] [CrossRef]
- Kostoff, R.N.; Heroux, P.; Aschner, M.; Tsatsakis, A. Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicol. Lett. 2020, 323, 35–40. [Google Scholar] [CrossRef]
- Jung, M.; Lee, Y.-s.; Hong, S.-G.; Moon, J. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cem. Concr. Res. 2020, 131, 106017. [Google Scholar] [CrossRef]
- Chung, D. Materials for electromagnetic interference shielding. Mater. Chem. Phys. 2020, 255, 123587. [Google Scholar] [CrossRef]
- Lapinsky, S.E.; Easty, A.C. Electromagnetic interference in critical care. J. Crit. Care 2006, 21, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Nan, X.; Zhang, Y.; Shen, J.; Liang, R.; Wang, J.; Jia, L.; Yang, X.; Yu, W.; Zhang, Z. A Review of the Establishment of Effective Conductive Pathways of Conductive Polymer Composites and Advances in Electromagnetic Shielding. Polymers 2024, 16, 2539. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.D.L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39, 279–285. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Liao, S.-Y.; Wan, Y.-J.; Zhu, P.-L.; Hu, Y.-G.; Zhao, T.; Sun, R.; Wong, C.-P. Electromagnetic interference shielding materials: Recent progress, structure design, and future perspective. J. Mater. Chem. C 2022, 10, 44–72. [Google Scholar] [CrossRef]
- Sabira, K.; Jayakrishnan, M.; Saheeda, P.; Jayalekshmi, S. On the absorption dominated EMI shielding effects in free standing and flexible films of poly (vinylidene fluoride)/graphene nanocomposite. Eur. Polym. J. 2018, 99, 437–444. [Google Scholar] [CrossRef]
- Kumar, G.S.; Vishnupriya, D.; Joshi, A.; Datar, S.; Patro, T.U. Electromagnetic interference shielding in 1–18 GHz frequency and electrical property correlations in poly (vinylidene fluoride)–multi-walled carbon nanotube composites. Phys. Chem. Chem. Phys. 2015, 17, 20347–20360. [Google Scholar] [CrossRef]
- Poothanari, M.A.; Abraham, J.; Kalarikkal, N.; Thomas, S. Excellent electromagnetic interference shielding and high electrical conductivity of compatibilized polycarbonate/polypropylene carbon nanotube blend nanocomposites. Ind. Eng. Chem. Res. 2018, 57, 4287–4297. [Google Scholar] [CrossRef]
- Kang, D.-J.; Lee, H.-M.; An, K.-H.; Kim, B.-J. Preparation of polyimide-based activated carbon fibers and their application as the electrode materials of electric double-layer capacitors. Carbon Lett. 2024, 34, 1653–1666. [Google Scholar] [CrossRef]
- Hu, S.; Wang, D.; Večerník, J.; Křemenáková, D.; Militký, J. Electromagnetic interference (EMI) shielding and thermal management of sandwich-structured carbon fiber-reinforced composite (CFRC) for electric vehicle battery casings. Polymers 2024, 16, 2291. [Google Scholar] [CrossRef]
- Pandey, R.; Tekumalla, S.; Gupta, M. EMI shielding of metals, alloys, and composites. In Materials for Potential EMI Shielding Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 341–355. [Google Scholar]
- Das, A.; Hayvaci, H.T.; Tiwari, M.K.; Bayer, I.S.; Erricolo, D.; Megaridis, C.M. Superhydrophobic and conductive carbon nanofiber/PTFE composite coatings for EMI shielding. J. Colloid Interface Sci. 2011, 353, 311–315. [Google Scholar] [CrossRef]
- Lee, H.; Choi, M.-K.; Kim, B.-J. Feasibility of concrete-filled fiber-reinforced plastic piles for deep foundation: A comprehensive review on geotechnical and structural characteristics. Carbon Lett. 2024, 34, 315–329. [Google Scholar] [CrossRef]
- Kim, K.-W.; Jeong, J.-S.; Chung, D.C.; An, K.-H.; Kim, B.-J. Effects of surface etching on microstructure and mechanical strength of carbon fibers. Carbon Lett. 2018, 28, 100–104. [Google Scholar]
- Xie, L.; Zhu, Y. Tune the phase morphology to design conductive polymer composites: A review. Polym. Compos. 2018, 39, 2985–2996. [Google Scholar] [CrossRef]
