Butane Tetracarboxylic Acid Grafted on Polymeric Nanofibrous Aerogels for Highly Efficient Protein Absorption and Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of EVOH Nanofibrous Aerogels (NFAs)
2.3. Fabrication of EVOH/BTCA NFAs
2.4. Instruments and Characterization
2.5. Testing Protein Absorption Performance
3. Results and Discussion
3.1. EVOH/BTCA NFA Preparation and Design
3.2. Mechanical and Morphologies Properties of EVOH/BTCA NFAs
3.3. Optimizing Protein Absorption on EVOH/BTCA NFAs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Low, J.S.; Jerak, J.; Tortorici, M.A.; McCallum, M.; Pinto, D.; Cassotta, A.; Foglierini, M.; Mele, F.; Abdelnabi, R.; Weynand, B.; et al. ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science 2022, 377, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Watanabe, E.; Kawashima, Y.; Plichta, D.R.; Wang, Z.J.; Ujike, M.; Ang, Q.Y.; Wu, R.R.; Furuichi, M.; Takeshita, K.; et al. Identification of trypsin-degrading commensals in the large intestine. Nature 2022, 609, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.D.; Zhang, L.Q.; Hu, J.N.; Wang, Z.W.; Meng, D.M.; Li, H.; Zhou, Z.K.; Yang, R. The structural characterization and color stabilization of the pigment protein-phycoerythrin glycosylated with oligochitosan. Food Hydrocolloid 2023, 136, 108241. [Google Scholar] [CrossRef]
- Ge, M.Y.; Shen, Y.; Chen, W.M.; Peng, Y.T.; Pan, Z.Y. Adsorption of Bovine Hemoglobin by Sulfonated Polystyrene Nanospheres. Chemistryselect 2019, 4, 2874–2880. [Google Scholar] [CrossRef]
- Cheng, P.; Liu, K.; Wan, Y.C.; Hu, W.; Ji, C.C.; Huang, P.; Guo, Q.H.; Xu, J.; Cheng, Q.; Wang, D. Solution Viscosity-Mediated Structural Control of Nanofibrous Sponge for RNA Separation and Purification. Adv. Funct. Mater. 2022, 32, 2112023. [Google Scholar] [CrossRef]
- Yi, S.X.; Dai, F.Y.; Ma, Y.; Yan, T.S.; Si, Y.; Sun, G. Ultrafine Silk-Derived Nanofibrous Membranes Exhibiting Effective Lysozyme Adsorption. ACS Sustain. Chem. Eng. 2017, 5, 8777–8784. [Google Scholar] [CrossRef]
- Qiao, X.Q.; Chen, R.; Yan, H.Y.; Shen, S.G. Polyhedral oligomeric silsesquioxane-based hybrid monolithic columns: Recent advances in their preparation and their applications in capillary liquid chromatography. Trac-Trend Anal. Chem. 2017, 97, 50–64. [Google Scholar] [CrossRef]
- Yang, H.Y.; Hao, C.C.; Nan, Z.Z.; Sun, R.G. Bovine hemoglobin adsorption onto modified silica nanoparticles: Multi-spectroscopic measurements based on kinetics and protein conformation. Int. J. Biol. Macromol. 2020, 155, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Sun, L.; Dai, J.H.; Baker, G.L.; Bruening, M.L. High-capacity purification of his-tagged proteins by affinity membranes containing functionalized polymer brushes. Biomacromolecules 2007, 8, 3102–3107. [Google Scholar] [CrossRef]
- Ge, M.Y.; Zhang, J.L.; Gai, Z.Q.; Fan, R.S.; Hu, S.Q.; Liu, G.; Cao, Y.; Du, X.L.; Shen, Y. Synthesis of magnetic Fe3O4@PS-ANTA-M2+ (M = Ni, Co, Cu and Zn) nanospheres for specific isolation of histidine-tagged proteins. Chem. Eng. J. 2021, 404, 126427. [Google Scholar] [CrossRef]
- Mohan, T.; Niegelhell, K.; Zarth, C.S.P.; Kargl, R.; Kostler, S.; Ribitsch, V.; Heinze, T.; Spirk, S.; Stana-Kleinschek, K. Triggering Protein Adsorption on Tailored Cationic Cellulose Surfaces. Biomacromolecules 2014, 15, 3931–3941. [Google Scholar] [CrossRef]
