Synthesis and Characterization of a Novel Cassava Starch-Based Scaffold Biofunctionalized with Decellularized Extracellular Matrix and Isosorbide Dinitrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starch Extraction
2.2. Decellularized ECM Obtention and ISDN Obtention
2.3. Synthesis of Biopolymeric Systems
2.4. Physicomechanical Characterization
2.4.1. Swelling and Degradation Test
2.4.2. Porosity
2.4.3. Moisture Permeability and Porosity
2.4.4. Mechanical Characterization
2.5. Physicochemical Characterization
2.5.1. Fourier Transform Infrared (FTIR) Spectroscopy
2.5.2. Thermogravimetric Analysis
2.6. Morphological Characterization
2.7. ISDN Release
2.8. Hemocompatibility
2.9. Statistical Analysis
3. Results
3.1. Physicomechanical Characterization
3.1.1. Swelling and Degradation Test
3.1.2. Porosity
3.1.3. Moisture Permeability
3.1.4. Mechanical Characterization
3.2. Physicochemical Characterization
3.2.1. Fourier Transform Infrared (FTIR) Spectroscopy
3.2.2. Thermogravimetric Analysis
3.3. Morphological Characterization
3.4. ISDN Release
3.5. Hemocompatibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ECM | Extracellular matrix |
dECM | Decellularized extracellular matrix |
S | Cassava starch |
ISDN | Isosorbide dinitrate |
SEI1 | Starch/dECM7% (w/w)/ISDN20 mg biopolymeric system |
SEI2 | Starch/dECM12.5% (w/w)/ISDN20 mg biopolymeric system |
SEI3 | Starch/dECM7% (w/w)/ISDN40 mg biopolymeric system |
SEI4 | Starch/dECM12.5% (w/w)/ISDN40 mg biopolymeric system |
ASTM | American Society for Testing and Materials |
WVTR | Water vapor transmission rate |
UTM | Universal testing machine |
PBS | Phosphate-buffered saline |
SBF | Simulated body fluid |
FTIR | Fourier transform infrared spectroscopy |
TGA | Thermogravimetric analysis |
SEM | Scanning electron microscopy |
EDTA | Ethylenediaminetetraacetic acid |
RBCs | Red blood cells |
ANOVA | Analysis of variance |
Appendix A
Physicochemical Characterization of Cassava Starch
Parameter | Methodology | Result | Interpretation |
---|---|---|---|
Iodine Colorimetry | Visual evaluation after iodine test | Blue–violet coloration | Confirms starch presence; coloration suggests intermediate amylose/amylopectin ratio |
Moisture Content (%) | Gravimetric method at 105 °C | 9.72 ± 0.09% | Within expected range for dried starch; indicates low water content |
Ash Content (%) | Muffle furnace at 550 °C | 0.25 ± 0.01% | Low inorganic residue, indicating good purity level |
pH | pH meter in aqueous starch solution (1% w/v) | 6.3 ± 0.2 | Slightly acidic/neutral; within typical range for native cassava starch |
Appendix B
Swelling Behavior of Starch-Only Control Membrane
References
- Sharda, D.; Kaur, P.; Choudhury, D. Protein-Modified Nanomaterials: Emerging Trends in Skin Wound Healing. Discover Nano 2023, 18, 127. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Chen, F.; Wu, P.; Sun, G. Recent Advances in Bioengineered Scaffolds for Cutaneous Wound Healing. Front. Bioeng. Biotechnol. 2022, 10, 841583. [Google Scholar] [CrossRef]
- Negut, I.; Dorcioman, G.; Grumezescu, V. Scaffolds for Wound Healing Applications. Polymers 2020, 12, 2010. [Google Scholar] [CrossRef]
- Nuutila, K.; Eriksson, E. Moist Wound Healing with Commonly Available Dressings. Adv. Wound Care 2021, 10, 685–698. [Google Scholar] [CrossRef]
- Ashraf, R.; Sofi, H.; Malik, A.; Beigh, M.; Hamid, R.; Sheikh, F. Recent Trends in the Fabrication of Starch Nanofibers: Electrospinning and Non-Electrospinning Routes and Their Applications in Biotechnology. Appl. Biochem. Biotechnol. 2019, 187, 47–74. [Google Scholar] [CrossRef]
