Effect of Extensive Solar Ultra-Violet Irradiation on the Durability of High-Density Polyethylene- and Polypropylene-Based Wood–Plastic Composites
Abstract
:1. Introduction
Weathering of WPCs
2. Materials and Methods
3. Results
3.1. Tensile Properties
3.2. Hardness Properties
3.3. Tensile Strength Versus Surface Hardness
3.4. FTIR Characterization
3.5. Differential Scanning Calorimetry (DSC)
3.6. Scanning Electron Microscopy (SEM)
3.7. Gel Permeation Chromatography (GPC)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- IEA. World Energy Outlook 2020; International Energy Agency: Paris, France, 2020; Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 7 November 2024).
- Balu, R.; Dutta, N.K.; Roy Choudhury, N. Plastic Waste Upcycling: A Sustainable Solution for Waste Management, Product Development, and Circular Economy. Polymers 2022, 14, 4788. [Google Scholar] [CrossRef] [PubMed]
- Kassab, A.; Al Nabhani, D.; Mohanty, P.; Pannier, C.; Ayoub, G.Y. Advancing Plastic Recycling: Challenges and Opportunities in the Integration of 3D Printing and Distributed Recycling for a Circular Economy. Polymers 2023, 15, 3881. [Google Scholar] [CrossRef] [PubMed]
- Gamboa, C. Towards Zero-Carbon Building In Climate 2020; UNA-UK Publication: London, UK, 2020. [Google Scholar]
- Rowell, R.M. Understanding Wood Surface Chemistry and Approaches to Modification: A Review. Polymers 2021, 13, 2558. [Google Scholar] [CrossRef] [PubMed]
- Kučerová, V.; Hrčka, R.; Hýrošová, T. Relation of Chemical Composition and Colour of Spruce Wood. Polymers 2022, 14, 5333. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.G.; Singh, R.P.; Nakamura, T. Degradation of Carbon Fiber-Reinforced Epoxy Composites by Ultraviolet Radiation and Condensation. J. Compos. Mater. 2002, 36, 2713–2732. [Google Scholar] [CrossRef]
- Broda, M.; Popescu, C.M.; Curling, S.F.; Timpu, D.I.; Ormondroyd, G.A. Effects of Biological and Chemical Degradation on the Properties of Scots Pine Wood-Part I: Chemical Composition and Microstructure of the Cell Wall. Materials 2022, 15, 2348. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, D. Thermoplastic Moulding of Wood-Polymer Composites (WPC): A review on physical and mechanical behaviour under hot-pressing technique. Compos. Struct. 2021, 262, 113649. [Google Scholar] [CrossRef]
- Olonisakin, K.; He, S.; Yang, Y.; Wang, H.; Li, R.; Yang, W. Influence of stacking sequence on mechanical properties and moisture absorption of epoxy-based woven flax and basalt fabric hybrid composites. Sustain. Struct. 2022, 2, 16. [Google Scholar] [CrossRef]
- Khan, M.M.H.; Deviatkin, I.; Havukainen, J.; Horttanainen, M. Environmental impacts of wooden, plastic, and wood-polymer composite pallet: A life cycle assessment approach. Int. J. Life Cycle Assess. 2021, 26, 1607–1622. [Google Scholar] [CrossRef]
- Muller, U.; Veigel, S. The strength and stiffness of oriented wood and cellulose-fiber materials: A review. Prog. Mater. Sci. 2022, 125, 100916. [Google Scholar]
