Improved Protein Removal Performance of PES Hollow-Fiber Ultrafiltration Membrane with Sponge-like Structure
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Materials
2.2. PES Hollow-Fiber Membrane Preparation
2.3. Testing and Characterization
2.3.1. Characterization of Membrane Morphology and Structure
2.3.2. Infrared Spectral Analysis
2.3.3. Contact Angle Test
2.3.4. Mechanical Performance Tests
2.3.5. Pure Water Flux Tests
2.3.6. Molecular Weight Cutoff Test
2.3.7. Zeta Potential Test
2.3.8. Protein Static Adsorption Assays
- A 0.5 g/L protein standard solution was prepared at pH 7. Four concentrations were then created through stepwise dilution: 0.1 g/L, 0.2 g/L, 0.3 g/L, and 0.4 g/L. The standard curve of the protein was plotted using the five concentrations.
- To conduct the protein adsorption experiment, a pipette gun was used to add 2 mL of 0.5 g/L protein solution to a 24-well plate. Then, a PES hollow-fiber membrane with a membrane area of 0.5 cm2 was immersed into the protein solution. The membrane was incubated for 1 h at 37 °C in a shaker.
- To determine protein adsorption, we used the BCA or LZM method. A BCA or LZM working solution was prepared by mixing reagent A and reagent B in a 50:1 ratio by volume.
- To determine protein adsorption, 20 μL of each protein solution was taken from the 24-well plate and transferred to a 96-well plate. To determine protein adsorption, 20 μL of each protein solution was taken from the 24-well plate and transferred to a 96-well plate. To determine protein adsorption, 20 μL of each protein solution was taken from the 24-well plate and transferred to a 96-well plate. Some 200 μL of BCA or LZM working solution was added and the plate was incubated in a 37 °C shaker. The absorbance of the samples was measured using an enzyme labeling instrument (MultiskanTM FC; Thermo Fisher Scientific, USA) at a wavelength of 562 nm (BSA) or 281 nm (LYS). The protein concentration in the solution was calculated according to the standard working curve.
2.3.9. Protein Ultrafiltration Experiments
3. Results and Discussion
3.1. Membrane Characterization
3.1.1. Microstructure of Membranes
3.1.2. Chemical Composition of the Prepared PES Membranes
3.1.3. Pure Water Flux, BSA Retention, Mechanical Properties, and MWCOs
3.1.4. Contact Angle, Surface Charge, and Protein Adsorption
3.2. Separation Properties of Bovine Serum Protein/lysozyme Binary Protein Solutions
3.2.1. Filtration Stability of Membranes in Monomer Protein Solutions
3.2.2. Membrane Filtration in Mixed Solutions of Binary Proteins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adiga, S.P.; Jin, C.; Curtiss, L.A.; Monteiro-Riviere, N.A.; Narayan, R.J. Nanoporous membranes for medical and biological applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 2009, 1, 568–581. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Irfan, M.; Idris, A.; Alsubaie, A.S.; Mahmoud, K.H.; Yusof, N.M.; Akhtar, N. Dual Optimized Sulfonated Polyethersulfone and Functionalized Multiwall Carbon Tube Based Composites High Fouling Resistance Membrane for Protein Separation. Membranes 2022, 12, 329. [Google Scholar] [CrossRef] [PubMed]
- Kole, P.L.; Venkatesh, G.; Kotecha, J.; Sheshala, R. Recent advances in sample preparation techniques for effective bioanalytical methods. Biomed. Chromatogr. 2011, 25, 199–217. [Google Scholar] [CrossRef] [PubMed]
- Butreddy, A.; Janga, K.Y.; Ajjarapu, S.; Sarabu, S.; Dudhipala, N. Instability of therapeutic proteins—An overview of stresses, stabilization mechanisms and analytical techniques involved in Lyophilized proteins. Int. J. Biol. Macromol. 2021, 167, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Mostashari, P.; Marszałek, K.; Aliyeva, A.; Khaneghah, A.M. The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules 2023, 28, 2658. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Huo, W.; Li, G.; Xie, Q.; Jiang, Y. The combined effects of lysozyme and ascorbic acid on microstructure and properties of zein-based films. Chin. J. Chem. Eng. 2018, 26, 648–656. [Google Scholar] [CrossRef]
