Inclusion of Magnesium- and Strontium-Enriched Bioactive Glass into Electrospun PCL Scaffolds for Tissue Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Materials for PCL/BG Electrospun Mats
2.1.2. Materials for Biological Studies
2.2. Methods
2.2.1. Bioactive Glass Preparation
2.2.2. Electrospinning of PCL/BG Scaffolds
2.2.3. Mechanical Characterization
2.2.4. Surface Wettability
2.2.5. Methods for Tests in Simulated Body Fluid
2.2.6. Biological Evaluation
Indirect Cell Culture
Direct Cell Culture
Qualitative Staining of Alkaline Phosphatase
Immunofluorescence (IF) Staining of Osteogenic Bone Marker
3. Results and Discussion
3.1. Characterization of the Electrospun Scaffolds
3.2. Mechanical Characterization and Surface Wettability
3.3. Tests in Simulated Body Fluid
3.4. Biological Assessment
3.4.1. In Vitro Evaluation of Cytotoxicity
3.4.2. In Vitro Evaluation of Osteogenic Induction Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BG | Bioactive Glass |
PCL | Poly (ε-caprolactone) |
SBF | Simulated Body Fluid |
HA | Hydroxyapatite |
ALP | Alkaline Phosphatase |
OCN | Osteocalcin |
OPN | Osteopontin |
DCM | Dichloromethane |
DMF | Dimethylformamide |
DMEM | Dulbecco’s Modified Eagle Medium |
PBS | Phosphate-Buffered Saline |
DPBS | Dulbecco’s Phosphate-Buffered Saline |
FBS | Fetal Bovine Serum |
(E)SEM | (Environmental) Scanning Electron Microscope |
CTRL ± | Control Positive/Negative |
σMAX | Ultimate Tensile Strength |
E | Young’s Modulus |
L/T | Longitudinal/Transversal |
EtOH | Ethyl Alcohol |
References
- Li, Y.; Zhu, J.; Cheng, H.; Li, G.; Cho, H.; Jiang, M.; Gao, Q.; Zhang, X. Developments of Advanced Electrospinning Techniques: A Critical Review. Adv. Mater. Technol. 2021, 6, 2100410. [Google Scholar] [CrossRef]
- Keirouz, A.; Wang, Z.; Reddy, V.S.; Nagy, Z.K.; Vass, P.; Buzgo, M.; Ramakrishna, S.; Radacsi, N. The History of Electrospinning: Past, Present, and Future Developments. Adv. Mater. Technol. 2023, 8, 2201723. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Huang, J.; Wu, J.; Du, J. Electrospinning Nanofibers to 1D, 2D, and 3D Scaffolds and Their Biomedical Applications. Nano Res. 2021, 15, 787–804. [Google Scholar] [CrossRef]
- Palani, N.; Vijayakumar, P.; Monisha, P.; Ayyadurai, S.; Rajadesingu, S. Electrospun Nanofibers Synthesized from Polymers Incorporated with Bioactive Compounds for Wound Healing. J. Nanobiotechnol. 2024, 22, 211. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A Review on Electrospinning for Membrane Fabrication: Challenges and Applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Hench, L.L. The Story of Bioglass®. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef]
- Jones, J.R. Review of Bioactive Glass: From Hench to Hybrids. Acta Biomater. 2013, 9, 4457–4486. [Google Scholar] [CrossRef]
- Bellucci, D.; Mazzilli, A.; Martelli, A.; Mecca, F.G.; Bonacorsi, S.; Lofaro, F.D.; Boraldi, F.; Quaglino, D.; Cannillo, V. Enrichment of Strontium and Magnesium Improves the Physical, Mechanical and Biological Properties of Bioactive Glasses Undergoing Thermal Treatments: New Cues for Biomedical Applications. Ceram. Int. 2024, 50, 52819–52837. [Google Scholar] [CrossRef]
- Sergi, R.; Cannillo, V.; Boccaccini, A.R.; Liverani, L. Incorporation of Bioactive Glasses Containing Mg, Sr, and Zn in Electrospun PCL Fibers by Using Benign Solvents. Appl. Sci. 2020, 10, 5530. [Google Scholar] [CrossRef]
