A Review of Natural Fiber-Reinforced Composites for Lower-Limb Prosthetic Designs
Abstract
:1. Introduction
2. Background
2.1. Lower-Limb Amputation and Prosthetic Options
2.2. Transtibial Prosthetic Design Considerations
2.3. Materials Used in Prosthetic Manufacturing
3. Natural Fiber-Reinforced Composites
3.1. Characteristics of Natural Fibers
3.2. Types and Properties of Natural Fiber-Reinforced Composites
3.3. Manufacturing Methods for Natural Fiber-Reinforced Composites
4. Lower-Limb Prosthetic Design Using Natural Fiber-Reinforced Composites
4.1. Advantages and Drawbacks of Natural Composites in Prosthetic Design
- Low Weight and High Strength-to-Weight Ratio: As mentioned before, NFRCs have the remarkable ability to have both a minimal weight and a high strength-to-weight ratio [29,33,34,55]. This quality is very helpful for designing lower-limb prosthetics because it makes it possible to create lightweight, comfortable prosthetics without sacrificing strength and longevity [7,8,9,11,66].
- Energy Return and Shock Absorption: The mechanical properties of natural composites, including their ability to store and release energy, contribute to enhanced energy return and shock absorption [30,31,55,56]. This feature is crucial in lower-limb prosthetics, as it mimics the natural gait cycle and improves the overall walking efficiency [7,10,24,25,26,58].
- Sustainability and Environmental Friendliness: Natural fibers used as composite reinforcements, such as kenaf and flax, are renewable resources that provide a sustainable alternative to synthetic fibers [8,29,30,31,32,33,35,36,37,98,119]. The utilization of natural composites in prosthetic design aligns with the increasing demand for eco-friendly materials and reduces the reliance on non-renewable resources.
- Moisture Absorption: Natural fibers have a propensity to absorb moisture [89,93], which can lead to dimensional changes and diminished mechanical properties of the composites [33]. This drawback presents a challenge for prosthetic designs, as exposure to moisture can affect the long-term performance and durability of prosthetic devices [50]. Detailed data on different natural fibers are displayed in Table 1.
- Variability in Mechanical Properties: Natural fibers, which are organic materials, inherently exhibit variability in their mechanical properties [89,93]. This variability can pose challenges in achieving consistent and predictable performance with natural fiber-reinforced composites in prosthetic designs. This necessitates careful selection and quality control of the natural fibers to ensure consistent mechanical properties and high performance of the prosthetic devices.
4.2. Cases of Natural Fiber-Reinforced Composites Used in Prosthetic Designs
5. Evaluation of Natural Fiber-Reinforced Composite Prosthetics
5.1. Standards and Guidelines for Evaluating Prosthetic Devices
5.2. Using Computational Biomechanical Models to Assess Prosthetic Devices
6. Future Directions and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmad, N.; Thomas, G.N.; Gill, P.; Chan, C.; Torella, F. Lower limb amputation in England: Prevalence, regional variation and relationship with revascularisation, deprivation and risk factors. A retrospective review of hospital data. J. R. Soc. Med. 2014, 107, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Imam, B.; Miller, W.C.; Finlayson, H.C.; Eng, J.J.; Jarus, T. Incidence of lower limb amputation in Canada. Can. J. Public Health 2017, 108, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, C.A.; Sigvant, B.; Szeberin, Z.; Beiles, B.; Eldrup, N.; Thomson, I.; Venermo, M.; Altreuther, M.; Menyhei, G.; Nordanstig, J.; et al. International Variations in Amputation Practice: A VASCUNET Report. Eur. J. Vasc. Endovasc. Surg. 2018, 56, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Moini, M.; Rasouli, M.R.; Khaji, A.; Farshidfar; Heidari, P. Patterns of extremity traumas leading to amputation in Iran: Results of Iranian National Trauma Project. Chin. J. Traumatol. = Zhonghua Chuang Shang Za Zhi 2009, 12, 77–80. Available online: http://www.ncbi.nlm.nih.gov/pubmed/19321050 (accessed on 13 January 2022). [PubMed]
- Rouhani, A.; Mohajerzadeh, S. An epidemiological and etiological report on lower extremity amputation in northwest of Iran. Arch. Bone Jt. Surg. 2013, 1, 103–106. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25207299 (accessed on 13 January 2022). [PubMed]
- Shaw, J.; Challa, S.; Conway, D.; Liu, M.; Haonga, B.; Eliezer, E.; Morshed, S.; Shearer, D. Quality of life and complications in lower limb amputees in Tanzania: Results from a pilot study. Lancet Glob. Health 2018, 6, S18. [Google Scholar] [CrossRef]
- Gard, S. Prosthetic Devices and Methods. In Wiley Encyclopedia of Biomedical Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; Volume 1960, no. 4; pp. 1–21. [Google Scholar] [CrossRef]
- Nurhanisah, M.H.; Hashemi, F.; Paridah, M.T.; Jawaid, M.; Naveen, J. Mechanical properties of laminated kenaf woven fabric composites for below-knee prosthesis socket application. IOP Conf. Ser. Mater. Sci. Eng. 2018, 368, 012050. [Google Scholar] [CrossRef]
- Strait, E.; McGimpsey, G.; Bradford, T. Limb Prosthetics Services and Devices. White Paper; January 2006; pp. 1–35. Available online: https://www.nist.gov/system/files/documents/2017/04/28/239_limb_prosthetics_services_devices.pdf (accessed on 13 January 2022).