- Cao, L.Y.; Wang, H.C.; Shen, H.; Wang, R.L.; Wang, F.M.; Xu, G.B.A. Adsorption performance of human-like collagen by alkali-modified Kapok fiber: A kinetic, equilibrium, and mechanistic investigation. Cellulose 2022, 29, 3177–3193. [Google Scholar] [CrossRef]
- Ji, C.C.; Hu, W.; Cheng, P.; Huang, P.; He, S.S.; Xiang, Y.; Zhou, F.; Liu, K.; Wang, D. Cation exchange chromatography membrane of Poly(ethylene vinyl alcohol) nanofiber/sulfonated polystyrene microsphere composite for lysozyme isolation. Compos. Commun. 2023, 40, 101570. [Google Scholar] [CrossRef]
- Dou, X.Y.; Wang, Q.; Li, Z.L.; Ju, J.P.; Wang, S.; Hao, L.Y.; Sui, K.Y.; Xia, Y.Z.; Tan, Y.Q. Seaweed-Derived Electrospun Nanofibrous Membranes for Ultrahigh Protein Adsorption. Adv. Funct. Mater. 2019, 29, 1905610. [Google Scholar] [CrossRef]
- Amaly, N.; El-Moghazy, A.Y.; Si, Y.; Sun, G. Functionalized nanofibrous nylon 6 membranes for efficient reusable and selective separation of laccase enzyme. Colloid. Surface B 2020, 194, 111190. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.K.; Cheng, H.I.; Ooi, C.W.; Song, C.P.; Liu, B.L. Adsorption and purification performance of lysozyme from chicken egg white using ion exchange nanofiber membrane modified by ethylene diamine and bromoacetic acid. Food Chem. 2021, 358, 129914. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.X.; Li, Y.Y.; Zhang, W.; Zou, Y.S.; Duan, L.; Yang, X.; Xiao, B.; Yi, S.X. Fabrication of Sulfated Silk Fibroin-Based Blend Nanofibrous Membranes for Lysozyme Adsorption. Adv. Fiber Mater. 2022, 4, 89–97. [Google Scholar] [CrossRef]
- Chen, L.Y.; Ding, L.; Liu, K.K.; Mao, Z.P.; Wang, B.J.; Feng, X.L.; Sui, X.F. Lightweight, Environmentally Friendly, and Underwater Superelastic 3D-Architectured Aerogels for Efficient Protein Separation. ACS Sustain. Chem. Eng. 2021, 9, 11738–11747. [Google Scholar] [CrossRef]
- Fu, Q.X.; Liu, L.F.; Si, Y.; Yu, J.Y.; Ding, B. Shapeable, Underwater Superelastic, and Highly Phosphorylated Nanofibrous Aerogels for Large-Capacity and High-Throughput Protein Separation. ACS Appl. Mater. Interfaces 2019, 11, 44874–44885. [Google Scholar] [CrossRef]
- Qiao, S.Y.; Yan, J.L.; Wang, Z.; Wang, Y.; Yu, J.R.; Hu, Z.M. Tough and lightweight polyimide/cellulose nanofiber aerogels with hierarchical porous structures as an efficient air purifier. Sep. Purif. Technol. 2023, 325, 124668. [Google Scholar] [CrossRef]
- Shimizu, T.; De Silva, K.K.H.; Hara, M.; Yoshimura, M. Facile synthesis of carbon nanotubes and cellulose nanofiber incorporated graphene aerogels for selective organic dye adsorption. Appl. Surf. Sci. 2022, 600, 154098. [Google Scholar] [CrossRef]
- Lu, Y.; Li, D.H.; Lyu, C.X.; Liu, H.L.; Liu, B.; Lyu, S.Y.; Rosenau, T.; Yang, D.J. High nitrogen doped carbon nanofiber aerogels for sodium ion batteries: Synergy of vacancy defects to boost sodium ion storage. Appl. Surf. Sci. 2019, 496, 143717. [Google Scholar] [CrossRef]
- Chen, J.; Rafiq, M.; Shen, Y.Q.; Cong, H.L.; Liu, C.; Yu, B. A highly carboxylated sponge-like material: Preparation, characterization and protein adsorption. Sep. Purif. Technol. 2023, 324, 124541. [Google Scholar] [CrossRef]