- Gavinho, S.R.; Pádua, A.S.; Holz, L.I.V.; Sá-Nogueira, I.; Silva, J.C.; Borges, J.P.; Valente, M.A.; Graça, M.P.F. Bioactive Glasses Containing Strontium or Magnesium Ions to Enhance the Biological Response in Bone Regeneration. Nanomaterials 2023, 13, 2717. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chen, C.Y.; Chen, K.H.; Lin, Y.H.; Yeh, T.P.; Kai-Xing Lee, A.; Huang, C.C.; Shie, M.Y. The Synergistic Effects of Strontium/Magnesium-Doped Calcium Silicate Cement Accelerates Early Angiogenesis and Bone Regeneration through Double Bioactive Ion Stimulation. Ceram. Int. 2024, 50, 7121–7131. [Google Scholar] [CrossRef]
- Ghorbani, F.; Reiter, T.; Liverani, L.; Schubert, D.W.; Boccaccini, A.R.; Roether, J.A. Progress on Electrospun Composite Fibers Incorporating Bioactive Glass: An Overview. Adv. Eng. Mater. 2023, 25, 2201103. [Google Scholar] [CrossRef]
- Meng, C.; Liu, X.; Li, R.; Malekmohammadi, S.; Feng, Y.; Song, J.; Gong, R.H.; Li, J. 3D Poly (L-Lactic Acid) Fibrous Sponge with Interconnected Porous Structure for Bone Tissue Scaffold. Int. J. Biol. Macromol. 2024, 268, 131688. [Google Scholar] [CrossRef] [PubMed]
- Canales, D.A.; Reyes, F.; Saavedra, M.; Peponi, L.; Leonés, A.; Palza, H.; Boccaccini, A.R.; Grünewald, A.; Zapata, P.A. Electrospun Fibers of Poly (Lactic Acid) Containing Bioactive Glass and Magnesium Oxide Nanoparticles for Bone Tissue Regeneration. Int. J. Biol. Macromol. 2022, 210, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Azari, A.; Golchin, A.; Maymand, M.M.; Mansouri, F.; Ardeshirylajimi, A. Electrospun Polycaprolactone Nanofibers: Current Research and Applications in Biomedical Application. Adv. Pharm. Bull. 2021, 12, 658. [Google Scholar] [CrossRef]
- Malikmammadov, E.; Tanir, T.E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-Based Materials in Biomedical Applications. J. Biomater. Sci. Polym. Ed. 2018, 29, 863–893. [Google Scholar] [CrossRef]
- Banimohamad-Shotorbani, B.; Rahmani Del Bakhshayesh, A.; Mehdipour, A.; Jarolmasjed, S.; Shafaei, H. The Efficiency of PCL/HAp Electrospun Nanofibers in Bone Regeneration: A Review. J. Med. Eng. Technol. 2021, 45, 511–531. [Google Scholar] [CrossRef]
- Prakashan, D.; Singh, A.; Deshpande, A.D.; Chandra, V.; Sharma, G.T.; Gandhi, S. Bone Marrow Derived Mesenchymal Stem Cells Enriched PCL-Gelatin Nanofiber Scaffold for Improved Wound Healing. Int. J. Biol. Macromol. 2024, 274, 133447. [Google Scholar] [CrossRef]
- Meng, C.; Tang, D.; Liu, X.; Meng, J.; Wei, W.; Gong, R.H.; Li, J. Heterogeneous Porous PLLA/PCL Fibrous Scaffold for Bone Tissue Regeneration. Int. J. Biol. Macromol. 2023, 235, 123781. [Google Scholar] [CrossRef]
- Rivoallan, N.; Mueller, M.; Baudequin, T.; Vigneron, P.; Hébraud, A.; Jellali, R.; Dermigny, Q.; Le Goff, A.; Schlatter, G.; Glasmacher, B.; et al. Comparison of Hydroxyapatite and Honeycomb Micro-Structure in Bone Tissue Engineering Using Electrospun Beads-on-String Fibers. Int. J. Artif. Organs 2024, 47, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Baudequin, T.; Gaut, L.; Mueller, M.; Huepkes, A.; Glasmache, B.; Duprez, D.; Bedoui, F.; Legallais, C. The Osteogenic and Tenogenic Differentiation Potential of C3H10T1/2 (Mesenchymal Stem Cell Model) Cultured on PCL/PLA Electrospun Scaffolds in the Absence of Specific Differentiation Medium. Materials 2017, 10, 1387. [Google Scholar] [CrossRef]
- Daskalakis, E.; Hassan, M.H.; Omar, A.M.; Acar, A.A.; Fallah, A.; Cooper, G.; Weightman, A.; Blunn, G.; Koc, B.; Bartolo, P. Accelerated Degradation of Poly-ε-Caprolactone Composite Scaffolds for Large Bone Defects. Polymers 2023, 15, 670. [Google Scholar] [CrossRef]
- Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions Able to Reproduce in Vivo Surface-Structure Changes in Bioactive Glass-Ceramic A-W3. J. Biomed. Mater. Res. 1990, 24, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Takadama, H. How Useful Is SBF in Predicting in Vivo Bone Bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Lei, Y.; Rai, B.; Ho, K.H.; Teoh, S.H. In Vitro Degradation of Novel Bioactive Polycaprolactone—20% Tricalcium Phosphate Composite Scaffolds for Bone Engineering. Mater. Sci. Eng. C 2007, 27, 293–298. [Google Scholar] [CrossRef]
- Taddei, P.; Di Foggia, M.; Causa, F.; Ambrosio, L.; Fagnano, C. In Vitro Bioactivity of Poly(∊-Caprolactone)-Apatite (PCL-AP) Scaffolds for Bone Tissue Engineering: The Influence of the PCL/AP Ratio. Int. J. Artif. Organs 2006, 29, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Yedekçi, B.; Tezcaner, A.; Yılmaz, B.; Demir, T.; Evis, Z. 3D Porous PCL-PEG-PCL/Strontium, Magnesium and Boron Multi-Doped Hydroxyapatite Composite Scaffolds for Bone Tissue Engineering. J. Mech. Behav. Biomed. Mater. 2022, 125, 104941. [Google Scholar] [CrossRef]
- Cerruti, M.; Greenspan, D.; Powers, K. Effect of pH and Ionic Strength on the Reactivity of Bioglass® 45S5. Biomaterials 2005, 26, 1665–1674. [Google Scholar] [CrossRef]
- Hu, S.; Chang, J.; Liu, M.; Ning, C. Study on Antibacterial Effect of 45S5 Bioglass. J. Mater. Sci. Mater. Med. 2009, 20, 281–286. [Google Scholar] [CrossRef]
- Moghanian, A.; Sedghi, A.; Ghorbanoghli, A.; Salari, E. The Effect of Magnesium Content on in Vitro Bioactivity, Biological Behavior and Antibacterial Activity of Sol–Gel Derived 58S Bioactive Glass. Ceram. Int. 2018, 44, 9422–9432. [Google Scholar] [CrossRef]
- Nagrath, M.; Alhalawani, A.; Rahimnejad Yazdi, A.; Towler, M.R. Bioactive Glass Fiber Fabrication via a Combination of Sol-Gel Process with Electro-Spinning Technique. Mater. Sci. Eng. C 2019, 101, 521–538. [Google Scholar] [CrossRef]
- Rahaman, M.N.; Day, D.E.; Sonny Bal, B.; Fu, Q.; Jung, S.B.; Bonewald, L.F.; Tomsia, A.P. Bioactive Glass in Tissue Engineering. Acta Biomater. 2011, 7, 2355–2373. [Google Scholar] [CrossRef] [PubMed]
- Boccaccini, A.R.; Erol, M.; Stark, W.J.; Mohn, D.; Hong, Z.; Mano, J.F. Polymer/Bioactive Glass Nanocomposites for Biomedical Applications: A Review. Compos. Sci. Technol. 2010, 70, 1764–1776. [Google Scholar] [CrossRef]
- Norris, E.; Ramos-Rivera, C.; Poologasundarampillai, G.; Clark, J.P.; Ju, Q.; Obata, A.; Hanna, J.V.; Kasuga, T.; Mitchell, C.A.; Jell, G.; et al. Electrospinning 3D Bioactive Glasses for Wound Healing. Biomed. Mater. 2020, 15, 015014. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Xu, H.; Zhang, Y.; Zou, F. Electrospinning of Polycaprolatone Nanofibers with DMF Additive: The Effect of Solution Proprieties on Jet Perturbation and Fiber Morphologies. Fibers Polym. 2016, 17, 751–759. [Google Scholar] [CrossRef]
- Doustgani, A. Effect of Electrospinning Process Parameters of Polycaprolactone and Nanohydroxyapatite Nanocomposite Nanofibers. Text. Res. J. 2015, 85, 1445–1454. [Google Scholar] [CrossRef]
- Wutticharoenmongkol, P.; Pavasant, P.; Supaphol, P. Osteoblastic Phenotype Expression of MC3T3-E1 Cultured on Electrospun Polycaprolactone Fiber Mats Filled with Hydroxyapatite Nanoparticles. Biomacromolecules 2007, 8, 2602–2610. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. ISO (the International Organization for Standardization): Geneva, Switzerland, 2009.