- Lee, W.C.C.; Zhang, M.; Chan, P.P.Y.; Boone, D.A. Gait analysis of low-cost flexible-shank transtibial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 370–377. [Google Scholar] [CrossRef] [PubMed]
- DeWees, T. Transtibial prosthetics. In Orthotics and Prosthetics in Rehabilitation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 605–634. [Google Scholar] [CrossRef]
- Boulton, A.J.; Vileikyte, L.; Ragnarson-Tennvall, G.; Apelqvist, J. The global burden of diabetic foot disease. Lancet 2005, 366, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Vileikyte, L. Diabetic foot ulcers: A quality of life issue. Diabetes. Metab. Res. Rev. 2001, 17, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Renström, P.; Grimby, G.; Morelli, B.; Palmertz, B. Thigh muscle atrophy in below-knee amputees. Scand. J. Rehabil. Med. Suppl. 1983, 9, 150–162. [Google Scholar] [PubMed]
- Jaegers, S.M.; Arendzen, J.H.; de Jongh, H.J. Changes in hip muscles after above-knee amputation. Clin. Orthop. Relat. Res. 1995, 319, 276–284. Available online: http://www.ncbi.nlm.nih.gov/pubmed/7554640 (accessed on 3 February 2022). [CrossRef]
- Burger, H.; Valenčič, V.; Marinček, Č.; Kogovšek, N. Properties of musculus gluteus maximus in above-knee amputees. Clin. Biomech. 1996, 11, 35–38. [Google Scholar] [CrossRef]
- Schmalz, T.; Blumentritt, S.; Reimers, C.D. Selective thigh muscle atrophy in trans-tibial amputees: An ultrasonographic study. Arch. Orthop. Trauma Surg. 2001, 121, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Henson, D.P.; Edgar, C.; Ding, Z.; Sivapuratharasu, B.; Le Feuvre, P.; Finnegan, M.E.; Quest, R.; McGregor, A.H.; Bull, A.M. Understanding lower limb muscle volume adaptations to amputation. J. Biomech. 2021, 125, 110599. [Google Scholar] [CrossRef] [PubMed]
- Geurts, A.C.H.; Mulder, T.W. Reorganisation of Postural Control Following Lower Limb Amputation: Theoretical Considerations and Implications for Rehabilitation. Physiother. Theory Pract. 1992, 8, 145–157. [Google Scholar] [CrossRef]
- Silverman, A.K.; Fey, N.P.; Portillo, A.; Walden, J.G.; Bosker, G.; Neptune, R.R. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait Posture 2008, 28, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Clites, T.R.; Carty, M.J.; Ullauri, J.B.; Carney, M.E.; Mooney, L.M.; Duval, J.F.; Srinivasan, S.S.; Herr, H.M. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 2018, 10, eaap8373. [Google Scholar] [CrossRef] [PubMed]
- Cummings, D. Prosthetics in the developing world. Prosthet. Orthot. Int. 1996, 20, 51–60. [Google Scholar] [CrossRef]
- McDonald, C.L.; Kramer, P.A.; Morgan, S.J.; Halsne, E.G.; Cheever, S.M.; Hafner, B.J. Energy expenditure in people with transtibial amputation walking with crossover and energy storing prosthetic feet: A randomized within-subject study. Gait Posture 2018, 62, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, P.A.; Nielsen, D.H.; Shurr, D. Mechanical gait analysis of transfemoral amputees: SACH foot versus the Flex-Foot. J. Prosthet. Orthot. 1997, 9, 144–155. [Google Scholar] [CrossRef]
- Powers, C.M.; Torburn, L.; Perry, J.; Ayyappa, E. Influence of prosthetic foot design on sound limb loading in adults with unilateral below-knee amputations. Arch. Phys. Med. Rehabil. 1994, 75, 825–829. Available online: http://www.ncbi.nlm.nih.gov/pubmed/8024435 (accessed on 7 January 2022). [CrossRef] [PubMed]
- Klodd, E.; Hansen, A.; Fatone, S.; Edwards, M. Effects of prosthetic foot forefoot flexibility on gait of unilateral transtibial prosthesis users. J. Rehabil. Res. Dev. 2010, 47, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Drzal, L.; Mohanty, A.; Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 2004, 35, 371–376. [Google Scholar] [CrossRef]
- Etcheverry, M.; Barbosa, S.E. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement. Materials 2012, 5, 1084–1113. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Manna, A.; Dang, R. A review on applications of natural Fiber-Reinforced composites (NFRCs). Mater. Today Proc. 2022, 50, 1632–1636. [Google Scholar] [CrossRef]
- Dixit, S.; Goel, R.; Dubey, A.; Shivhare, P.R.; Bhalavi, T. Natural Fibre Reinforced Polymer Composite Materials—A Review. Polym. Renew. Resour. 2017, 8, 71–78. [Google Scholar] [CrossRef]
- ArunKumar, D.; Kaushik, V.; Raghavedra, R.P. Tensile and Impact properties of jute/glass and jute/carbon fiber reinforced polypropylene. J. Polym. Compos. 2016, 4, 35–39. [Google Scholar]
- Mohammed, A.A.; Bachtiar, D.; Siregar, J.P.; Rejab, M.R.M.; Hasany, S.F. Physicochemical Study of Eco-Friendly Sugar Palm Fiber Thermoplastic Polyurethane Composites. BioResources 2016, 11, 9438–9454. [Google Scholar] [CrossRef]
- Zhao, X.; Copenhaver, K.; Wang, L.; Korey, M.; Gardner, D.J.; Li, K.; Lamm, M.E.; Kishore, V.; Bhagia, S.; Tajvidi, M.; et al. Recycling of natural fiber composites: Challenges and opportunities. Resour. Conserv. Recycl. 2022, 177, 105962. [Google Scholar] [CrossRef]
- Liu, C.; Luan, P.; Li, Q.; Cheng, Z.; Sun, X.; Cao, D.; Zhu, H. Biodegradable, Hygienic, and Compostable Tableware from Hybrid Sugarcane and Bamboo Fibers as Plastic Alternative. Matter 2020, 3, 2066–2079. [Google Scholar] [CrossRef]
- Saba, N.; Paridah, M.T.; Jawaid, M. Mechanical properties of kenaf fibre reinforced polymer composite: A review. Constr. Build. Mater. 2015, 76, 87–96. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, L.; Chiparus, O.; Negulescu, I.; Yachmenev, V.; Warnock, M. Kenaf/Ramie Composite for Automotive Headliner. J. Polym. Environ. 2005, 13, 107–114. [Google Scholar] [CrossRef]
- Yuhazri, M.Y.; Phongsakorn, P.T.; Sihombing, H.; Jeefferie, A.R.; Perumal, P.; Kamarul, A.M.; Rassiah, K. Mechanical properties of kenaf/polyester composites. Int. J. Eng. Technol. 2011, 11, 127–131. [Google Scholar]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef]