- Palanisamy, C.P.; Cui, B.; Zhang, H.; Gunasekaran, V.P.; Ariyo, A.L.; Jayaraman, S.; Rajagopal, P.; Long, Q. A critical review on starch-based electrospun nanofibrous scaffolds for wound healing application. Int. J. Biol. Macromol. 2022, 222, 1852–1860. [Google Scholar] [CrossRef] [PubMed]
- Capella-Monsonís, H.; De Pieri, A.; Peixoto, R.; Korntner, S.; Zeugolis, D. Extracellular Matrix-Based Biomaterials as Adipose-Derived Stem Cell Delivery Vehicles in Wound Healing: A Comparative Study Between a Collagen Scaffold and Two Xenografts. Stem Cell Res. Ther. 2020, 11, 510. [Google Scholar] [CrossRef] [PubMed]
- Veith, A.P.; Henderson, K.; Spencer, A.; Sligar, A.D.; Baker, A.B. Therapeutic Strategies for Enhancing Angiogenesis in Wound Healing. Adv. Drug Deliv. Rev. 2019, 146, 97–125. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Z.; Li, L.L. Advanced nitric oxide donors: Chemical structure of NO drugs, NO nanomedicines and biomedical applications. Nanoscale 2021, 13, 444–459. [Google Scholar] [CrossRef]
- Lin, C.W.; Wu, P.T.; Chuang, E.Y.; Fan, Y.J.; Yu, J. Design and Investigation of an Eco-Friendly Wound Dressing Composed of Green Bioresources—Soy Protein, Tapioca Starch, and Gellan Gum. Macromol. Biosci. 2022, 22, e2200288. [Google Scholar] [CrossRef]
- Valencia-Llano, C.H.; Castro, J.I.; Saavedra, M.; Zapata, P.A.; Navia-Porras, D.P.; Flórez-López, E.; Grande-Tovar, C.D. Histological Evaluation of Cassava Starch/Chicken Gelatin Membranes. Polymers 2022, 14, 3849. [Google Scholar] [CrossRef] [PubMed]
- Linares-Bravo, P.; Cabo-Araoz, S.D.; Luna-Solano, G.; Urrea-Garcia, G.R.; Cantú-Lozano, D. Obtention of New Edible Biofilms from Water Kefir Grains in Comparison with Conventional Biofilms from Taro (Colocasia esculenta) and Cassava (Manihot esculenta) Starch. Processes 2022, 10, 1804. [Google Scholar] [CrossRef]
- Maniglia, B.C.; Silveira, T.M.G.; Tapia-Blácido, D.R. Starch isolation from turmeric dye extraction residue and its application in active film production. Int. J. Biol. Macromol. 2022, 202, 508–519. [Google Scholar] [CrossRef]
- ISO 9001:2008; Quality Management Systems—Requirements. International Organization for Standardization: Geneva, Switzerland, 2008.
- Kao, C.Y.; Nguyen, H.Q.D.; Weng, Y.C. Characterization of Porcine Urinary Bladder Matrix Hydrogels from Sodium Dodecyl Sulfate Decellularization Method. Polymers 2020, 12, 3007. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, L.; McClements, D.J.; Yang, T.; Zhang, Z.; Ren, F.; Miao, M.; Tian, Y.; Jin, Z. Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends Food Sci. Technol. 2021, 114, 70–82. [Google Scholar] [CrossRef]
- Cuevas-Tapia, O.A.; Gutiérrez-Sánchez, M.; Pozos-Guillén, A.; Cauich-Rodríguez, J.V.; Escobar-García, D.M. Biocompatibility and Expression of Transcription Factors of a Type B Gelatin–Extracellular Matrix of Porcine Urinary Bladder Scaffold. J. Biomater. Appl. 2024, 39, 288–297. [Google Scholar] [CrossRef]
- Berkel, A.E.; Rosman, C.; Koop, R.; van Duijvendijk, P.; van der Palen, J.; Klaase, J.M. Isosorbide Dinitrate Ointment vs. Botulinum Toxin A (Dysport) as the Primary Treatment for Chronic Anal Fissure: A Randomized Multicentre Study. Colorectal Dis. 2014, 16, O360–O366. [Google Scholar] [CrossRef]