- Ajita, J.; Saravanan, S.; Selvamurugan, N. Effect of Size of Bioactive Glass Nanoparticles on Mesenchymal Stem Cell Proliferation for Dental and Orthopedic Applications. Mater. Sci. Eng. C 2015, 53, 142–149. [Google Scholar] [CrossRef]
- Valenzuela, F.; Covarrubias, C.; Martínez, C.; Smith, P.; Díaz-Dosque, M.; Yazdani-Pedram, M. Preparation and Bioactive Properties of Novel Bone-Repair Bionanocomposites Based on Hydroxyapatite and Bioactive Glass Nanoparticles. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 1672–1682. [Google Scholar] [CrossRef]
- Schickle, K.; Gerardo-Nava, J.L.; Puidokas, S.; Anavar, S.S.; Bergmann, C.; Gingter, P.; Schicle, B.; Bobzin, K.; Fischer, H. Preparation of Spherical Calcium Phosphate Granulates Suitable for the Biofunctionalization of Active Brazed Titanium Alloy Coatings. Biomed. Tech. 2015, 60, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Jirkovec, R.; Holec, P.; Hauzerova, S.; Samkova, A.; Kalous, T.; Chvojka, J. Preparation of a Composite Scaffold from Polycaprolactone and Hydroxyapatite Particles by Means of Alternating Current Electrospinning. ACS Omega 2021, 6, 9234–9242. [Google Scholar] [CrossRef]
- García García, A. Multiscale Analysis of Multi-Layered Tissues Constructs: Interfaces in the Musculo-Skeletal System Based on Tissue Engineered Osteotendinous Junctions; HAL ID: Paris, France, 2019; Available online: https://theses.hal.science/tel-02533666v1 (accessed on 11 March 2025).
- Fong, H.; Chun, I.; Reneker, D.H. Beaded Nanofibers Formed during Electrospinning. Polymer 1999, 40, 4585–4592. [Google Scholar] [CrossRef]
- Cramariuc, B.; Cramariuc, R.; Scarlet, R.; Manea, L.R.; Lupu, I.G.; Cramariuc, O. Fiber Diameter in Electrospinning Process. J. Electrost. 2013, 71, 189–198. [Google Scholar] [CrossRef]
- Fridrikh, S.V.; Yu, J.H.; Brenner, M.P.; Rutledge, G.C. Controlling the Fiber Diameter during Electrospinning. Phys. Rev. Lett. 2003, 90, 4. [Google Scholar] [CrossRef]
- Can-Herrera, L.A.; Oliva, A.I.; Dzul-Cervantes, M.A.A.; Pacheco-Salazar, O.F.; Cervantes-Uc, J.M. Morphological and Mechanical Properties of Electrospun Polycaprolactone Scaffolds: Effect of Applied Voltage. Polymers 2021, 13, 662. [Google Scholar] [CrossRef] [PubMed]
- Larrañaga, A.; Sarasua, J.R. Effect of Bioactive Glass Particles on the Thermal Degradation Behaviour of Medical Polyesters. Polym. Degrad. Stabilisation 2013, 98, 751–758. [Google Scholar] [CrossRef]
- dos Santos, V.R.; de Campos, T.M.B.; de Macedo, E.F.; de Cena, G.L.; Lemes, A.P.; Thim, G.P.; Tada, D.B.; Conceição, K.; Borges, A.L.S.; de Sousa Trichês, E. PHBV Wound Dressing Containing 45B5 Borate Bioactive Glass: Effect of the Particle Incorporation Method on the Cytocompatibility and Antibacterial Activity. Mater. Res. 2024, 27, e20240121. [Google Scholar] [CrossRef]