- Batu, T.; Lemu, H.; Sirhabizuh, B. Study of the Performance of Natural Fiber Reinforced Composites for Wind Turbine Blade Applications. Adv. Sci. Technol. Res. J. 2020, 14, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Sullins, T.; Pillay, S.; Komus, A.; Ning, H. Hemp fiber reinforced polypropylene composites: The effects of material treatments. Compos. Part B Eng. 2017, 114, 15–22. [Google Scholar] [CrossRef]
- Preece, R.A.; Dilaver, N.; Waldron, C.A.; Pallmann, P.; Thomas-Jones, E.; Gwilym, B.L.; Norvell, D.C.; Czerniecki, J.M.; Twine, C.P.; Bosanquet, D.C. A Systematic Review and Narrative Synthesis of Risk Prediction Tools Used to Estimate Mortality, Morbidity, and Other Outcomes Following Major Lower Limb Amputation. Eur. J. Vasc. Endovasc. Surg. 2021, 62, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Columbo, J.A.; Davies, L.; Kang, R.; Barnes, J.A.; Leinweber, K.A.; Suckow, B.D.; Goodney, P.P.; Stone, D.H. Patient Experience of Recovery After Major Leg Amputation for Arterial Disease. Vasc. Endovasc. Surg. 2018, 52, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Franklin, H.; Rajan, M.; Tseng, C.-L.; Pogach, L.; Sinha, A. Cost of lower-limb amputation in U.S. veterans with diabetes using health services data in fiscal years 2004 and 2010. J. Rehabil. Res. Dev. 2014, 51, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.L.; Westcott-McCoy, S.; Weaver, M.R.; Haagsma, J.; Kartin, D. Global prevalence of traumatic non-fatal limb amputation. Prosthet. Orthot. Int. 2020, 45, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Dillingham, T.R.; Pezzin, L.E.; MacKenzie, E.J. Limb Amputation and Limb Deficiency: Epidemiology and Recent Trends in the United States. South. Med. J. 2002, 95, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Calle-Pascual, A.L.; Redondo, M.J.; Ballesteros, M.; Martinez-Salinas, M.A.; Diaz, J.A.; De Matias, P.; Calle, J.R.; Gil, E.; Jimenez, M.; Serrano, F.J.; et al. Nontraumatic lower extremity amputations in diabetic and non-diabetic subjects in Madrid, Spain. Diabetes Metab. 1997, 23, 519–523. Available online: http://www.ncbi.nlm.nih.gov/pubmed/9496558 (accessed on 15 February 2022). [PubMed]
- Ebskov, B.; Ebskov, L. Major lower limb amputation in diabetic patients: Development during 1982 to 1993. Diabetologia 1996, 39, 1607–1610. [Google Scholar] [CrossRef] [PubMed]
- Tentolouris, N.; Al-Sabbagh, S.; Walker, M.G.; Boulton, A.J.M.; Jude, E.B. Mortality in Diabetic and Nondiabetic Patients After Amputations Performed From 1990 to 1995. Diabetes Care 2004, 27, 1598–1604. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, E.; Wiecher, E. Los Amputados y su Rehabilitación; Academia Nacional de Medicina: Mexico City, Mexico, 2016. [Google Scholar]
- Carroll, K.; Rheinstein, J.; Pollard, E. Understanding and Selecting Prosthetic Feet, 4th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Lawall Prosthetics & Orthotics. How Much Does a Prosthetic Leg Cost? The Cost of Prosthetic Legs. Available online: https://www.lawall.com/blog/how-much-does-a-prosthetic-leg-cost (accessed on 30 January 2023).
- Luxmed Protez. Prosthetic Leg Cost. Available online: https://luxmedprotez.com/en/prosthetic-leg-prices/ (accessed on 30 January 2023).
- Lavery, L.A.; van Houtum, W.H.; Armstrong, D.G.; Harkless, L.B.; Ashry, H.R.; Walker, S.C. Mortality following lower extremity amputation in minorities with diabetes mellitus. Diabetes Res. Clin. Pract. 1997, 37, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Estadística y Geografía. La Discapacidad en México, Datos al 2014. Versión 2017; INEGI Aguascalientes: Aguascalientes, Mexico, 2017. [Google Scholar]
- Irawan, A.P.; Soemardi, T.P.; Widjajalaksmi, K.; Reksoprodjo, A.H.S. Gait analysis of the prosthesis prototype made from the natural fiber reinforced composite. In Proceedings of the Apchi-Ergofuture 2010, Bali, Indonesia, 2–6 August 2010; pp. 37–43. [Google Scholar]
- Mankai, W.; Brahim, S.B.; Smida, B.B.; Cheikh, R.B.; Chafra, M. Mechanical behavior of a lower limb prosthetic socket made of natural fiber reinforced composite. J. Eng. Res. 2021, 9, 269–277. [Google Scholar] [CrossRef]
- Blatchford. Below Knee Prosthesis: Standard Features of a Below Knee Prosthesis. Available online: www.blatchford.co.uk/prosthetics/ (accessed on 3 February 2022).
- Abbod, E.A.; Resan, K.K. Review on the Interface Pressure Measurement for Below Knee Prosthetic Socket. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1094, 012036. [Google Scholar] [CrossRef]
- Attwells, R.L.; Birrell, S.A.; Hooper, R.H.; Mansfield, N.J. Influence of carrying heavy loads on soldiers’ posture, movements and gait. Ergonomics 2006, 49, 1527–1537. [Google Scholar] [CrossRef]
- Birrell, S.A.; Haslam, R.A. The effect of military load carriage on 3-D lower limb kinematics and spatiotemporal parameters. Ergonomics 2009, 52, 1298–1304. [Google Scholar] [CrossRef]
- Hansen, A.H.; Childress, D.S. Effects of adding weight to the torso on roll-over characteristics of walking. J. Rehabil. Res. Dev. 2005, 42, 381. [Google Scholar] [CrossRef] [PubMed]
- Doyle, S.S.; Lemaire, E.D.; Besemann, M.; Dudek, N.L. Changes to level ground transtibial amputee gait with a weighted backpack. Clin. Biomech. 2014, 29, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Schnall, B.L.; Hendershot, B.D.; Bell, J.C.; Wolf, E.J. Kinematic analysis of males with transtibial amputation carrying military loads. J. Rehabil. Res. Dev. 2014, 51, 1505–1514. [Google Scholar] [CrossRef] [PubMed]