- Smith, P.M.; Wolcott, M.P. Opportunities for Wood/Natural Fiber-Plastic Composites in Residential and Industrial applications. For. Prod. J. 2006, 56, 4–11. [Google Scholar]
- Gardner, D.; Han, Y.; Song, W. Wood plastic composites technology trends. In Proceedings of the 51st International Convention of Society of Wood, Concepcion, Chile, 10–12 November 2008. [Google Scholar]
- Panthapulakkal, S.; Zereshkian, A.; Saim, M. Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites. Bioresour. Technol. 2006, 97, 265–272. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, X.; Khanal, S.; Xu, S. A novel surface treatment for bamboo flour and its effect on the dimensional stability and mechanical properties of high-density polyethylene/bamboo flour composites. Constr. Build. Mater. 2018, 186, 1220–1227. [Google Scholar] [CrossRef]
- Oladejo, K.O.; Omoniyi, T.E. Dimensional Stability and Mechanical Properties of Wood Plastic Composites Products from Sawdust of Anogeissus leiocarpus (Avin) with Recycled Polyethylene Teraphthalate (PET) Chips. Eur. J. Appl. Eng. Sci. Res. 2017, 5, 28–33. [Google Scholar]
- Najafi, S.K. Use of Recycled Plastics in Wood Plastic Composites—A Review. Waste Manag. 2013, 33, 1898–1905. [Google Scholar] [CrossRef]
- Binhussain, M.A.; El-Tonsy, M.M. Palm leave and plastic waste wood composite for out-door structures. Constr. Build. Mater. 2013, 47, 1431–1435. [Google Scholar] [CrossRef]
- Ratanawilai, T.; Taneerat, K. Alternative polymeric matrices for wood-plastic composites: Effects on mechanical properties and resistance to natural weathering. Constr. Build. Mater. 2018, 172, 349–357. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, M.; Chang, G.; Hu, X.; Guo, Q. A composite obtained from waste automotive plastics and sugarcane skin flour: Mechanical properties and thermo-chemical analysis. Powder Technol. 2019, 347, 27–34. [Google Scholar] [CrossRef]
- Dauletbek, A.; Li, H.; Xiong, Z.; Lorenzo, R. A review of mechanical behavior of structural laminated bamboo lumber. Sustain. Struct. 2021, 1, 4. [Google Scholar] [CrossRef]
- Grubbström, G.; Holmgren, A.; Oksman, K. Silane-crosslinking of recycled low-density polyethylene/wood composites—ScienceDirect. Compos. Part A Appl. Sci. Manuf. 2010, 41, 678–683. [Google Scholar] [CrossRef]
- Carus, M.; Eder, A. WPC and NFC market trends, bioplastics. Magazine 2015, 10, 12–13. [Google Scholar]
- Nevin, G.K.; Ayse, A. Effects of maleated polypropylene on the morphology, thermal and mechanical properties of short carbon fiber reinforced polypropylene composites. Mater. Des. 2011, 32, 4069–4073. [Google Scholar]
- Pickering, K.; Efendy, M.A.; Le, T. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- Razavi-Nouri, M.; Tayefi, M.; Sabet, A. Morphology development and thermal degradation of dynamically cured ethylene-octene copolymer/organoclay nanocomposites. Thermochim. Acta 2017, 655, 302–312. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Song, K.; Lee, S.; Chun, S.-J.; Zhou, D.; Wu, Q. Effect of durability treatment on ultraviolet resistance, strength, and surface wettability of wood plastic composite. BioResources 2014, 9, 3591–3601. [Google Scholar] [CrossRef]