- de Souza, J.R.; Cardoso, L.M.; de Toledo, P.T.A.; Rahimnejad, M.; Kito, L.T.; Thim, G.P.; Campos, T.M.B.; Borges, A.L.S.; Bottino, M.C. Biodegradable Electrospun PLCL/PEG/Bioactive Glass Composite Scaffold for Bone Tissue Engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2024, 112, e35406. [Google Scholar] [CrossRef]
- Wong, S.C.; Baji, A.; Leng, S. Effect of Fiber Diameter on Tensile Properties of Electrospun Poly(ɛ-Caprolactone). Polymer 2008, 49, 4713–4722. [Google Scholar] [CrossRef]
- Croisier, F.; Duwez, A.S.; Jérôme, C.; Léonard, A.F.; Van Der Werf, K.O.; Dijkstra, P.J.; Bennink, M.L. Mechanical Testing of Electrospun PCL Fibers. Acta Biomater. 2012, 8, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Gou, Y.; Liu, C.; Lei, T.; Yang, F. Nanofiber Alignment during Electrospinning: Effects of Collector Structures and Governing Parameters. In Proceedings of the 2014 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, 3M-NANO 2014—Conference Proceedings, Taipei, Taiwan, 27–31 October 2014; pp. 62–65. [Google Scholar]
- Courtney, T.; Sacks, M.S.; Stankus, J.; Guan, J.; Wagner, W.R. Design and Analysis of Tissue Engineering Scaffolds That Mimic Soft Tissue Mechanical Anisotropy. Biomaterials 2006, 27, 3631–3638. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.J.; Pérez-Nava, A.; Ali, S.C.; González-Campos, J.B.; Holloway, J.L.; Cosgriff-Hernandez, E.M. Comparative Analysis of Fiber Alignment Methods in Electrospinning. Matter 2021, 4, 821–844. [Google Scholar] [CrossRef]
- Metwally, S.; Karbowniczek, J.E.; Szewczyk, P.K.; Marzec, M.M.; Gruszczyński, A.; Bernasik, A.; Stachewicz, U. Single-Step Approach to Tailor Surface Chemistry and Potential on Electrospun PCL Fibers for Tissue Engineering Application. Adv. Mater. Interfaces 2019, 6, 1801211. [Google Scholar] [CrossRef]
- Fadaie, M.; Mirzaei, E.; Geramizadeh, B.; Asvar, Z. Incorporation of Nanofibrillated Chitosan into Electrospun PCL Nanofibers Makes Scaffolds with Enhanced Mechanical and Biological Properties. Carbohydr. Polym. 2018, 199, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Oyane, A.; Uchida, M.; Yokoyama, Y.; Choong, C.; Triffitt, J.; Ito, A. Simple Surface Modification of Poly(ϵ-Caprolactone) to Induce Its Apatite-Forming Ability. J. Biomed. Mater. Res. A 2005, 75A, 138–145. [Google Scholar] [CrossRef]
- Ji, L.; Wang, W.; Jin, D.; Zhou, S.; Song, X. In Vitro Bioactivity and Mechanical Properties of Bioactive Glass Nanoparticles/Polycaprolactone Composites. Mater. Sci. Eng. C 2015, 46, 1–9. [Google Scholar] [CrossRef]
- Liu, H.; Yazici, H.; Ergun, C.; Webster, T.J.; Bermek, H. An in Vitro Evaluation of the Ca/P Ratio for the Cytocompatibility of Nano-to-Micron Particulate Calcium Phosphates for Bone Regeneration. Acta Biomater. 2008, 4, 1472–1479. [Google Scholar] [CrossRef]
- Padilla, S.; Román, J.; Sánchez-Salcedo, S.; Vallet-Regí, M. Hydroxyapatite/SiO2–CaO–P2O5 Glass Materials: In Vitro Bioactivity and Biocompatibility. Acta Biomater. 2006, 2, 331–342. [Google Scholar] [CrossRef]