- Schnall, B.L.; Dearth, C.L.; Elrod, J.M.; Golyski, P.R.; Koehler-McNicholas, S.R.; Ray, S.F.; Hansen, A.H.; Hendershot, B.D. A more compliant prosthetic foot better accommodates added load while walking among Servicemembers with transtibial limb loss. J. Biomech. 2020, 98, 109395. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.C.; Ravji, K.; Key, J.J.; Mahler, D.B.; Blume, P.A.; Sumpio, B. Let Them Walk! Current Prosthesis Options for Leg and Foot Amputees. J. Am. Coll. Surg. 2008, 206, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Gailey, R.S.; Nash, M.S.; Atchley, T.A.; Zilmer, R.M.; Moline-Little, G.R.; Morris-Cresswell, N.; Siebert, L.I. The effects of prosthesis mass on metabolic cost of ambulation in non-vascular trans-tibial amputees. Prosthet. Orthot. Int. 1997, 21, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Balaramakrishnan, T.M.; Natarajan, S.; Srinivasan, S. Roll-over shape of a prosthetic foot: A finite element evaluation and experimental validation. Med. Biol. Eng. Comput. 2020, 58, 2259–2270. [Google Scholar] [CrossRef] [PubMed]
- Malalli, C.S.; Ramji, B. Mechanical characterization of natural fiber reinforced polymer composites and their application in Prosthesis: A review. Mater. Today Proc. 2022, 62, 3435–3443. [Google Scholar] [CrossRef]
- Stokke, D.D.; Wu, Q.; Han, G. Wood and Natural Fiber Composites: An Overview. In Introduction to Wood and Natural Fiber Composites; Wiley: Hoboken, NJ, USA, 2013; pp. 1–17. [Google Scholar] [CrossRef]
- Callister, W.J. Fundamentals of Materials Science and Engineering: An Interactive eText, 5th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Chung, D. Composite Materials. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; Volume 82, no. 35; pp. 1–39. [Google Scholar] [CrossRef]
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Tan, Q.; Wu, C.; Li, L.; Shao, W.; Luo, M. Nanomaterial-Based Prosthetic Limbs for Disability Mobility Assistance: A Review of Recent Advances. J. Nanomater. 2022, 2022, 3425297. [Google Scholar] [CrossRef]
- Yang, Y.; Boom, R.; Irion, B.; van Heerden, D.-J.; Kuiper, P.; de Wit, H. Recycling of composite materials. Chem. Eng. Process. Process. Intensif. 2012, 51, 53–68. [Google Scholar] [CrossRef]
- Otani, L.B.; Pereira, A.H.A.; Melo, J.D.D.; Amico, S.C. Elastic Moduli characterization of composites using the Impulse Excitation Technique. Mater. Sci. Eng. Phys. 2014, 36. [Google Scholar] [CrossRef]
- Ibrahim, I.D.; Jamiru, T.; E Sadiku, R.; Kupolati, W.K.; Agwuncha, S.C.; Ekundayo, G. The use of polypropylene in bamboo fibre composites and their mechanical properties—A review. J. Reinf. Plast. Compos. 2015, 34, 1347–1356. [Google Scholar] [CrossRef]
- Hale, D.K. The physical properties of composite materials. J. Mater. Sci. 1976, 11, 2105–2141. [Google Scholar] [CrossRef]
- Jones, R.M. Mechanics of Composite Materials; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Yan, D.-X.; Ren, P.-G.; Pang, H.; Fu, Q.; Yang, M.-B.; Li, Z.-M. Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 2012, 22, 18772–18774. [Google Scholar] [CrossRef]
- Sahmaran, M.; Li, V.C.; Andrade, C. Corrosion Resistance Performance of Steel-Reinforced Engineered Cementitious Composite Beams. ACI Mater. J. 2008, 105, 243. [Google Scholar] [CrossRef] [PubMed]
- Budinski, K. Engineering Materials: Properties and Selection, 2nd ed.; Reston Publishing Company Inc.: Reston, VA, USA, 1983. [Google Scholar]
- Morton, J.; Ho, H.; Tsai, M.Y.; Farley, G.L. An Evaluation of The Iosipescu Specimen for Composite Materials Shear Property Measurement. Compos. Mater. 1992, 26, 708–750. [Google Scholar] [CrossRef]
- De Araújo, M. Natural and man-made fibres: Physical and mechanical properties. In Fibrous and Composite Materials for Civil Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2011; pp. 3–28. [Google Scholar] [CrossRef]
- Husić, S.; Javni, I.; Petrović, Z.S. Thermal and mechanical properties of glass reinforced soy-based polyurethane composites. Compos. Sci. Technol. 2005, 65, 19–25. [Google Scholar] [CrossRef]
- Singh, T.J.; Samanta, S. Characterization of Kevlar Fiber and Its Composites: A Review. Mater. Today Proc. 2015, 2, 1381–1387. [Google Scholar] [CrossRef]
- Rezaei, F.; Yunus, R.; Ibrahim, N.A. Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites. Mater. Des. 2009, 30, 260–263. [Google Scholar] [CrossRef]
- Davis, D.C.; Wilkerson, J.W.; Zhu, J.; Ayewah, D.O. Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology. Compos. Struct. 2010, 92, 2653–2662. [Google Scholar] [CrossRef]
- Kozlowski, R.; Wladyka-Przybylak, M. Uses of Natural Fiber Reinforced Plastics. In Natural Fibers, Plastics and Composites; Springer: Boston, MA, USA, 2004; pp. 249–274. [Google Scholar] [CrossRef]
- Stokke, D.D.; Wu, Q.; Han, G. Natural Fiber and Plastic Composites. In Introduction to Wood and Natural Fiber Composites; Wiley: Hoboken, NJ, USA, 2013; pp. 237–285. [Google Scholar] [CrossRef]
- Thapliyal, D.; Verma, S.; Sen, P.; Kumar, R.; Thakur, A.; Tiwari, A.K.; Singh, D.; Verros, G.D.; Arya, R.K. Natural Fibers Composites: Origin, Importance, Consumption Pattern, and Challenges. J. Compos. Sci. 2023, 7, 506. [Google Scholar] [CrossRef]
- Tajvidi, M.; Takemura, A. Recycled Natural Fiber Polypropylene Composites: Water Absorption/Desorption Kinetics and Dimensional Stability. J. Polym. Environ. 2010, 18, 500–509. [Google Scholar] [CrossRef]
- Beg, M.; Pickering, K. Reprocessing of wood fibre reinforced polypropylene composites. Part II: Hygrothermal ageing and its effects. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1565–1571. [Google Scholar] [CrossRef]
- Gogna, E.; Kumar, R.; Anurag; Sahoo, A.K.; Panda, A. A Comprehensive Review on Jute Fiber Reinforced Composites; Springer: Berlin/Heidelberg, Germany, 2019; pp. 459–467. [Google Scholar] [CrossRef]
- Wei, L.; McDonald, A.G.; Freitag, C.; Morrell, J.J. Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polym. Degrad. Stab. 2013, 98, 1348–1361. [Google Scholar] [CrossRef]
- Kumar, A.P.; Singh, R.P.; Sarwade, B.D. Degradability of composites, prepared from ethylene–propylene copolymer and jute fiber under accelerated aging and biotic environments. Mater. Chem. Phys. 2005, 92, 458–469. [Google Scholar] [CrossRef]
- Bongarde, U.S.; Shinde, V.D. Review on natural fiber reinforcement polymer composites. Int. J. Eng. Sci. Innov. Technol. 2014, 3, 431–436. [Google Scholar]