- Stark, N.M. Considerations in the weathering of wood-plastic composites. In Proceedings of the 3rd Wood Fibre Polymer Composites International Symposium: Innovative Sustainable Materials Applied to Building and Furniture, Bordeaux, France, 26–27 March 2007. 10p. [Google Scholar]
- Teacă, C.-A.; Roşu, D.; Bodîrlău, R.; Roşu, L. Structural changes in wood under artificial UV light irradiation determined by FTIR spectroscopy and color measurements—A brief review. BioResources 2013, 8, 1478–1507. [Google Scholar] [CrossRef]
- Doğan, M. Ultraviolet light accelerates the degradation of polyethylene plastics. Microsc. Res. Tech. 2021, 84, 2774–2783. [Google Scholar] [CrossRef]
- Hon, D.N.S. Wood and Cellulosic Chemistry; Marcel Dekker Inc.: New York, NY, USA, 2001. [Google Scholar]
- Selden, R.; Nystrom, B.; Langstrom, R. UV aging of polypropylene/wood fiber composites. Polym. Compos. 2004, 25, 543–553. [Google Scholar] [CrossRef]
- Beg, M.; Pickering, K. Accelerated weathering of unbleached kraft wood fibre reinforced polypropylene composites. Polym. Degrad. Stab. 2008, 93, 1939–1946. [Google Scholar] [CrossRef]
- Mantia, F.; Morreale, M. Accelerated weathering of polypropylene/wood flour composites. Polym. Degrad. Stab. 2008, 93, 1252–1258. [Google Scholar] [CrossRef]
- Soccalingame, L.; Rerrin, D.; Benezet, J. Reprocessing of artificial UV weathered wood flour reinforced polypropylene composites. Polym. Degrad. Stab. 2015, 120, 313–327. [Google Scholar] [CrossRef]
- Phiriyawirut, M.; Seenpung, P.; Calermboom, S. Isostatic polypropylene/wood sawdust composite: Effects of natural weathering, water immersion and Ga, a-Ray Irradiation on Mechanical Properties. Macromol. Symp. 2008, 264, 59–66. [Google Scholar] [CrossRef]
- Darabi, P.; Karimi, A.N.; Mirshokraie, S.A.; Thévenon, M.F. Lignin blocking effects on weathering process of wood plastic composites. In Proceedings of the 41st Annual Meeting of the International Research Group on Wood Protection, Biarritz, France, 9–13 May 2010. IRG-WP 10-40529. [Google Scholar]
- Lei, Z.; Liu, J.; Zhang, Z.; Zhao, X.; Li, Q. Study on Preparation and Properties of Anti-Ultraviolet Aging Wood-Plastic Composites. Wood Res. 2023, 68, 680–691. [Google Scholar] [CrossRef]
- Wood Plastic Composites Market Size. Share & Trend Analysis Report by Product (Polyethylene, Polypropylene), by Application (Automotive Components), by Region, and Segment Forecasts, 2022–2030; Report ID: 978-1-68038-849-7; Grand View Research: San Francisco, CA, USA, 2022; p. 198.
- Redhwi, H.H.; Siddiqui, M.N.; Andrady, A.L.; Furquan, S.A.; Hussain, S. Durability of High-Density Polyethylene (HDPE) and Polypropylene (PP) based Wood-Plastic Composites Part 1: Mechanical Properties of the Composite Materials. J. Comps. Sci. 2023, 7, 163. [Google Scholar] [CrossRef]
