Comparative Evaluation of Dental Clinical Surface Treatments for Polyetheretherketone with Airborne-Particle Abrasion, Hydrofluoric Acid Etching, and Handheld Nonthermal Plasma Activation on Long-Term Bond Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Surface Treatment
2.2. Surface Characterization
2.3. Wettability
2.4. Cytotoxicity Testing
2.5. Bonding Procedure and Shear Bond Strength (SBS) Testing
2.6. Statistical Analyses
3. Results
3.1. Surface Characterization
3.2. Wettability
3.3. Cytotoxicity Test
3.4. SBS Testing
3.5. Debonded Interface Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gouveia, D.d.N.M.; Razzoog, M.E.; Sierraalta, M.; Alfaro, M.F. Effect of surface treatment and manufacturing process on the shear bond strength of veneering composite resin to polyetherketoneketone (PEKK) and polyetheretherketone (PEEK). J. Prosthet. Dent. 2022, 128, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, M.; Zhao, R.; Liu, H.; Li, K.; Tian, M.; Niu, L.; Xie, R.; Bai, S. Clinical applications of polyetheretherketone in removable dental prostheses: Accuracy, characteristics, and performance. Polymers 2022, 14, 4615. [Google Scholar] [CrossRef]
- Soares Machado, P.; Cadore Rodrigues, A.C.; Chaves, E.T.; Susin, A.H.; Valandro, L.F.; Pereira, G.K.R.; Rippe, M.P. Surface treatments and adhesives used to increase the bond strength between polyetheretherketone and resin-based dental materials: A scoping review. J. Adhes. Dent. 2022, 24, 233–245. [Google Scholar]
- Henriques, B.; Sampaio, M.; Buciumeanu, M.; Souza, J.C.M.; Gomes, J.R.; Silva, F.; Carvalho, O. Laser surface structuring of Ti6Al4V substrates for adhesion enhancement in Ti6Al4V-PEEK joints. Mater. Sci. Eng. C 2017, 79, 177–184. [Google Scholar] [CrossRef]
- Kadhum, A.S.; Alhuwaizi, A.F. The efficacy of polyether-ether-ketone wire as a retainer following orthodontic treatment. Clin. Exp. Dent. Res. 2021, 7, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Kiliç, M.; Dede, D.Ö.; Küçükekenci, A.S. Comparing the shear bond strength of veneering materials to the PAEKs after surface treatments. BMC Oral Health 2023, 23, 185. [Google Scholar] [CrossRef]
- Peng, T.-Y.; Shimoe, S.; Fuh, L.-J.; Lin, C.-K.; Lin, D.-J.; Kaku, M. Bonding and thermal cycling performances of two (poly)aryl–ether–ketone (PAEKs) materials to an acrylic denture base resin. Polymers 2021, 13, 543. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-Y.; Lai, S.-Y.; Lee, F.-T.; Wu, Y.-C.; Feng, S.-W.; Nikawa, H.; Peng, T.-Y. Influence of handheld nonthermal plasma on shear bond strength of polyaryletherketone to resin-matrix cement. J. Dent. Sci. 2024, 19, 2057–2064. [Google Scholar] [CrossRef]
- Henriques, B.; Fabris, D.; Mesquita-Guimarães, J.; Sousa, A.C.; Hammes, N.; Souza, J.C.M.; Silva, F.S.; Fredel, M.C. Influence of laser structuring of PEEK, PEEK-GF30 and PEEK-CF30 surfaces on the shear bond strength to a resin cement. J. Mech. Behav. Biomed. Mater. 2018, 84, 225–234. [Google Scholar] [CrossRef]
- Lee, W.-F.; Chen, M.-S.; Peng, T.-Y.; Huang, P.-C.; Nikawa, H.; Peng, P.-W. Comparative analysis of the retention force and deformation of PEEK and PEKK removable partial denture clasps with different thicknesses and undercut depths. J. Prosthet. Dent. 2024, 131, 291.e1–291.e9. [Google Scholar] [CrossRef]