- Chethan, N.; Nagesh, S.; Babu, L.S. Mechanical behaviour of Kenaf-Jute-E-glass reinforced hybrid polymer composites. Mater. Today Proc. 2020, 46, 4454–4459. [Google Scholar] [CrossRef]
- Lopresto, V.; Leone, C.; De Iorio, I. Mechanical characterisation of basalt fibre reinforced plastic. Compos. Part B Eng. 2011, 42, 717–723. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Sundarakannan, R.; John, K.; Johnson, R.D.J.; Prasath, K.A.; Ajith, S.; Arumugaprabu, V.; Uthayakumar, M. Recent advancement in the natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2020, 277, 124109. [Google Scholar] [CrossRef]
- Arabpour, A.; Shockravi, A.; Rezania, H.; Farahati, R. Investigation of anticorrosive properties of novel silane-functionalized polyamide/GO nanocomposite as steel coatings. Surf. Interfaces 2020, 18, 100453. [Google Scholar] [CrossRef]
- Zheng, S.; Bellido-Aguilar, D.A.; Hu, J.; Huang, Y.; Zhao, X.; Wang, Z.; Zeng, X.; Zhang, Q.; Chen, Z. Waterborne bio-based epoxy coatings for the corrosion protection of metallic substrates. Prog. Org. Coat. 2019, 136, 105265. [Google Scholar] [CrossRef]
- Ray, B. Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites. J. Colloid Interface Sci. 2006, 298, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chung, D.; Mroz, C. Thermally conducting aluminum nitride polymer-matrix composites. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1749–1757. [Google Scholar] [CrossRef]
- Davim, J.; Reis, P. Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Compos. Struct. 2003, 59, 481–487. [Google Scholar] [CrossRef]
- Mukherjee, M.; Das, C.; Kharitonov, A. Fluorinated and oxyfluorinated short Kevlar fiber-reinforced ethylene propylene polymer. Polym. Compos. 2006, 27, 205–212. [Google Scholar] [CrossRef]
- Armstrong, D.P.; Chatterjee, K.; Ghosh, T.K.; Spontak, R.J. Form-stable phase-change elastomer gels derived from thermoplastic elastomer copolyesters swollen with fatty acids. Thermochim. Acta 2020, 686, 178566. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Saba, N.; Chandrasekar, M.; Jawaid, M.; Rajini, N.; Alothman, O.Y.; Siengchin, S. Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites. Constr. Build. Mater. 2018, 195, 423–431. [Google Scholar] [CrossRef]
- Hsissou, R.; Abbout, S.; Seghiri, R.; Rehioui, M.; Berisha, A.; Erramli, H.; Assouag, M.; Elharfi, A. Evaluation of corrosion inhibition performance of phosphorus polymer for carbon steel in [1 M] HCl: Computational studies (DFT, MC and MD simulations). J. Mater. Res. Technol. 2020, 9, 2691–2703. [Google Scholar] [CrossRef]
- Datsyuk, V.; Trotsenko, S.; Trakakis, G.; Boden, A.; Vyzas-Asimakopoulos, K.; Parthenios, J.; Galiotis, C.; Reich, S.; Papagelis, K. Thermal properties enhancement of epoxy resins by incorporating polybenzimidazole nanofibers filled with graphene and carbon nanotubes as reinforcing material. Polym. Test. 2019, 82, 106317. [Google Scholar] [CrossRef]
- Hsissou, R.; Elharfi, A. Rheological behavior of three polymers and their hybrid composites (TGEEBA/MDA/PN), (HGEMDA/MDA/PN) and (NGHPBAE/MDA/PN). J. King Saud Univ. Sci. 2020, 32, 235–244. [Google Scholar] [CrossRef]
- Parida, S.P.; Jena, P.C. Preparation of epoxy-glass composites with graphene and flyash filler. Mater. Today Proc. 2020, 26, 2328–2332. [Google Scholar] [CrossRef]
- Jin, X.; Guo, N.; You, Z.; Wang, L.; Wen, Y.; Tan, Y. Rheological properties and micro-characteristics of polyurethane composite modified asphalt. Constr. Build. Mater. 2019, 234, 117395. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M. A review on thermomechanical properties of polymers and fibers reinforced polymer composites. J. Ind. Eng. Chem. 2018, 67, 1–11. [Google Scholar] [CrossRef]
- Dang, Z.-M.; Yuan, J.-K.; Zha, J.-W.; Zhou, T.; Li, S.-T.; Hu, G.-H. Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 2012, 57, 660–723. [Google Scholar] [CrossRef]
- Pokharel, A.; Falua, K.J.; Babaei-Ghazvini, A.; Acharya, B. Biobased Polymer Composites: A Review. J. Compos. Sci. 2022, 6, 255. [Google Scholar] [CrossRef]
- Ortiz, P.; Wiekamp, M.; Vendamme, R.; Eevers, W. Bio-based epoxy resins from biorefinery by-products. BioResources 2019, 14, 3200–3209. [Google Scholar] [CrossRef]
- Thomas, J.; Patil, R. Enabling Green Manufacture of Polymer Products via Vegetable Oil Epoxides. Ind. Eng. Chem. Res. 2023, 62, 1725–1735. [Google Scholar] [CrossRef]
- Lascano, D.; Valcárcel, J.; Balart, R.; Quiles-Carrillo, L.; Boronat, T. Manufacturing of composite materials with high environmental efficiency using epoxy resin of renewable origin and permeable light cores for vacuum-assisted infusion molding. Ingenius 2020, 23, 62–73. [Google Scholar] [CrossRef]
- Sridhar, I.; Adie, P.; Ghista, D. Optimal design of customised hip prosthesis using fiber reinforced polymer composites. Mater. Des. 2010, 31, 2767–2775. [Google Scholar] [CrossRef]
- Guild, F.J.; Taylor, A.C.; Downes, J. Composite Materials. In Encyclopedia of Maritime and Offshore Engineering; John Wiley & Sons, Ltd.: Chichester, UK, 2017; Volume 82, no. 35; pp. 1–14. [Google Scholar] [CrossRef]
- Aslan, M.; Tufan, M.; Küçükömeroğlu, T. Tribological and mechanical performance of sisal-filled waste carbon and glass fibre hybrid composites. Compos. Part B Eng. 2018, 140, 241–249. [Google Scholar] [CrossRef]
- Assarar, M.; Zouari, W.; Sabhi, H.; Ayad, R.; Berthelot, J.-M. Evaluation of the damping of hybrid carbon–flax reinforced composites. Compos. Struct. 2015, 132, 148–154. [Google Scholar] [CrossRef]
- Campbell, A.I.; Sexton, S.; Schaschke, C.J.; Kinsman, H.; McLaughlin, B.; Boyle, M. Prosthetic limb sockets from plant-based composite materials. Prosthet. Orthot. Int. 2012, 36, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, V.; Bajpai, P.K.; Maheshwari, S. An Investigation on Wear and Dynamic Mechanical behavior of Jute/Hemp/Flax Reinforced Composites and Its Hybrids for Tribological Applications. Fibers Polym. 2018, 19, 403–415. [Google Scholar] [CrossRef]