- Drouet, C. Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds. Biomed. Res. Int. 2013, 2013, 490946. [Google Scholar] [CrossRef]
- Kim, Y.B.; Lim, J.Y.; Yang, G.H.; Seo, J.H.; Ryu, H.S.; Kim, G.H. 3D-Printed PCL/Bioglass (BGS-7) Composite Scaffolds with High Toughness and Cell-Responses for Bone Tissue Regeneration. J. Ind. Eng. Chem. 2019, 79, 163–171. [Google Scholar] [CrossRef]
- Lee, J.M.; Kim, M.G.; Byun, J.H.; Kim, G.C.; Ro, J.H.; Hwang, D.S.; Choi, B.B.; Park, G.C.; Kim, U.K. The Effect of Biomechanical Stimulation on Osteoblast Differentiation of Human Jaw Periosteum-Derived Stem Cells. Maxillofac. Plast. Reconstr. Surg. 2017, 39, 7. [Google Scholar] [CrossRef]
- Lee, S.S.; Du, X.; Kim, I.; Ferguson, S.J. Scaffolds for Bone-Tissue Engineering. Matter 2022, 5, 2722–2759. [Google Scholar] [CrossRef]
- Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell 2006, 126, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Yang, W.Z.; Shi, D.; Wu, M.; Xiong, X.L.; Chen, Z.G.; Wei, S.C. Bioinspired and Osteopromotive Polydopamine Nanoparticle-Incorporated Fibrous Membranes for Robust Bone Regeneration. NPG Asia Mater. 2019, 11, 39. [Google Scholar] [CrossRef]
- Banerjee, S.S.; Tarafder, S.; Davies, N.M.; Bandyopadhyay, A.; Bose, S. Understanding the Influence of MgO and SrO Binary Doping on the Mechanical and Biological Properties of β-TCP Ceramics. Acta Biomater. 2010, 6, 4167–4174. [Google Scholar] [CrossRef]
- Dias, A.M.; do Nascimento Canhas, I.; Bruziquesi, C.G.O.; Speziali, M.G.; Sinisterra, R.D.; Cortés, M.E. Magnesium (Mg2+), Strontium (Sr2+), and Zinc (Zn2+) Co-Substituted Bone Cements Based on Nano-Hydroxyapatite/Monetite for Bone Regeneration. Biol. Trace Elem. Res. 2023, 201, 2963–2981. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Lee, A.K.X.; Ho, C.C.; Fang, M.J.; Kuo, T.Y.; Shie, M.Y. The Effects of a 3D-Printed Magnesium-/Strontium-Doped Calcium Silicate Scaffold on Regulation of Bone Regeneration via Dual-Stimulation of the AKT and WNT Signaling Pathways. Biomater. Adv. 2022, 133, 112660. [Google Scholar] [CrossRef]
- Martini, L.A. Magnesium Supplementation and Bone Turnover. Nutr. Rev. 1999, 57, 227–229. [Google Scholar] [CrossRef]
- Gentleman, E.; Fredholm, Y.C.; Jell, G.; Lotfibakhshaiesh, N.; O’Donnell, M.D.; Hill, R.G.; Stevens, M.M. The Effects of Strontium-Substituted Bioactive Glasses on Osteoblasts and Osteoclasts in Vitro. Biomaterials 2010, 31, 3949–3956. [Google Scholar] [CrossRef]
- Esfahanizadeh, N.; Montazeri, M.; Nourani, M.R.; Harandi, M. Use of Bioactive Glass Doped with Magnesium or Strontium for Bone Regeneration: A Rabbit Critical-Size Calvarial Defects Study. Dent. Res. J. 2022, 1, 18. [Google Scholar] [CrossRef]
- Xue, W.; Dahlquist, K.; Banerjee, A.; Bandyopadhyay, A.; Bose, S. Synthesis and Characterization of Tricalcium Phosphate with Zn and Mg Based Dopants. J. Mater. Sci. Mater. Med. 2008, 19, 2669–2677. [Google Scholar] [CrossRef] [PubMed]