- Najeeb, S.; Bds, Z.K.; Bds, S.Z.; Bds, M.S.Z. Bioactivity and osseointegration of PEEK are inferior to those of titanium: A systematic review. J. Oral Implantol. 2016, 42, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.-Y.; Ogawa, Y.; Akebono, H.; Iwaguro, S.; Sugeta, A.; Shimoe, S. Finite-element analysis and optimization of the mechanical properties of polyetheretherketone (PEEK) clasps for removable partial dentures. J. Prosthodont. Res. 2020, 64, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Win, P.P.; Chen, D.D.-S.; Sainbayar, B.; Peng, T.-Y.; Cheng, J.H.-C. Assessment of mechanical characteristics of polyetheretherketone as orthodontic fixed lingual retainers. J. Dent. Sci. 2023, 18, 1804–1811. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Jiang, J.; Bai, Y. Fabrication of a novel aesthetic orthodontic bracket and evaluation of friction properties between PEEK and stainless steel wires. Technol. Health Care 2024, 32, 269–278. [Google Scholar] [CrossRef]
- Gama, L.T.; Duque, T.M.; Özcan, M.; Philippi, A.G.; Mezzomo, L.A.M.; Gonçalves, T.M.S.V. Adhesion to high-performance polymers applied in dentistry: A systematic review. Dent. Mater. 2020, 36, e93–e108. [Google Scholar] [CrossRef]
- Alsadon, O.; Moorehead, R.; Almansour, H.; Bangalore, D.; Alageel, O.; Wood, D. Surface characteristics and adhesion of veneering composite resin to PAEK-based substructure restorative materials. J. Prosthodont. 2023, 32, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Stübinger, S.; Drechsler, A.; Bürki, A.; Klein, K.; Kronen, P.; von Rechenberg, B. Titanium and hydroxyapatite coating of polyetheretherketone and carbon fiber-reinforced polyetheretherketone: A pilot study in sheep. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 1182–1191. [Google Scholar] [CrossRef]
- Schönhoff, L.M.; Mayinger, F.; Eichberger, M.; Lösch, A.; Reznikova, E.; Stawarczyk, B. Three-dimensionally printed and milled polyphenylene sulfone materials in dentistry: Tensile bond strength to veneering composite resin and surface properties after different pretreatments. J. Prosthet. Dent. 2022, 128, 93–99. [Google Scholar] [CrossRef]
- Abdelfattah Mohamed, A.M.; El Homossany, M.E.-M.B.; Abdelmoniem, S.M.; Abdelrahman, T.Y. Comparison of tensile bond strength of ball attachments made of different materials to root canal dentin after chewing simulation. BMC Oral Health 2022, 22, 254. [Google Scholar] [CrossRef]
- Yilmaz, B.; Gouveia, D.; Schimmel, M.; Lu, W.-E.; Özcan, M.; Abou-Ayash, S. Effect of adhesive system, resin cement, heat-pressing technique, and thermomechanical aging on the adhesion between titanium base and a high-performance polymer. J. Prosthet. Dent. 2024, 131, 468–474. [Google Scholar] [CrossRef]
- Li, W.; Sang, L.; Jian, X.; Wang, J. Influence of sanding and plasma treatment on shear bond strength of 3D-printed PEI, PEEK and PEEK/CF. Int. J. Adhes. Adhes. 2020, 100, 102614. [Google Scholar] [CrossRef]