- Essabir, H.; Bensalah, M.; Rodrigue, D.; Bouhfid, R.; Qaiss, A. Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mech. Mater. 2016, 93, 134–144. [Google Scholar] [CrossRef]
- Gu, Y.; Tan, X.; Yang, Z.; Li, M.; Zhang, Z. Hot compaction and mechanical properties of ramie fabric/epoxy composite fabricated using vacuum assisted resin infusion molding. Mater. Des. 2014, 56, 852–861. [Google Scholar] [CrossRef]
- Reddy, M.I.; Kumar, M.A.; Raju, C.R.B. Tensile and Flexural properties of Jute, Pineapple leaf and Glass Fiber Reinforced Polymer Matrix Hybrid Composites. Mater. Today Proc. 2018, 5, 458–462. [Google Scholar] [CrossRef]
- Jagannatha, T.D.; Harish, G. Mechanical properties of carbon/glass fiber reinforced epoxy hybrid polymer composites. Int. J. Mech. Eng. Robot. Res. 2015, 4, 131–137. [Google Scholar]
- Lee, B.-H.; Kim, H.-J.; Yu, W.-R. Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties. Fibers Polym. 2009, 10, 83–90. [Google Scholar] [CrossRef]
- Rahman, A.; Rahman, M.Z.A.A.; Zaidi, A.M.A.; Rahman, I.A. Analysis of Comparison between Unconfined and Confined Condition of Foamed Concrete Under Uni-Axial Compressive Load. Am. J. Eng. Appl. Sci. 2010, 3, 68–72. [Google Scholar] [CrossRef]
- Saba, N.; Paridah, M.; Abdan, K.; Ibrahim, N. Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Constr. Build. Mater. 2016, 123, 15–26. [Google Scholar] [CrossRef]
- Sekaran, A.S.J.; Kumar, K.P.; Pitchandi, K. Evaluation on mechanical properties of woven aloevera and sisal fibre hybrid reinforced epoxy composites. Bull. Mater. Sci. 2015, 38, 1183–1193. [Google Scholar] [CrossRef]
- Shanmugam, D.; Thiruchitrambalam, M. Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites. Mater. Des. 2013, 50, 533–542. [Google Scholar] [CrossRef]
- Shih, Y.-F.; Chang, W.-C.; Liu, W.-C.; Lee, C.-C.; Kuan, C.-S.; Yu, Y.-H. Pineapple leaf/recycled disposable chopstick hybrid fiber-reinforced biodegradable composites. J. Taiwan Inst. Chem. Eng. 2014, 45, 2039–2046. [Google Scholar] [CrossRef]
- Shrivastava, R.; Telang, A.; Rana, R.; Purohit, R. Mechanical Properties of Coir/G Lass Fiber Epoxy Resin Hybrid Composite. Mater. Today Proc. 2017, 4, 3477–3483. [Google Scholar] [CrossRef]
- Sreekumar, P.; Joseph, K.; Unnikrishnan, G.; Thomas, S. A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos. Sci. Technol. 2007, 67, 453–461. [Google Scholar] [CrossRef]
- Widhata, D.; Ismail, R.; Sulardjaka. Water Hyacinth (Eceng Gondok) As Fibre Reinforcement Composite for Prosthetics Socket. IOP Conf. Ser. Mater. Sci. Eng. 2019, 598, 012127. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Yuan, X. Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. J. Reinf. Plast. Compos. 2012, 31, 425–437. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Shojaei, A.; Dordanihaghighi, S.; Jafarpour, E.; Mohammadi, S.; Arjmand, M. Effects of hybrid carbon-aramid fiber on performance of non-asbestos organic brake friction composites. Wear 2020, 452–453, 203280. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, S.; Lu, C.; He, S.; An, F. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing. Appl. Surf. Sci. 2013, 279, 279–284. [Google Scholar] [CrossRef]
- Hatti, P.S.; Somanakatti, A.B.; Rakshith, M. Investigation on tensile behavior of glass-fiber reinforced polymer matrix composite with varying orientations of fibers. Mater. Today Proc. 2021, 54, 137–140. [Google Scholar] [CrossRef]
- Puttaraju, D.; Hanumantharaju, H. Finite element analysis and validation of tensile properties of carbon fiber reinforced polymer matrix composites. Mater. Today Proc. 2022, 62, 2800–2807. [Google Scholar] [CrossRef]
- Cripps, D.; Searle, T.J.; Summerscales, J. Open Mold Techniques for Thermoset Composites. In Comprehensive Composite Materials Encyclopædia; Talreja, R., Månson, J.-A., Eds.; Polymer Matrix Composites; Elsevier Science: Oxford, UK, 2000; Volume 2, Chapter 21; pp. 737–761. [Google Scholar] [CrossRef]
- Barbero, E.J. Introduction to Composite Materials Design, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Rajak, D.K.; Pagar, D.D.; Kumar, R.; Pruncu, C.I. Recent progress of reinforcement materials: A comprehensive overview of composite materials. J. Mater. Res. Technol. 2019, 8, 6354–6374. [Google Scholar] [CrossRef]
- Oksman, K. High Quality Flax Fibre Composites Manufactured by the Resin Transfer Moulding Process. J. Reinf. Plast. Compos. 2001, 20, 621–627. [Google Scholar] [CrossRef]
- Rouison, D.; Sain, M.; Couturier, M. Resin transfer molding of natural fiber reinforced composites: Cure simulation. Compos. Sci. Technol. 2004, 64, 629–644. [Google Scholar] [CrossRef]
- Nawaz, A.; Islam, B.; Khattak, M.S.; Ali, L.; Saleem, U.; Ullah, A.; Ijaz, M.Z.; Mao, W.G. Polyester Usage in Manufacturing of Electrical and Mechanical Products and Assemblies. In Polyester—Production, Characterization and Innovative Applications; InTech Open: London, UK, 2018. [Google Scholar] [CrossRef]
- Razali, N.; Mansor, M.R.; Omar, G.; Kamarulzaman, S.A.F.S.; Zin, M.H.; Razali, N. Out-of-autoclave as a sustainable composites manufacturing process for aerospace applications. In Design for Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; pp. 395–413. [Google Scholar] [CrossRef]
- Kassapoglou, C. Design and Analysis of Composite Structures; American Institute of Aeronautics and Astronautics (AIAA): Reston, VA, USA, 2010; ISBN 9781600867804. [Google Scholar]
- Zhao, X.; Li, K.; Wang, Y.; Tekinalp, H.; Richard, A.; Webb, E.; Ozcan, S. Bio-treatment of poplar via amino acid for interface control in biocomposites. Compos. Part B Eng. 2020, 199, 108276. [Google Scholar] [CrossRef]
- Taboga, P.; Grabowski, A.M. Axial and torsional stiffness of pediatric prosthetic feet. Clin. Biomech. 2017, 42, 47–54. [Google Scholar] [CrossRef] [PubMed]
- ISO 10328; Prosthethics—Structural Testing of Lower-Limb Prostheses—Requirements and Test Methods. ISO: Geneva, Switzerland, 2006.