- Totsuka Sutto, S.E.; Rodríguez Roldan, Y.I.; Cardona Muñoz, E.G.; Garcia Cobian, T.A.; Pascoe Gonzalez, S.; Martínez Rizo, A.; Mendez Del Villar, M.; García Benavides, L. Efficacy and Safety of the Combination of Isosorbide Dinitrate Spray and Chitosan Gel for the Treatment of Diabetic Foot Ulcers: A Double-Blind, Randomized, Clinical Trial. Diab. Vasc. Dis. Res. 2018, 15, 348–351. [Google Scholar] [CrossRef]
- Delavari, M.M.; Ocampo, I.; Stiharu, I. Optimizing biodegradable starch-based composite films formulation for wound-dressing applications. Micromachines 2022, 13, 2146. [Google Scholar] [CrossRef]
- Adeli, H.; Khorasani, M.T.; Parvazinia, M. Wound Dressing Based on Electrospun PVA/Chitosan/Starch Nanofibrous Mats: Fabrication, Antibacterial and Cytocompatibility Evaluation, and In Vitro Healing Assay. Int. J. Biol. Macromol. 2019, 122, 238–254. [Google Scholar] [CrossRef]
- ASTM E96/E96M-16; Standard Test Methods for Water Vapor Transmission of Materials. ASTM International: West Conshohocken, PA, USA, 2016. [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014. [CrossRef]
- Othman, S.H.; Wane, B.M.; Nordin, N.; Noor Hasnan, N.Z.; Talib, R.A.; Karyadi, J.N.W. Physical, Mechanical, and Water Vapor Barrier Properties of Starch/Cellulose Nanofiber/Thymol Bionanocomposite Films. Polymers 2021, 13, 4060. [Google Scholar] [CrossRef] [PubMed]
- Gerezgiher, A.G.; Szabó, T. Crosslinking of Starch Using Citric Acid. J. Phys. Conf. Ser. 2022, 2315, 012036. [Google Scholar] [CrossRef]
- Mistry, P.; Chhabra, R.; Muke, S.; Narvekar, A.; Sathaye, S.; Jain, R.; Dandekar, P. Fabrication and Characterization of Starch-TPU Based Nanofibers for Wound Healing Applications. Mater. Sci. Eng. C 2021, 119, 111316. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.S.T.; Santos, S.S.; da Silva, C.V.; Cazedey, E.C.L. Green Analytical Methods for Isosorbide Dinitrate Determination by UV Spectrophotometry and Stability Indicating HPLC-PDA. Braz. J. Health Rev. 2020, 3, 5153–5161. [Google Scholar] [CrossRef]
- ISO 10993-4:2017; Biological Evaluation of Medical Devices—Part 4: Selection of Tests for Interactions with Blood. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- Weber, M.; Steinle, H.; Golombek, S.; Hann, L.; Schlensak, C.; Wendel, H.P.; Avci-Adali, M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front. Bioeng. Biotechnol. 2018, 6, 99. [Google Scholar] [CrossRef]
- Maheswari, J.U.; Muthu, S.; Sundius, T. An Experimental and Theoretical Study of the Vibrational Spectra and Structure of Isosorbide Dinitrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 109, 322–330. [Google Scholar] [CrossRef]
- Liu, X.; Yu, L.; Xie, F.; Li, M.; Chen, L.; Li, X. Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios. Starch–Stärke 2010, 62, 139–146. [Google Scholar] [CrossRef]
- Seligra, P.G.; Jaramillo, C.M.; Famá, L.; Goyanes, S. Data of thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid as crosslinking agent. Data Brief. 2016, 7, 1331–1334. [Google Scholar] [CrossRef]
- Oliver, I.; Conesa, J.A.; Fullana, A. Thermal Decomposition of Bio-Based Plastic Materials. Molecules 2024, 29, 3195. [Google Scholar] [CrossRef]
- Fabiyi, O.A.; Saliu, O.D.; Claudius-cole, A.O.; Olaniyi, I.O.; Oguntebi, O.V.; Olatunji, G.A. Porous starch citrate biopolymer for controlled release of carbofuran in the management of root knot nematode Meloidogyne incognita. Biotechnol. Rep. 2020, 25, e00428. [Google Scholar] [CrossRef]