- Umar, A.H.; Zainudin, E.S.; Sapuan, S.M. Effect of Accelerated Weathering n Tensile Properties of Kenaf Reinforced High-Density Polyethylene Composites. J. Mech. Eng. Sci. 2012, 2, 198–205. [Google Scholar] [CrossRef]
- Hung, K.C.; Chang, W.C.; Xu, J.W.; Wu, T.L.; Wu, J.H. Comparison of the Physico-Mechanical and Weathering Properties of Wood-Plastic Composites Made of Wood Fibers from Discarded Parts of Pomelo Trees and Polypropylene. Polymers 2021, 13, 2681. [Google Scholar] [CrossRef] [PubMed]
- Gunjal, J.; Aggarwal, P.; Chauhan, S. Changes in colour and mechanical properties of wood polypropylene composites on natural weathering. Maderas. Cienc. Tecnol. 2020, 22, 325–334. [Google Scholar] [CrossRef]
- López-Naranjo, E.J.; Alzate-Gaviria, L.M.; Hernández-Zárate, G.; Reyes-Trujeque, J.; Cruz-Estrada, R.H. Effect of accelerated weathering and termite attack on the tensile properties and aesthetics of recycled HDPE-pinewood composites. J. Thermoplast. Compos. Mater. 2014, 27, 831–844. [Google Scholar] [CrossRef]
- Stark, N.M.; Matuana, L.M.; Clemons, C.M. Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites. J. Appl. Polym. Sci. 2004, 93, 1021–1030. [Google Scholar] [CrossRef]
- Xanthopoulou, E.; Chrysafi, I.; Polychronidis, P.; Zamboulis, A.; Bikiaris, D.N. Evaluation of Eco-Friendly Hemp-Fiber-Reinforced Recycled HDPE Composites. J. Compos. Sci. 2023, 7, 138. [Google Scholar] [CrossRef]
- Li, J.; Huo, R.; Liu, W.; Fang, H.; Jiang, L.; Zhou, D. Mechanical properties of PVC-based wood–plastic composites effected by temperature. Front. Mater. 2022, 9, 1018902. [Google Scholar] [CrossRef]
- Grause, G.; Chien, M.F.; Inoue, C. Changes during the weathering of polyolefins. Polym. Degrad. Stab. 2020, 181, 109364. [Google Scholar] [CrossRef]
- Oluwoye, I.; Altarawneh, M.; Gore, J.; Dlugogorski, B.Z. Oxidation of crystalline polyethylene. Combust. Flame 2015, 162, 3681–3690. [Google Scholar] [CrossRef]
- Kanbayashi, T.; Matsunaga, M.; Kobayashi, M. Cellular-level chemical changes in Japanese beech (Fagus crenata Blume) during artificial weathering. J. Holzforsch. 2021, 75, 900–907, De Gruyter (online). [Google Scholar] [CrossRef]
- Andrady, A.L.; Barnes, P.W.; Bornman, J.F.; Gouin, T.; Madronich, S.; White, C.C.; Zepp, R.G.; Jansen, M.A.K. Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. Sci. Total Environ. 2022, 851 Pt 2, 158022. [Google Scholar] [CrossRef]
- Homkhiew, C.; Ratanawilai, T.; Thongruang, W. Effects of natural weathering on the properties of recycled polypropylene composites reinforced with rubberwood flour. Ind. Crops Prod. 2014, 56, 52–59. [Google Scholar] [CrossRef]
- Nukala, S.G.; Kong, I.; Kakarla, A.B.; Kong, W.; Kong, W. Development of wood polymer composites from recycled wood and plastic waste: Thermal and mechanical properties. J. Compos. Sci. 2022, 6, 194. [Google Scholar] [CrossRef]