- ISO 22675; Prosthetics—Testing of Ankle-Foot Devices and Foot Units—Requirements and Test Methods. ISO: Geneva, Switzerland, 2006.
- Colombo, C.; Marchesin, E.; Vergani, L.; Boccafogli, E.; Verni, G. Study of an ankle prosthesis for children: Adaptation of ISO 10328 and experimental tests. Procedia Eng. 2011, 10, 3510–3517. [Google Scholar] [CrossRef]
- Tabucol, J.; Brugo, T.M.; Povolo, M.; Leopaldi, M.; Oddsson, M.; Carloni, R.; Zucchelli, A. Structural FEA-Based Design and Functionality Verification Methodology of Energy-Storing-and-Releasing Prosthetic Feet. Appl. Sci. 2021, 12, 97. [Google Scholar] [CrossRef]
- Colombo, C.; Marchesin, E.; Vergani, L.; Boccafogli, E.; Verni, G. Design of an ankle prosthesis for swimming and walking. Procedia Eng. 2011, 10, 3503–3509. [Google Scholar] [CrossRef]
- Hamzah, M.; Gatta, A. Design of a Novel Carbon-Fiber Ankle-Foot Prosthetic using Finite Element Modeling. IOP Conf. Ser. Mater. Sci. Eng. 2018, 433, 012056. [Google Scholar] [CrossRef]
- Starker, F.; Blab, F.; Dennerlein, F.; Schneider, U. A Method for Sports Shoe Machinery Endurance Testing: Modification of ISO 22675 Prosthetic Foot Test Machine for Heel-to-toe Running Movement. Procedia Eng. 2014, 72, 405–410. [Google Scholar] [CrossRef]
- Santana, J.P.; Beltran, K.; Barocio, E.; Lopez-Avina, G.I.; Huegel, J.C. Development of a Low-Cost and Multi-Size Foot Prosthesis for Humanitarian Applications. In Proceedings of the 2018 IEEE Global Humanitarian Technology Conference (GHTC), Radnor, PA, USA, 12–15 October 2023; pp. 1–8. [Google Scholar]
- KS P 8403; Prosthetic Feet and Ankle Joints. Korean Industrial Standards: Seoul, Republic of Korea, 2017.
- Song, Y.; Choi, S.; Kim, S.; Roh, J.; Park, J.; Park, S.H.; Yoon, J. Performance Test for Laminated-Type Prosthetic Foot with Composite Plates. Int. J. Precis. Eng. Manuf. 2019, 20, 1777–1786. [Google Scholar] [CrossRef]
- Miller, K. Computational biomechanics for medicine. Int. J. Numer. Methods Biomed. Eng. 2011, 27, 345–346. [Google Scholar] [CrossRef]
- Simkins, D.C.C.; Alford, J.B.B. The Role of Computational Tools in Biomechanics. In Biomechanics of the Female Pelvic Floor; Elsevier: Amsterdam, The Netherlands, 2016; pp. 351–366. [Google Scholar] [CrossRef]
- Balaramakrishnan, T.M.; Natarajan, S.; Sujatha, S. Biomechanical design framework for prosthetic feet: Experimentally validated non-linear finite element procedure. Med. Eng. Phys. 2021, 92, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Parashar, S.; Chawla, V.K. Evaluation of fiber volume fraction of kenaf-coir-epoxy based green composite by finite element analysis. Mater. Today Proc. 2022, 50, 1265–1274. [Google Scholar] [CrossRef]
- Lian, W.; Yao, W. Fatigue life prediction of composite laminates by FEA simulation method. Int. J. Fatigue 2010, 32, 123–133. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Rajeswari, N.; Vaidheeswaran, K. Analysis of mechanical properties of natural fibre composites by experimental with FEA. Mater. Today Proc. 2019, 28, 1149–1153. [Google Scholar] [CrossRef]
- Birrer, R.B.; Buzermanis, S.; DellaCorte, M.P.; Grisalfi, P.J. Biomechanics of Running; Medical Publishing Division: Oxford, UK, 2001. [Google Scholar]
- Rietman, H.S.; Postema, K.; Geertzen, J.H.B. Gait analysis in prosthetics: Opinions, ideas and conclusions. Prosthet. Orthot. Int. 2003, 27, 76–77. [Google Scholar] [CrossRef] [PubMed]
- Balaramakrishnan, T.M.; Natarajan, S.; Sujatha, S. Design of a biomimetic sach foot: An experimentally verified finite element approach. J. Biomim. Biomater. Biomed. Eng. 2020, 45, 22–30. [Google Scholar] [CrossRef]
- Wittek, A.; Miller, K. Computational biomechanics for medical image analysis. In Handbook of Medical Image Computing and Computer Assisted Intervention; Elsevier: Amsterdam, The Netherlands, 2020; pp. 953–977. [Google Scholar] [CrossRef]
- Paknys, R. Finite Element Method. In Applied Frequency-Domain Electromagnetics; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 233–267. [Google Scholar] [CrossRef]
Brand | Model | Material | Reference (Access Date) | Country |
---|---|---|---|---|
Blatchford | Elan | Carbon Fiber | www.blatchfordmobility.com (17 April 2024) | UK |
Blatchford | Epirus | Carbon Fiber | www.blatchfordmobility.com (17 April 2024) | UK |
Blatchford | Stellar | Nylon | www.blatchfordmobility.com (17 April 2024) | UK |