Oxide | 45S5 Composition (mol%) | 45S5_MS Composition (mol%) |
---|---|---|
SiO2 | 46.1 | 46.1 |
CaO | 26.9 | 26.9 |
Na2O | 24.4 | 9.4 |
P2O5 | 2.6 | 2.6 |
MgO | - | 5 |
SrO | - | 10 |
Sample | BG | PCL Beads (%) | BG Powder (%) |
---|---|---|---|
45_9010 | 45S5 | 90 | 10 |
45_8020 | 80 | 20 | |
45_MS_9010 | 45S5_MS | 90 | 10 |
45_MS_8020 | 80 | 20 |
Sample | Voltage (kV) | Flow Rate (mL/h) | Working Distance (cm) | Total Spun (mL) | Ambient Parameters 1 | |
---|---|---|---|---|---|---|
Ambient Temp. (°C) | Relative Humidity (%) | |||||
45_9010 | 18 | 1.5 | 15 | 3.3 | 22.1 | 68.3 |
45_8020 | 18 | 1.5 | 15 | 3.3 | 22.0 | 68.3 |
45_MS_9010 | 17.8 | 1.5 | 15 | 3.3 | 21.7 | 70.2 |
45_MS_8020 | 20 | 1.5 | 15 | 3.3 | 21.8 | 71.2 |
Sample | Mean Fiber Diameter (µm) | Mean BG Particle Size (µm2) | Area Occupied by Particles (%) |
---|---|---|---|
45_9010 | 1.58 ± 0.32 | 2.57 | 1.16 |
45_8020 | 1.03 ± 0.23 | 2.44 | 1.85 |
45_MS_9010 | 0.53 ± 0.16 | 1.41 | 1.09 |
45_MS_8020 | 1.62 ± 0.46 | 1.73 | 1.99 |
PCL 1 | 0.5–1 | - | - |
Sample | Orientation | σMAX (MPa) | Young’s Modulus (MPa) |
---|---|---|---|
45_9010 | L | 2.21 ± 0.37 | 4.84 ± 0.62 |
T | 1.94 ± 0.33 | 4.43 ± 0.92 | |
45_8020 | L | 4.32 ± 0.52 | 6.37 ± 1.64 |
T | 3.14 ± 0.57 | 5.58 ± 1.02 | |
45_MS_9010 | L | 7.48 ± 0.48 | 14.68 ± 1.61 |
T | 4.79 ± 0.52 | 8.74 ± 0.68 | |
45_MS_8020 | L | 2.16 ± 0.24 | 5.37 ± 0.43 |
T | 1.37 ± 0.14 | 4.49 ± 1.15 | |
PCL 1 | L | - | 14.89 |
Sample | Angle Mean Value (°) |
---|---|
45_9010 | 119.68 ± 2.52 |
45_8020 | 119.82 ± 1.63 |
45_MS_9010 | 120.04 ± 2.80 |
45_MS_8020 | 120.94 ± 2.40 |
PCL 1 | 122.8 ± 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mecca, F.G.; Muniz, N.O.; Bellucci, D.; Legallais, C.; Baudequin, T.; Cannillo, V. Inclusion of Magnesium- and Strontium-Enriched Bioactive Glass into Electrospun PCL Scaffolds for Tissue Regeneration. Polymers 2025, 17, 1555. https://doi.org/10.3390/polym17111555
Mecca FG, Muniz NO, Bellucci D, Legallais C, Baudequin T, Cannillo V. Inclusion of Magnesium- and Strontium-Enriched Bioactive Glass into Electrospun PCL Scaffolds for Tissue Regeneration. Polymers. 2025; 17(11):1555. https://doi.org/10.3390/polym17111555
Chicago/Turabian StyleMecca, Francesco Gerardo, Nathália Oderich Muniz, Devis Bellucci, Cécile Legallais, Timothée Baudequin, and Valeria Cannillo. 2025. "Inclusion of Magnesium- and Strontium-Enriched Bioactive Glass into Electrospun PCL Scaffolds for Tissue Regeneration" Polymers 17, no. 11: 1555. https://doi.org/10.3390/polym17111555
APA StyleMecca, F. G., Muniz, N. O., Bellucci, D., Legallais, C., Baudequin, T., & Cannillo, V. (2025). Inclusion of Magnesium- and Strontium-Enriched Bioactive Glass into Electrospun PCL Scaffolds for Tissue Regeneration. Polymers, 17(11), 1555. https://doi.org/10.3390/polym17111555