- Srivabut, C.; Homkhiew, C.; Rawangwong, S.; Boonchouytan, W. Possibility of using municipal solid waste for manufacturing wood plastic composites: Effects of natural weathering, wood waste types, and contents. J. Mater. Cycles. Waste. Manag. 2022, 24, 1407–1422. [Google Scholar] [CrossRef]
- Srivabut, C.; Khamtree, S.; Homkhiew, C.; Ratanawilai, T.; Rawangwong, S. Comparative effects of different coastal weathering on the thermal, physical, and mechanical properties of rubberwood–latex sludge flour reinforced with polypropylene hybrid composites. Compos. Part C Open Access 2023, 12, 100383. [Google Scholar] [CrossRef]
Outdoor Exposure Duration | Material | Tensile Strength (Mpa) | % Elongation at Break | Modulus of Elasticity (MPa) | |||
---|---|---|---|---|---|---|---|
Average | Std. Dev. | Average | Std. Dev. | Average | Std. Dev. | ||
Unexposed | HDPE Control | 23.67 | 0.23 | 1011.87 | 3.68 | 619.01 | 35.89 |
HDPE-18% wood | 29.35 | 0.79 | 24.53 | 3.53 | 1010.31 | 51.08 | |
HDPE-27% wood | 33.05 | 0.84 | 13.75 | 1.52 | 1226.15 | 38.98 | |
HDPE-36% wood | 35.36 | 0.79 | 9.45 | 0.90 | 1461.73 | 56.92 | |
PP Control | 37.84 | 0.18 | 43.15 | 7.41 | 991.73 | 3.07 | |
PP-18% wood | 38.42 | 0.38 | 9.52 | 0.57 | 1370.90 | 12.70 | |
PP-27% wood | 38.73 | 0.30 | 6.93 | 0.36 | 1553.33 | 42.83 | |
PP-36% wood | 38.77 | 0.63 | 5.87 | 0.21 | 1712.30 | 14.51 | |
6 Months | HDPE Control | 4.67 | 0.99 | 5.34 | 7.01 | 969.82 | 39.14 |
HDPE-18% wood | 28.50 | 0.99 | 13.78 | 1.60 | 1051.20 | 44.41 | |
HDPE-27% wood | 31.97 | 0.76 | 11.05 | 0.91 | 1264.55 | 45.03 | |
HDPE-36% wood | 34.47 | 0.60 | 8.05 | 0.34 | 1494.55 | 36.63 | |
PP Control | 16.70 | 1.75 | 2.40 | 0.39 | 1052.09 | 5.26 | |
PP-18% wood | 31.83 | 0.35 | 6.93 | 0.40 | 1295.30 | 28.43 | |
PP-27% wood | 33.38 | 0.18 | 5.74 | 0.15 | 1492.23 | 22.43 | |
PP-36% wood | 33.38 | 0.24 | 4.92 | 0.17 | 1651.79 | 27.03 | |
12 Months | HDPE Control | 4.41 | 0.99 | 1.55 | 0.55 | 776.78 | 20.32 |
HDPE-18% wood | 25.20 | 0.85 | 11.70 | 0.53 | 1004.87 | 32.70 | |
HDPE-27% wood | 29.82 | 0.49 | 8.70 | 0.80 | 1244.91 | 28.31 | |
HDPE-36% wood | 32.35 | 0.55 | 7.86 | 0.25 | 1443.60 | 40.78 | |
PP Control | 9.57 | 0.20 | 1.55 | 0.06 | 833.50 | 21.66 | |
PP-18% wood | 28.02 | 0.53 | 7.18 | 0.57 | 1132.39 | 25.34 | |
PP-27% wood | 30.20 | 0.21 | 5.69 | 0.18 | 1378.63 | 22.98 | |
PP-36% wood | 30.34 | 0.44 | 4.60 | 0.23 | 1544.98 | 31.86 | |
18 Months | HDPE Control | 4.55 | 0.55 | 1.09 | 0.15 | 781.58 | 41.13 |
HDPE-18% wood | 24.23 | 0.94 | 9.98 | 0.92 | 1000.21 | 27.54 | |
HDPE-27% wood | 28.62 | 0.61 | 9.39 | 0.67 | 1204.85 | 29.77 | |
HDPE-36% wood | 31.11 | 0.40 | 7.78 | 0.27 | 1376.91 | 24.97 | |
PP Control | 3.63 | 0.45 | 1.42 | 0.69 | 630.65 | 32.97 | |
PP-18% wood | 26.30 | 0.20 | 6.53 | 0.34 | 1063.13 | 22.03 | |
PP-27% wood | 28.75 | 0.46 | 5.63 | 0.30 | 1275.50 | 50.53 | |
PP-36% wood | 30.00 | 0.24 | 4.67 | 0.29 | 1483.51 | 20.35 | |