- Lee, P.-C.; Peng, T.-Y.; Ma, T.-L.; Chiang, K.-Y.; Mine, Y.; Lee, I.-T.; Yu, C.-C.; Chen, S.-F.; Yu, J.-H. Effect of various airborne particle abrasion conditions on bonding between polyether-ether-ketone (PEEK) and dental resin cement. Polymers 2023, 15, 2114. [Google Scholar] [CrossRef]
- Adali, U.; Sütel, M.; Yassine, J.; Mao, Z.; Müller, W.-D.; Schwitalla, A.D. Influence of sandblasting and bonding on the shear bond strength between differently pigmented polyetheretherketone (PEEK) and veneering composite after artificial aging. Dent. Mater. 2024, 40, 1123–1127. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Tsuka, H.; Morita, K.; Hirata, I.; Nishio, F.; Abekura, H.; Doi, K.; Tsuga, K. Nd:YVO4 laser groove treatment can improve the shear bond strength between dental PEEK and adhesive resin cement with an adhesive system. Dent. Mater. J. 2022, 41, 382–391. [Google Scholar] [CrossRef]
- Peng, T.-Y.; Shimoe, S.; Higo, M.; Kato, M.; Hirata, I.; Iwaguro, S.; Kaku, M. Effect of laser engraving on shear bond strength of polyetheretherketone to indirect composite and denture-base resins. J. Dent. Sci. 2024, 19, 32–38. [Google Scholar] [CrossRef]
- Schmidlin, P.R.; Stawarczyk, B.; Wieland, M.; Attin, T.; Hämmerle, C.H.F.; Fischer, J. Effect of different surface pre-treatments and luting materials on shear bond strength to PEEK. Dent. Mater. 2010, 26, 553–559. [Google Scholar] [CrossRef]
- Silthampitag, P.; Chaijareenont, P.; Tattakorn, K.; Banjongprasert, C.; Takahashi, H.; Arksornnukit, M. Effect of surface pretreatments on resin composite bonding to PEEK. Dent. Mater. J. 2016, 35, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Escobar, M.; Souza, J.C.M.; Barra, G.M.O.; Fredel, M.C.; Özcan, M.; Henriques, B. On the synergistic effect of sulfonic functionalization and acidic adhesive conditioning to enhance the adhesion of PEEK to resin-matrix composites. Dent. Mater. 2021, 37, 741–754. [Google Scholar] [CrossRef]
- Peng, T.-Y.; Ma, T.-L.; Lee, I.T.; Wu, S.-H.; Mine, Y.; Lin, C.-C. Enhancing dental cement bond strength with autofocus-laser-cutter-generated grooves on polyetheretherketone surfaces. Polymers 2023, 15, 3670. [Google Scholar] [CrossRef]
- Ramakrishnaiah, R.; Alkheraif, A.A.; Divakar, D.D.; Matinlinna, J.P.; Vallittu, P.K. The effect of hydrofluoric acid etching duration on the surface micromorphology, roughness, and wettability of dental ceramics. Int. J. Mol. Sci. 2016, 17, 822. [Google Scholar] [CrossRef]
- Lümkemann, N.; Eichberger, M.; Stawarczyk, B. Bonding to Different PEEK Compositions: The Impact of Dental Light Curing Units. Materials 2017, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.-F.; Lee, I.T.; Wu, S.-H.; Chen, H.-M.; Mine, Y.; Peng, T.-Y.; Kok, S.-H. Effects of handheld nonthermal plasma on the biological responses, mineralization, and inflammatory reactions of polyaryletherketone implant materials. J. Dent. Sci. 2024, 19, 2018–2026. [Google Scholar] [CrossRef] [PubMed]
- ISO 10477:2020; Dentistry—Polymer-Based Crown and Veneering Materials. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 10993:2018; Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing Within a Risk Management Process. International Organization for Standardization: Geneva, Switzerland, 2018.