- Lu, J.W.; Li, Y.; Song, W.; Losego, M.D.; Monikandan, R.; Jacob, K.I.; Xiao, R. Atomic Layer Deposition onto Thermoplastic Polymeric Nanofibrous Aerogel Templates for Tailored Surface Properties. ACS Nano 2020, 14, 7999–8011. [Google Scholar] [CrossRef]
- Lu, J.W.; Xu, D.D.; Wei, J.K.; Yan, S.; Xiao, R. Superoleophilic and Flexible Thermoplastic Polymer Nanofiber Aerogels for Removal of Oils and Organic Solvents. ACS Appl. Mater. Interfaces 2017, 9, 25533–25541. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Wan, Y.C.; Cheng, P.; Geng, Y.; Xia, M.; Zheng, L.J.; Tan, Y.; Liu, K.; Wang, D. High-Yield of Nucleic Acid Adsorption via Poly(Vinyl Alcohol-co-Ethylene) Nanofiber-Based Anion-Exchange Chitosan Aerogel Membrane with Controllable Porosity. Adv. Mater. Interfaces 2022, 9, 11. [Google Scholar] [CrossRef]
- Fu, Q.X.; Si, Y.; Liu, L.F.; Yu, J.Y.; Ding, B. Elaborate design of ethylene vinyl alcohol (EVAL) nanofiber-based chromatographic media for highly efficient adsorption and extraction of proteins. J. Colloid. Interface Sci. 2019, 555, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Lu, J.; Guo, L. Fabrication of highly carboxylated thermoplastic nanofibrous membranes for efficient absorption and separation of protein. Colloids Surf. A 2023, 665, 131203. [Google Scholar] [CrossRef]
- Zheng, Q.F.; Cai, Z.Y.; Gong, S.Q. Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J. Mater. Chem. A 2014, 2, 3110–3118. [Google Scholar] [CrossRef]
- Liu, M.X.; Yu, H.; Zhang, H.Q.; Wang, K.P.; Tan, X.L.; Liu, Q. Roles of the hydrophobic and hydrophilic groups of collectors in the flotation of different-sized mineral particles. Colloids Surf., A 2022, 637. [Google Scholar] [CrossRef]
- Kumar, R.R.; Yazhini, K.B.; Prabu, H.G.; Zhou, Q.X. Polyfunctional Application on Modified Cotton Fabric. Natl. Acad. Sci. Lett. 2019, 42, 475–478. [Google Scholar] [CrossRef]
- Alvarez, V.A.; Ruseckaite, R.A.; Vazquez, A. Kinetic analysis of thermal degradation in poly(ethylenevinyl alcohol) copolymers. J. Appl. Polym. Sci. 2003, 90, 3157–3163. [Google Scholar] [CrossRef]
- Fernandez, M.D.; Fernandez, M.J. Thermal decomposition of copolymers from ethylene with some vinyl derivatives. J. Therm. Anal. Calorim. 2008, 91, 447–454. [Google Scholar] [CrossRef]
- Yi, S.X.; Dai, F.Y.; Wu, Y.H.; Zhao, C.Y.; Si, Y.; Sun, G. Scalable fabrication of sulfated silk fibroin nanofibrous membranes for efficient lipase adsorption and recovery. Int. J. Biol. Macromol. 2018, 111, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.X.; Wang, X.Q.; Si, Y.; Liu, L.F.; Yu, J.Y.; Ding, B. Scalable Fabrication of Electrospun Nanofibrous Membranes Functionalized with Citric Acid for High-Performance Protein Adsorption. ACS Appl. Mater. Interfaces 2016, 8, 11819–11829. [Google Scholar] [CrossRef]
- You, H.N.; Zhao, Q.H.; Mei, T.; Li, X.F.; You, R.C.A.; Wang, D. Self-Reinforced Polymer Nanofiber Aerogels for Multifunctional Applications. Macromol. Mater. Eng. 2022, 307, 2100971. [Google Scholar] [CrossRef]
- Chiu, H.T.; Lin, J.M.; Cheng, T.H.; Chou, S.Y.; Huang, C.C. Direct purification of lysozyme from chicken egg white using weak acidic polyacrylonitrile nanofiber-based membranes. J. Appl. Polym. Sci. 2012, 125, E616–E621. [Google Scholar] [CrossRef]