- Peppas Alhmoud, H.A. The Uses of Matrices in Drug Delivery: The Effect of Polymers on the Drug Release and the Kinetic Models. Int. J. Pharm. Res. Allied Sci. 2017, 6, 13–20. [Google Scholar]
- Peppas, N.A.; Korsmeyer, R.W. Dynamics of Swelling of Polymeric Systems. J. Polym. Sci. Polym. Phys. Ed. 1983, 21, 917–928. [Google Scholar]
- Wiegand, C.; Abel, M.; Hipler, U.C.; Elsner, P.; Zieger, M.; Kurz, J.; Stoppelkamp, S. Hemostatic Wound Dressings: Predicting Their Effects by In Vitro Tests. J. Biomater. Appl. 2019, 33, 1285–1297. [Google Scholar] [CrossRef]
- Alven, S.; Peter, S.; Mbese, Z.; Aderibigbe, B. Polymer-Based Wound Dressing Materials Loaded with Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds. Polymers 2022, 14, 724. [Google Scholar] [CrossRef]
- Aderibigbe, B.A. Hybrid-Based Wound Dressings: Combination of Synthetic and Biopolymers. Polymers 2022, 14, 3806. [Google Scholar] [CrossRef] [PubMed]
- Akiyode, O.; Boateng, J. Composite Biopolymer-Based Wafer Dressings Loaded with Microbial Biosurfactants for Potential Application in Chronic Wounds. Polymers 2018, 10, 918. [Google Scholar] [CrossRef]
- Portela, R.; Leal, C.R.; Almeida, P.L.; Sobral, R.G. Bacterial Cellulose: A Versatile Biopolymer for Wound Dressing Applications. Microb. Biotechnol. 2019, 12, 586–610. [Google Scholar] [CrossRef]
- Delavari, M.M.; Stiharu, I. Preparing and Characterizing Novel Biodegradable Starch/PVA-Based Films with Nano-Sized Zinc-Oxide Particles for Wound-Dressing Applications. Appl. Sci. 2022, 12, 4001. [Google Scholar] [CrossRef]
- Sheokand, B.; Vats, M.; Kumar, A.; Srivastava, C.M.; Bahadur, I.; Pathak, S.R. Natural Polymers Used in the Dressing Materials for Wound Healing: Past, Present and Future. J. Polym. Sci. 2023, 61, 1389–1414. [Google Scholar] [CrossRef]
- Bombaldi de Souza, R.; Bombaldi de Souza, F.C.; Bierhalz, A.; Pires, A.L.; Moraes, Â. Biopolymer-Based Films and Membranes as Wound Dressings. In Advances in Wound Healing Materials; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, C.C.; Wang, Y.; Xu, J.; Wang, G.; Bai, X. Biological evaluations of decellularized extracellular matrix collagen microparticles prepared based on plant enzymes and aqueous two-phase method. Regen. Biomater. 2021, 8, rbab002. [Google Scholar] [CrossRef]
- Hedayati, N.; Montazer, M.; Mahmoudirad, M.; Toliyat, T. Ketoconazole and Ketoconazole/β-Cyclodextrin Performance on Cotton Wound Dressing as Fungal Skin Treatment. Carbohydr. Polym. 2020, 240, 116267. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shang, L.; Wu, D.; Dun, H.; Wei, X.; Zhu, J.; Zongo, A.W.S.; Li, B.; Geng, F. Sodium Caseinate Reduces the Swelling of Konjac Flour: A Further Examination. Food Hydrocoll. 2021, 120, 106923. [Google Scholar] [CrossRef]
- Channa, I.A.; Ashfaq, J.; Siddiqui, M.A.; Chandio, A.D.; Shar, M.A.; Alhazaa, A. Multi-Shaded Edible Films Based on Gelatin and Starch for the Packaging Applications. Polymers 2022, 14, 5020. [Google Scholar] [CrossRef]
- Kenawy, E.R.; Abd El Hay, A.M.; Saad, N.; Azaam, M.M.; Shoueir, K.R. Synthesis, Characterization of Poly l(+) Lactic Acid and Its Application in Sustained Release of Isosorbide Dinitrate. Sci. Rep. 2024, 14, 7062. [Google Scholar] [CrossRef]
- Matsui, A.; Murakami, M.; Hata, S.; Terabe, Y.; Nakabayashi, K.; Kaneko, N.; Tanaka, K.; Ando, H. The Efficacy of the Transdermal Isosorbide Dinitrate Patch in Patients with Chronic Limb-Threatening Ischemia. Int. J. Low. Extrem. Wounds 2022, 21, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Bankoti, K.; Rameshbabu, A.P.; Datta, S.; Goswami, P.; Roy, M.; Das, D.; Ghosh, S.K.; Das, A.K.; Mitra, A.; Pal, S.; et al. Dual Functionalized Injectable Hybrid Extracellular Matrix Hydrogel for Burn Wounds. Biomacromolecules 2020, 22, 514–533. [Google Scholar] [CrossRef]