- Lou, C.-W.; Huang, C.-L.; Pan, Y.-J.; Lin, Z.-I.; Song, X.-M.; Lin, J.-H. Crystallization, mechanical, and electromagnetic properties of conductive polypropylene/SEBS composites. J. Polym. Res. 2016, 23, 84. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Saadeh, W.H.; Sundararaj, U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study. Carbon 2013, 60, 146–156. [Google Scholar] [CrossRef]
- Feng, L.; Zuo, Y.; He, X.; Hou, X.; Fu, Q.; Li, H.; Song, Q. Development of light cellular carbon nanotube/graphene/carbon nanocomposites with effective mechanical and EMI shielding performance. Carbon 2020, 168, 719–731. [Google Scholar] [CrossRef]
- Wu, B.; Qian, G.; Yan, Y.; Alam, M.M.; Xia, R.; Qian, J. Design of interconnected carbon fiber thermal management composites with effective EMI shielding activity. ACS Appl. Mater. Interfaces 2022, 14, 49082–49093. [Google Scholar] [CrossRef]
- Bagotia, N.; Choudhary, V.; Sharma, D. A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites. Polym. Adv. Technol. 2018, 29, 1547–1567. [Google Scholar] [CrossRef]
- Yan, Y.; Du, X.; Kuang, Y. Study on the influence of nickel-iron alloy powder on the mechanical strength and electromagnetic shielding effectiveness of iron ore tailings/cement composite. Case Stud. Constr. Mater. 2024, 21, e03740. [Google Scholar] [CrossRef]
- Park, J.; Choi, S.; Bang, J.; Lee, H.-K.; Jang, D.; Yang, B. Role of hollow glass microspheres (HGM) in improving piezoresistive response of CNT/cement composites exposed to water ingress condition. Case Stud. Constr. Mater. 2024, 21, e03721. [Google Scholar] [CrossRef]
- Tan, D.; Xu, C.; Chen, G.; Zhang, N.; Song, L.; Zhu, Y.; Wang, H.; Zhang, F.; Zhang, R.; Fan, B. Enhanced Electromagnetic Wave Absorption of Carbon Fiber Composites Coated with Nickel Nanoparticles: Structural Design, Characterization, and Mechanism Analysis. Charact. Mech. Anal. 2024. [Google Scholar] [CrossRef]
- Lee, J.; Jung, B.M.; Lee, S.B.; Lee, S.K.; Kim, K.H. FeCoNi coated glass fibers in composite sheets for electromagnetic absorption and shielding behaviors. Appl. Surf. Sci. 2017, 415, 99–103. [Google Scholar] [CrossRef]
- Bozzini, B.; Martini, C.; Cavallotti, P.; Lanzoni, E. Relationships among crystallographic structure, mechanical properties and tribological behaviour of electroless Ni–P (9%)/B4C films. Wear 1999, 225, 806–813. [Google Scholar] [CrossRef]
- Kim, K.-W.; Han, W.; Kim, B.-S.; Kim, B.-J.; An, K.-H. A study on EMI shielding enhancement behaviors of Ni-plated CFs-reinforced polymer matrix composites by post heat treatment. Appl. Surf. Sci. 2017, 415, 55–60. [Google Scholar] [CrossRef]
- Yim, Y.-J.; Rhee, K.Y.; Park, S.-J. Influence of electroless nickel-plating on fracture toughness of pitch-based carbon fibre reinforced composites. Compos. Part B Eng. 2015, 76, 286–291. [Google Scholar] [CrossRef]
- Feih, S.; Manatpon, K.; Mathys, Z.; Gibson, A.; Mouritz, A. Strength degradation of glass fibers at high temperatures. J. Mater. Sci. 2009, 44, 392–400. [Google Scholar] [CrossRef]
- ASTM D4935-89; Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. ASTM: West Conshohocken, PA, USA, 1989.
- Cheng, M.; Ren, W.; Li, H.; Liu, X.; Bandaru, S.; Zhang, J.; Zhang, X. Multiscale collaborative coupling of wood-derived porous carbon modified by three-dimensional conductive magnetic networks for electromagnetic interference shielding. Compos. Part B Eng. 2021, 224, 109169. [Google Scholar] [CrossRef]
- Saini, P.; Choudhary, V.; Singh, B.; Mathur, R.; Dhawan, S. Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth. Met. 2011, 161, 1522–1526. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Dung, N.D.; Li, Y.-A.; Yip, M.-C.; Hsu, W.-K.; Tai, N.-H. Investigation of the electric conductivity and the electromagnetic interference shielding efficiency of SWCNTs/GNS/PAni nanocomposites. Diam. Relat. Mater. 2011, 20, 1183–1187. [Google Scholar] [CrossRef]
- ASTM C1239-07; Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics. ASTM: West Conshohocken, PA, USA, 2007.