- Peng, T.-Y.; Kang, C.-M.; Feng, S.-W.; Hung, C.-Y.; Iwaguro, S.; Lin, D.-J. Effects of glass-ceramic spray deposition manipulation on the surface characteristics of zirconia dental restorations. Ceram. Int. 2022, 48, 29873–29881. [Google Scholar] [CrossRef]
- Al-Akhali, M.; Al-Dobaei, E.; Wille, S.; Mourshed, B.; Kern, M. Influence of elapsed time between airborne-particle abrasion and bonding to zirconia bond strength. Dent. Mater. 2021, 37, 516–522. [Google Scholar] [CrossRef]
Group | Surface Treatment Methods |
---|---|
APA | Airborne-particle abrasion with 110 µm alumina (Cobra, Renfert GmbH, Hilzingen, Germany) at 2 bars for 10 s. |
PLA | Handheld nonthermal plasma treatment (PiezoBrush PZ3, Relyon plasma GmbH, Regensburg, Germany) for 10 s. |
LHF | 5.0% hydrofluoric acid etching (IPS Ceramic Etching Gel, Ivoclar Vivadent, Schaan, Liechtenstein) for 120 s. |
HHF | 9.5% hydrofluoric acid etching (Porcelain Etchant, Bisco Inc., Schaumburg, IL, USA) for 120 s. |
Material | Surface Treatment | Contact Angle (Degrees) | Shear Bond Strength (MPa) | |||
---|---|---|---|---|---|---|
NT | TC | HA | ||||
BP (PEEK) | APA | 127.41 ± 4.72 | a | 15.18 ± 1.10 a | 11.76 ± 1.04 a | 15.01 ± 2.53 a |
PLA | 11.66 ± 0.52 | b | 18.06 ± 3.63 b | 12.09 ± 1.18 b | 15.51 ± 2.15 a | |
LHF | 69.76 ± 3.88 | c | 5.51 ± 0.66 c | 4.31 ± 2.60 c | 5.21 ± 1.99 b | |
HHF | 86.06 ± 1.26 | d | 5.17 ± 1.79 c | 4.07 ± 2.30 c | 4.75 ± 0.91 b | |
PK (PEKK) | APA | 125.66 ± 2.37 | A | 14.31 ± 2.10 A | 13.01 ± 2.65 A | 13.01 ± 2.65 A |
PLA | 13.79 ± 0.98 | B | 16.51 ± 1.51 B | 14.53 ± 1.41 B | 16.19 ± 1.94 B | |
LHF | 67.55 ± 5.68 | C | 8.22 ± 2.45 C | 4.81 ± 2.61 C | 5.80 ± 1.95 C | |
HHF | 20.30 ± 3.98 | D | 8.08 ± 2.06 C | 4.64 ± 1.99 C | 4.44 ± 1.79 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, S.-Y.; Lin, S.-I.; Chang, C.-W.; Shen, Y.-R.; Mine, Y.; Lin, Z.-C.; Fang, M.-L.; Sung, C.-C.; Tseng, C.-F.; Peng, T.-Y.; et al. Comparative Evaluation of Dental Clinical Surface Treatments for Polyetheretherketone with Airborne-Particle Abrasion, Hydrofluoric Acid Etching, and Handheld Nonthermal Plasma Activation on Long-Term Bond Performance. Polymers 2025, 17, 1448. https://doi.org/10.3390/polym17111448
Lai S-Y, Lin S-I, Chang C-W, Shen Y-R, Mine Y, Lin Z-C, Fang M-L, Sung C-C, Tseng C-F, Peng T-Y, et al. Comparative Evaluation of Dental Clinical Surface Treatments for Polyetheretherketone with Airborne-Particle Abrasion, Hydrofluoric Acid Etching, and Handheld Nonthermal Plasma Activation on Long-Term Bond Performance. Polymers. 2025; 17(11):1448. https://doi.org/10.3390/polym17111448
Chicago/Turabian StyleLai, Szu-Yu, Szu-I Lin, Chia-Wei Chang, Yi-Rou Shen, Yuichi Mine, Zih-Chan Lin, Mei-Ling Fang, Chia-Chih Sung, Chien-Fu Tseng, Tzu-Yu Peng, and et al. 2025. "Comparative Evaluation of Dental Clinical Surface Treatments for Polyetheretherketone with Airborne-Particle Abrasion, Hydrofluoric Acid Etching, and Handheld Nonthermal Plasma Activation on Long-Term Bond Performance" Polymers 17, no. 11: 1448. https://doi.org/10.3390/polym17111448
APA StyleLai, S.-Y., Lin, S.-I., Chang, C.-W., Shen, Y.-R., Mine, Y., Lin, Z.-C., Fang, M.-L., Sung, C.-C., Tseng, C.-F., Peng, T.-Y., & Lee, C.-W. (2025). Comparative Evaluation of Dental Clinical Surface Treatments for Polyetheretherketone with Airborne-Particle Abrasion, Hydrofluoric Acid Etching, and Handheld Nonthermal Plasma Activation on Long-Term Bond Performance. Polymers, 17(11), 1448. https://doi.org/10.3390/polym17111448