Accelerated Exposure Time/Energy | Material | Tensile Strength (Mpa) | % elongation at break | Modulus of Elasticity (MPa) | |||
Average | Std. Dev. | Average | Std. Dev. | Average | Std. Dev. | ||
214 h Exposure Energy = 276.8 kJ/sq.mt. | HDPE Control | 15.27 | 0.42 | 6.37 | 2.17 | 793.17 | 77.97 |
HDPE-18% wood | 29.38 | 0.71 | 15.15 | 1.01 | 1090.50 | 17.23 | |
HDPE-27% wood | 33.47 | 0.26 | 10.40 | 0.76 | 1361.87 | 18.56 | |
HDPE-36% wood | 34.52 | 1.44 | 8.16 | 0.56 | 1488.11 | 98.97 | |
PP Control | 33.05 | - | 8.38 | - | 1034.57 | - | |
PP-18% wood | 35.38 | 0.45 | 7.59 | 0.38 | 1402.82 | 31.60 | |
PP-27% wood | 36.33 | 0.22 | 5.65 | 0.26 | 1613.51 | 34.87 | |
PP-36% wood | 34.91 | 0.58 | 4.60 | 0.28 | 1761.16 | 16.45 | |
483 h Exposure Energy = 624.9 kJ/sq.mt. | HDPE Control | 14.14 | 0.79 | 11.14 | 1.62 | 628.23 | 13.99 |
HDPE-18% wood | 28.44 | 0.48 | 13.50 | 1.46 | 1078.97 | 19.89 | |
HDPE-27% wood | 31.79 | 0.86 | 10.00 | 0.60 | 1297.29 | 40.10 | |
HDPE-36% wood | 35.19 | 0.89 | 7.69 | 0.39 | 1566.84 | 54.39 | |
PP Control | 23.19 | - | 7.12 | - | 853.28 | - | |
PP-18% wood | 33.01 | 0.19 | 6.33 | 0.12 | 1363.88 | 24.19 | |
PP-27% wood | 34.06 | 0.01 | 5.58 | 0.22 | 1535.70 | 3.10 | |
PP-36% wood | 33.94 | 0.27 | 4.53 | 0.19 | 1777.21 | 61.82 | |
723 h Exposure Energy = 945 kJ/sq.mt. | HDPE Control | 14.45 | 0.20 | 11.37 | 1.68 | 558.04 | 21.26 |
HDPE-18% wood | 28.58 | 0.47 | 11.41 | 0.55 | 1119.73 | 12.33 | |
HDPE-27% wood | 32.38 | 0.17 | 8.85 | 0.09 | 1337.09 | 9.03 | |
HDPE-36% wood | 35.05 | 1.57 | 7.42 | 0.14 | 1549.66 | 96.14 | |
PP Control | 14.34 | - | 5.92 | - | 645.15 | - | |
PP-18% wood | 30.35 | 0.69 | 6.07 | 0.32 | 1253.94 | 23.91 | |
PP-27% wood | 32.09 | 0.23 | 5.27 | 0.36 | 1488.93 | 58.20 | |
PP-36% wood | 32.28 | 0.31 | 4.36 | 0.11 | 1665.32 | 11.43 | |
1180 h Exposure Energy = 1514.6 kJ/sq.mt. | HDPE Control | 12.35 | - | 9.15 | - | 479.71 | - |
HDPE-18% wood | 28.22 | 1.39 | 10.37 | 0.56 | 1093.23 | 56.28 | |
HDPE-27% wood | 32.31 | 1.19 | 8.43 | 0.65 | 1360.65 | 71.09 | |
HDPE-36% wood | 35.31 | 0.91 | 6.56 | 0.19 | 1579.18 | 49.82 | |
PP Control | 4.68 | - | 4.58 | - | 353.50 | - | |
PP-18% wood | 28.35 | 0.46 | 6.12 | 0.13 | 1135.02 | 35.05 | |
PP-27% wood | 30.97 | 0.33 | 5.15 | 0.35 | 1451.05 | 23.63 | |
PP-36% wood | 31.13 | 0.35 | 4.14 | 0.14 | 1661.96 | 54.21 |
Outdoor Exposure Duration | Average Hardness Value [Std. Dev.] | |||
---|---|---|---|---|
HDPE Control | HDPE-18% Wood | HDPE-27% Wood | HDPE-36% Wood | |
Unexposed | 63.2 [0.1] | 65.8 [0.2] | 66.7 [0.4] | 68.3 [0.6] |
6 months | 56.9 [2.1] | 67.5 [0.3] | 66.4 [0.4] | 68.5 [2.0] |
12 months | 56.4 [2.3] | 63.4 [0.8] | 63.6 [1.2] | 67.6 [0.2] |
18 months | 56.3 [1.7] | 62.9 [1.7] | 61.2 [0.7] | 64.4 [0.7] |
Outdoor Exposure Duration | Average Hardness Value [Std. Dev.] | |||
PP Control | PP-18% wood | PP-27% wood | PP-36% wood | |
Unexposed | 73.9 [0.8] | 73.4 [1.0] | 73.3 [0.6] | 73.9 [1.1] |
6 months | 67.8 [1.1] | 68.0 [1.7] | 69.8 [0.8] | 68.1 [1.3] |