- Chen, C.; Feng, H.; Lin, H.; Hon, M.-H. The effect of heat treatment on the microstructure of electroless Ni–P coatings containing SiC particles. Thin Solid Film. 2002, 416, 31–37. [Google Scholar] [CrossRef]
- Serebryakov, A.; Stelmukh, V.; Voropaeva, L.; Novokhatskaya, N.; Levin, Y.; Gurov, A. Nanocrystallization of Co, Si, B, Zr amorphous alloy. Nanostruct. Mater. 1994, 4, 645–650. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Fukushima, H.; Askeland, P.; Drzal, L.T. The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J. Mater. Sci. 2008, 43, 2895–2907. [Google Scholar] [CrossRef]
- Han, G.; Ma, Z.; Zhou, B.; He, C.; Wang, B.; Feng, Y.; Ma, J.; Sun, L.; Liu, C. Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. J. Colloid Interface Sci. 2021, 583, 571–578. [Google Scholar] [CrossRef]
- Kim, M.; Kim, H.; Byun, S.; Jeong, S.; Hong, Y.; Joo, J.; Song, K.; Kim, J.; Lee, C.; Lee, J. PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synth. Met. 2002, 126, 233–239. [Google Scholar] [CrossRef]
- Hwang, U.; Kim, J.; Seol, M.; Lee, B.; Park, I.-K.; Suhr, J.; Nam, J.-D. Quantitative interpretation of electromagnetic interference shielding efficiency: Is it really a wave absorber or a reflector. ACS Omega 2022, 7, 4135–4139. [Google Scholar] [CrossRef] [PubMed]
- Kruželák, J.; Kvasničáková, A.; Hložeková, K.; Hudec, I. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 2021, 3, 123–172. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Duan, Y.; Meng, L. Experimental and numerical study of the interfacial shear strength in carbon fiber/epoxy resin composite under thermal loads. Int. J. Polym. Sci. 2018, 2018, 3206817. [Google Scholar] [CrossRef]
- Ozcan, S.; Tezcan, J.; Gurung, B.; Filip, P. The effect of heat treatment temperature on the interfacial shear strength of C/C composites. J. Mater. Sci. 2011, 46, 38–46. [Google Scholar] [CrossRef]
- Tsai, Y.-Y.; Wu, F.-B.; Chen, Y.-I.; Peng, P.-J.; Duh, J.-G.; Tsai, S.-Y. Thermal stability and mechanical properties of Ni–W–P electroless deposits. Surf. Coat. Technol. 2001, 146, 502–507. [Google Scholar] [CrossRef]
Category | Electroless Plating | Value |
---|---|---|
Composition | NiSO4·6H2O (g/L) | 280 |
NiCl2·6H2O (g/L) | 40 | |
Na3C6H5O7·1.5H2O (g/L) | 15 | |
NaH2PO2·2H2O (g/L) | 100 | |
NH4Cl (g/L) | 100 | |
PbNO3 (g/L) | 30 | |
Condition | pH | 8.25 |
Temperature (°C) | 85 ± 2 | |
Time (min) | 1, 3, 5, and 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Choi, M.K.; Kang, S.-H.; Han, W.; Kim, B.-J.; Kim, K.-W. Heat-Treated Ni-Coated Fibers for EMI Shielding: Balancing Electrical Performance and Interfacial Integrity. Polymers 2025, 17, 1610. https://doi.org/10.3390/polym17121610
Lee H, Choi MK, Kang S-H, Han W, Kim B-J, Kim K-W. Heat-Treated Ni-Coated Fibers for EMI Shielding: Balancing Electrical Performance and Interfacial Integrity. Polymers. 2025; 17(12):1610. https://doi.org/10.3390/polym17121610
Chicago/Turabian StyleLee, Haksung, Man Kwon Choi, Seong-Hyun Kang, Woong Han, Byung-Joo Kim, and Kwan-Woo Kim. 2025. "Heat-Treated Ni-Coated Fibers for EMI Shielding: Balancing Electrical Performance and Interfacial Integrity" Polymers 17, no. 12: 1610. https://doi.org/10.3390/polym17121610
APA StyleLee, H., Choi, M. K., Kang, S.-H., Han, W., Kim, B.-J., & Kim, K.-W. (2025). Heat-Treated Ni-Coated Fibers for EMI Shielding: Balancing Electrical Performance and Interfacial Integrity. Polymers, 17(12), 1610. https://doi.org/10.3390/polym17121610