- Qian, L.W.; Yang, M.X.; Chen, H.N.; Xu, Y.; Zhang, S.F.; Zhou, Q.S.; He, B.; Bai, Y.; Song, W.Q. Preparation of a poly(ionic liquid)-functionalized cellulose aerogel and its application in protein enrichment and separation. Carbohydr. Polym. 2019, 218, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Amaly, N.; Ma, Y.; El-Moghazy, A.Y.; Sun, G. Copper complex formed with pyridine rings grafted on cellulose nanofibrous membranes for highly efficient lysozyme adsorption. Sep. Purif. Technol. 2020, 250, 117086. [Google Scholar] [CrossRef]
- Fu, Q.X.; Si, Y.; Duan, C.; Yan, Z.S.; Liu, L.F.; Yu, J.Y.; Ding, B. Highly Carboxylated, Cellular Structured, and Underwater Superelastic Nanofibrous Aerogels for Efficient Protein Separation. Adv. Funct. Mater. 2019, 29, 8234. [Google Scholar] [CrossRef]
- Li, Y.; Wen, Y.A.; Wang, L.H.; He, J.X.; Al-Deyab, S.S.; El-Newehy, M.; Yu, J.Y.; Ding, B. Simultaneous visual detection and removal of lead(II) ions with pyromellitic dianhydride-grafted cellulose nanofibrous membranes. J. Mater. Chem. A 2015, 3, 18180–18189. [Google Scholar] [CrossRef]
- Dismer, F.; Petzold, M.; Hubbuch, J. Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents. J. Chromatogr. A 2008, 1194, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Rolère, S.; Liengprayoon, S.; Vaysse, L.; Sainte-Beuve, J.; Bonfils, F.J.P.T. Investigating natural rubber composition with Fourier Transform Infrared (FT-IR) spectroscopy: A rapid and non-destructive method to determine both protein and lipid contents simultaneously. Polym. Test. 2015, 43, 83–93. [Google Scholar] [CrossRef]
- Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K. Effect of molecular weight of PEG on membrane morphology and transport properties. J. Membr. Sci. 2008, 309, 209–221. [Google Scholar] [CrossRef]
- Erzengin, M.; Unlu, N.; Odabasi, M. A novel adsorbent for protein chromatography: Supermacroporous monolithic cryogel embedded with Cu2+-attached sporopollenin particles. J. Chromatogr. A 2011, 1218, 484–490. [Google Scholar] [CrossRef]
Kinetic Models | qe (mg/g) | K (min−1) | R2 |
---|---|---|---|
Pseudo-first-order model | 936.61 | 0.02 | 0.98804 |
Pseudo-second-order model | 1255.86 | 2.20 | 0.99108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Jiang, Y.; Qiao, Y.; Wen, Z.; Luo, Z.; Ahmed, M.; Ali, A.; Guo, L. Butane Tetracarboxylic Acid Grafted on Polymeric Nanofibrous Aerogels for Highly Efficient Protein Absorption and Separation. Polymers 2024, 16, 1270. https://doi.org/10.3390/polym16091270
Lu J, Jiang Y, Qiao Y, Wen Z, Luo Z, Ahmed M, Ali A, Guo L. Butane Tetracarboxylic Acid Grafted on Polymeric Nanofibrous Aerogels for Highly Efficient Protein Absorption and Separation. Polymers. 2024; 16(9):1270. https://doi.org/10.3390/polym16091270
Chicago/Turabian StyleLu, Jianwei, Yangang Jiang, Yufei Qiao, Zihao Wen, Zhengjin Luo, Mukhtar Ahmed, Amjad Ali, and Li Guo. 2024. "Butane Tetracarboxylic Acid Grafted on Polymeric Nanofibrous Aerogels for Highly Efficient Protein Absorption and Separation" Polymers 16, no. 9: 1270. https://doi.org/10.3390/polym16091270
APA StyleLu, J., Jiang, Y., Qiao, Y., Wen, Z., Luo, Z., Ahmed, M., Ali, A., & Guo, L. (2024). Butane Tetracarboxylic Acid Grafted on Polymeric Nanofibrous Aerogels for Highly Efficient Protein Absorption and Separation. Polymers, 16(9), 1270. https://doi.org/10.3390/polym16091270