12 months | 68.1 [0.6] | 67.4 [1.2] | 68.1 [1.2] | 69.5 [0.8] |
18 months | 60.1 [2.1] | 60.8 [1.9] | 65.3 [1.5] | 67.8 [2.1] |
Accelerated Exposure Duration | Average Hardness Value [Std. Dev.] | |||
HDPE Control | HDPE-18% wood | HDPE-27% wood | HDPE-36% wood | |
214 h | 63.2 [1.2] | 64.4 [0.8] | 66.0 [1.3] | 68.8 [1.1] |
483 h | 54.6 [2.6] | 65.1 [1.4] | 66.0 [1.3] | 67.6 [2.1] |
723 h | 53.9 [1.0] | 61.7 [3.0] | 64.3 [1.6] | 67.5 [1.0] |
1180 h | 47.5 [2.8] | 60.1 [1.1] | 65.5 [0.7] | 67.1 [1.5] |
Accelerated Exposure Duration | Average Hardness Value [Std. Dev.] | |||
PP Control | PP-18% wood | PP-27% wood | PP-36% wood | |
214 h | 72.3 [1.2] | 70.8 [1.0] | 71.8 [1.4] | 73.0 [0.8] |
483 h | 67.0 [0.7] | 69.7 [1.5] | 72.0 [1.3] | 71.0 [1.7] |
723 h | 62.6 [1.5] | 66.6 [1.9] | 69.3 [1.1] | 72.4 [1.0] |
1180 h | 54.8 [1.0] | 65.4 [3.5] | 68.2 [2.4] | 70.3 [0.8] |
Exposure Duration | Material | Mw | Mn | PDI |
---|---|---|---|---|
Unexposed | HDPE Control | 78,428 | 15,208 | 5.16 |
HDPE-18% wood | 61,839 | 12,871 | 4.81 | |
6 Months | HDPE Control | 26,680 | 7481 | 3.57 |
HDPE-18% wood | 69,140 | 15,891 | 4.35 | |
12 Months | HDPE Control | 23,019 | 5929 | 3.88 |
HDPE-18% wood | 72,990 | 14,369 | 5.08 | |
18 Months | HDPE Control | 23,282 | 5426 | 4.29 |
HDPE-18% wood | 60,495 | 15,550 | 3.89 | |
Exposure Duration | Material | Mw | Mn | PDI |
Unexposed | PP Control | 194,387 | 37,189 | 5.23 |
PP-18% wood | 190,151 | 32,495 | 5.85 | |
6 Months | PP Control | 31,292 | 7899 | 3.96 |
PP-18% wood | 189,532 | 30,840 | 6.15 | |
12 Months | PP Control | 7398 | 3154 | 2.35 |
PP-18% wood | 167,423 | 26,657 | 6.28 | |
18 Months | PP Control | 5975 | 2906 | 2.06 |
PP-18% wood | 155,017 | 28,854 | 5.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqui, M.N.; Redhwi, H.H.; Andrady, A.L.; Furquan, S.A.; Hussain, S. Effect of Extensive Solar Ultra-Violet Irradiation on the Durability of High-Density Polyethylene- and Polypropylene-Based Wood–Plastic Composites. Polymers 2025, 17, 74. https://doi.org/10.3390/polym17010074
Siddiqui MN, Redhwi HH, Andrady AL, Furquan SA, Hussain S. Effect of Extensive Solar Ultra-Violet Irradiation on the Durability of High-Density Polyethylene- and Polypropylene-Based Wood–Plastic Composites. Polymers. 2025; 17(1):74. https://doi.org/10.3390/polym17010074
Chicago/Turabian StyleSiddiqui, Mohammad N., Halim H. Redhwi, Anthony L. Andrady, Sarfaraz A. Furquan, and Syed Hussain. 2025. "Effect of Extensive Solar Ultra-Violet Irradiation on the Durability of High-Density Polyethylene- and Polypropylene-Based Wood–Plastic Composites" Polymers 17, no. 1: 74. https://doi.org/10.3390/polym17010074
APA StyleSiddiqui, M. N., Redhwi, H. H., Andrady, A. L., Furquan, S. A., & Hussain, S. (2025). Effect of Extensive Solar Ultra-Violet Irradiation on the Durability of High-Density Polyethylene- and Polypropylene-Based Wood–Plastic Composites. Polymers, 17(1), 74. https://doi.org/10.3390/polym17010074