- Kikkinides, E.S.; Charalambopoulou, G.C.; Stubos, A.K.; Kanellopoulos, N.K.; Varelas, C.G.; Steiner, C.A. A Two-Phase Model for Controlled Drug Release from Biphasic Polymer Hydrogels. J. Control. Release 1998, 51, 313–325. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Chin, J.M.; Phua, K.K.L. Sustained Release of PKR Inhibitor C16 from Mesoporous Silica Nanoparticles Significantly Enhances mRNA Translation and Anti-Tumor Vaccination. Eur. J. Pharm. Biopharm. 2021, 163, 179–187. [Google Scholar] [CrossRef]
- De Jong, W.H.; Carraway, J.W.; Geertsma, R.E. In Vivo and In Vitro Testing for the Biological Safety Evaluation of Biomaterials and Medical Devices. In Biocompatibility and Performance of Medical Devices, 2nd ed.; Boutrand, J.P., Ed.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Cambridge, UK, 2020; pp. 123–166. [Google Scholar] [CrossRef]
Biopolymeric System | Starch (g) | Water (mL) | Glycerol (g) | dECM (g) | ISDN (mg) | Citric Acid (mg) |
---|---|---|---|---|---|---|
SEI1 | 2.5 | 50 | 0.75 | 0.175 | 20 | 25 |
SEI2 | 2.5 | 50 | 0.75 | 0.3125 | 20 | 25 |
SEI3 | 2.5 | 50 | 0.75 | 0.175 | 40 | 25 |
SEI4 | 2.5 | 50 | 0.75 | 0.3125 | 40 | 25 |
S | 2.5 | 50 | 0.75 | 0 | 0 | 25 |
Biopolymeric System | Strength (N) | Stress (N/mm2) | Strain (%) | Young’s Modulus (MPa) |
---|---|---|---|---|
SEI1 | 3.63 ± 0.10 | 0.36 ± 0.01 | 13.59 ± 0.79 | 2.68 ± 0.19 |
SEI2 | 2.50 ± 0.19 | 0.25 ± 0.01 | 19.64 ± 0.89 | 1.27 ± 0.05 |
SEI3 | 4.16 ± 0.29 | 0.41 ± 0.02 | 15.52 ± 0.71 | 2.68 ± 0.18 |
SEI4 | 2.30 ± 0.16 | 0.23 ± 0.01 | 14.83 ± 0.15 | 1.55 ± 0.10 |
S | 4.08 ± 0.15 | 0.45 ± 0.01 | 12.45 ± 0.44 | 3.62 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabo-Araoz, S.D.; Cerda-Cristerna, B.I.; Escobar-García, D.M.; Gutiérrez-Hernández, J.M.; Gutiérrez-Sánchez, M.; Pozos-Guillén, A.; Flores, H. Synthesis and Characterization of a Novel Cassava Starch-Based Scaffold Biofunctionalized with Decellularized Extracellular Matrix and Isosorbide Dinitrate. Polymers 2025, 17, 1307. https://doi.org/10.3390/polym17101307
Cabo-Araoz SD, Cerda-Cristerna BI, Escobar-García DM, Gutiérrez-Hernández JM, Gutiérrez-Sánchez M, Pozos-Guillén A, Flores H. Synthesis and Characterization of a Novel Cassava Starch-Based Scaffold Biofunctionalized with Decellularized Extracellular Matrix and Isosorbide Dinitrate. Polymers. 2025; 17(10):1307. https://doi.org/10.3390/polym17101307
Chicago/Turabian StyleCabo-Araoz, Samantha Dení, Bernardino Isaac Cerda-Cristerna, Diana María Escobar-García, José Manuel Gutiérrez-Hernández, Mariana Gutiérrez-Sánchez, Amaury Pozos-Guillén, and Héctor Flores. 2025. "Synthesis and Characterization of a Novel Cassava Starch-Based Scaffold Biofunctionalized with Decellularized Extracellular Matrix and Isosorbide Dinitrate" Polymers 17, no. 10: 1307. https://doi.org/10.3390/polym17101307
APA StyleCabo-Araoz, S. D., Cerda-Cristerna, B. I., Escobar-García, D. M., Gutiérrez-Hernández, J. M., Gutiérrez-Sánchez, M., Pozos-Guillén, A., & Flores, H. (2025). Synthesis and Characterization of a Novel Cassava Starch-Based Scaffold Biofunctionalized with Decellularized Extracellular Matrix and Isosorbide Dinitrate. Polymers, 17(10), 1307. https://doi.org/10.3390/polym17101307