Össur | Balance Foot S | Glass Fiber | www.ossur.com (17 April 2024) | US |
Össur | Vari-Flex | Carbon Fiber | www.ossur.com (17 April 2024) | US |
Ottobock | Kintrol | Glass Fiber | www.ottobock.com (17 April 2024) | DE |
Ottobock | Restore | Glass Fiber | www.ottobock.com (17 April 2024) | DE |
Fiber | Diameter (μm) | Density (g/cm3) | Tensile Strength (MPa) | Young’s Modulus (GPa) | Elongation at Break (%) | Moisture Absorption (%) |
---|---|---|---|---|---|---|
Abaca | 10–30 | 1.5 | 430–813 | 31.10–33.60 | 2.9–10 | ~ |
Bagasse | ~ | 1.20 | 20–290 | 19–27 | 1.10 | ~ |
Bamboo | 88–125 | 0.91–1.26 | 503 | 35.91 | 1.40 | ~ |
Banana | 100–250 | 1.35 | 529–914 | 27–32 | 2.60–5.90 | ~ |
Basalt | 17 | 2.8 | 4800 | 90 | 3.15 | ~ |
Coconut | 150–250 | 1.15–1.25 | 131–220 | 4–6 | 15–40 | 10 |
Cotton | ~ | 1.50–1.51 | 287–597 | 5.50–12.60 | 0.30–10 | 8–25 |
Flax | 25 | 1.40–1.50 | 345–1500 | 27.60–80 | 1.20–3.20 | 7 |
Hemp | 25–600 | 1.48–1.50 | 550–900 | 70 | 1.60–4 | 8 |
Henequen | ~ | 1.20–1.40 | 430–570 | 10–16.30 | 3.70–5.90 | ~ |
Jute | 25–250 | 1.30–1.48 | 393–800 | 0.13–27.60 | 1.16–1.80 | 12 |
Kenaf | ~ | 1.25–1.40 | 284–930 | 0.13–26.50 | 1.16–1.80 | ~ |
Pineapple | 50 | 1.44 | 413–1627 | 60–80 | 14.50 | ~ |
Ramie | 20–280 | 1.30–1.50 | 400–938 | 61.40–128 | 3.60–3.80 | 12–17 |
Rice husk | ~ | 0.50–0.70 | ~ | ~ | ~ | ~ |
Sisal | 50–200 | 1.30–1.50 | 390–635 | 9.40–41 | 2–2.50 | 11 |
Softwood | ~ | 1.50 | 1000 | 40 | ~ | ~ |
Viscose cord | ~ | ~ | 593 | 11 | 11.4 | ~ |
Authors | Matrix | Types of Fiber | Method of Fabrication |
---|---|---|---|
Aslan et al. [122] | Polypropylene matrix | Carbon/sisal, glass/sisal | Single-screw co-rotating extrusion method |
Assarar et al. [123] | Epoxy matrix | Flax–carbon fiber | Platen press process |
Campbell et al. [124] | Plant oil resin | Ramie/stockinet | Standard layup method |
Chaudhary et al. [125] | Epoxy matrix | Flax hemp/jute/fiber | Hand-layup method |
Essabir et al. [126] | Polypropylene matrix | Coir fiber | Twin-screw extrusion method |
Gu et al. [127] | Epoxy matrix | Ramie fiber | Vacuum infusion process |
Indra Reddy et al. [128] | Epoxy matrix | Pineapple, glass, and jute fiber | Hand-layup method |
Jagannatha et al. [129] | Epoxy matrix | Glass/carbon | Vacuum bagging technique |
Lee et al. [130] | Polypropylene matrix | Kenaf/jute | Hot-pressing method |
Rahman et al. [131] | Vinyl-ester matrix | PALF | Hand-layup method |
Saba et al. [132] | Epoxy matrix | Kenaf fiber | Hand-layup technique |
Sekaran et al. [133] | Epoxy matrix | Sisal fiber and aloe vera | Hand-layup method |
Shanmugam et al. [134] | Polyester matrix | Jute fiber palmyra and leaf stalk fiber | Compression molding |
Shih et al. [135] | Poly-lactic acid | PALF/chopsticks | Counter-rotating internal mixing |
Shrivastava et al. [136] | Epoxy resin | Coir–glass | Hand-layup method |
Sreekumar et al. [137] | Polyester matrix | Sisal fiber | Resin transfer molding technique |
Widhata et al. [138] | Methyl methacrylate | Water hyacinth | Compression molding |
Yan et al. [139] | Epoxy matrix | Flax/linen/bamboo | Vacuum bagging process |
Yang et al. [140] | Polypropylene matrix | Hemp fiber | Twin-screw extrusion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Franco, A.D.; Siqueiros-Hernández, M.; García-Angel, V.; Mendoza-Muñoz, I.; Vargas-Osuna, L.E.; Magaña-Almaguer, H.D. A Review of Natural Fiber-Reinforced Composites for Lower-Limb Prosthetic Designs. Polymers 2024, 16, 1293. https://doi.org/10.3390/polym16091293
Castro-Franco AD, Siqueiros-Hernández M, García-Angel V, Mendoza-Muñoz I, Vargas-Osuna LE, Magaña-Almaguer HD. A Review of Natural Fiber-Reinforced Composites for Lower-Limb Prosthetic Designs. Polymers. 2024; 16(9):1293. https://doi.org/10.3390/polym16091293
Chicago/Turabian StyleCastro-Franco, Angel D., Miriam Siqueiros-Hernández, Virginia García-Angel, Ismael Mendoza-Muñoz, Lidia E. Vargas-Osuna, and Hernán D. Magaña-Almaguer. 2024. "A Review of Natural Fiber-Reinforced Composites for Lower-Limb Prosthetic Designs" Polymers 16, no. 9: 1293. https://doi.org/10.3390/polym16091293
APA StyleCastro-Franco, A. D., Siqueiros-Hernández, M., García-Angel, V., Mendoza-Muñoz, I., Vargas-Osuna, L. E., & Magaña-Almaguer, H. D. (2024). A Review of Natural Fiber-Reinforced Composites for Lower-Limb Prosthetic Designs. Polymers, 16(9), 1293. https://doi.org/10.3390/polym16091293