- Xue, A.; Yu, L.; Sun, Y. Implications from protein uptake kinetics onto dextran-grafted Sepharose FF coupled with ion exchange and affinity ligands. Chin. J. Chem. Eng. 2017, 25, 906–910. [Google Scholar] [CrossRef]
- Burgess, R.; Deutscher, M. Guide to Protein Purification; Academic Press: Cambridge, MA, USA, 2009; Volume 463. [Google Scholar]
- Du, M.; Hou, Z.; Liu, L.; Xuan, Y.; Chen, X.; Fan, L.; Li, Z.; Xu, B. Progress, applications, challenges and prospects of protein purification technology. Front. Bioeng. Biotechnol. 2022, 10, 1028691. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, S.B.; Silva, R.J.S.; Moleirinho, M.G.; Cunha, B.; Moreira, A.S.; Xenopoulos, A.; Alves, P.M.; Carrondo, M.J.T.; Peixoto, C. Membrane-Based Approach for the Downstream Processing of Influenza Virus-Like Particles. Biotechnol. J. 2019, 14, e1800570. [Google Scholar] [CrossRef] [PubMed]
- Abels, C.; Carstensen, F.; Wessling, M. Membrane processes in biorefinery applications. J. Membr. Sci. 2013, 444, 285–317. [Google Scholar] [CrossRef]
- Nath, K. Membrane Separation Processes; PHI Learning Pvt. Ltd.: Delhi, India, 2017. [Google Scholar]
- Saxena, A.; Tripathi, B.P.; Kumar, M.; Shahi, V.K. Membrane-based techniques for the separation and purification of proteins: An overview. Adv. Colloid Interface Sci. 2009, 145, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Charcosset, C. Purification of proteins by membrane chromatography. J. Chem. Technol. Biotechnol. 1998, 71, 95–110. [Google Scholar] [CrossRef]
- Chen, J.; Yu, B.; Cong, H.; Shen, Y. Recent development and application of membrane chromatography. Anal. Bioanal. Chem. 2023, 415, 45–65. [Google Scholar] [CrossRef]
- Orr, V.; Zhong, L.; Moo-Young, M.; Chou, C.P. Recent advances in bioprocessing application of membrane chromatography. Biotechnol. Adv. 2013, 31, 450–465. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Silva, S.S.; Cui, Z. Lysozyme separation by hollow-fibre ultrafiltration. Biochem. Eng. J. 2000, 6, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shahbazi, A.; Kadzere, C.T. Separation of cells and proteins from fermentation broth using ultrafiltration. J. Food Eng. 2006, 75, 574–580. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Bhattacharjee, C.; Datta, S. Studies on the fractionation of β-lactoglobulin from casein whey using ultrafiltration and ion-exchange membrane chromatography. J. Membr. Sci. 2006, 275, 141–150. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef] [PubMed]
- Baig, U.; Faizan, M.; Sajid, M. Multifunctional membranes with super-wetting characteristics for oil-water separation and removal of hazardous environmental pollutants from water: A review. Adv. Colloid Interface Sci. 2020, 285, 102276. [Google Scholar] [CrossRef]
- Kahrs, C.; Schwellenbach, J. Membrane formation via non-solvent induced phase separation using sustainable solvents: A comparative study. Polymer 2020, 186, 122071. [Google Scholar] [CrossRef]
- Shi, X.; Tal, G.; Hankins, N.P.; Gitis, V. Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process Eng. 2014, 1, 121–138. [Google Scholar] [CrossRef]
- Zhao, C.; Xue, J.; Ran, F.; Sun, S. Modification of polyethersulfone membranes—A review of methods. Prog. Mater. Sci. 2013, 58, 76–150. [Google Scholar] [CrossRef]
- Al-Gamal, A.Q.; Saleh, T.A. Design and manufacturing of a novel thin-film composite membrane based on polyamidoamine-grafted graphene nanosheets for water treatment. J. Water Process Eng. 2022, 47, 102770. [Google Scholar] [CrossRef]
- Mahdi, N.; Kumar, P.; Goswami, A.; Perdicakis, B.; Shankar, K.; Sadrzadeh, M. Robust polymer nanocomposite membranes incorporating discrete TiO2 nanotubes for water treatment. Nanomaterials 2019, 9, 1186. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J. Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination 2020, 475, 114171. [Google Scholar] [CrossRef]
- Lalia, B.S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013, 326, 77–95. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Zhu, G.-D.; Yi, Z.; Zhou, Y.; Gao, C.-J. Critical contributions of additives on the fabrication of asymmetric isoporous membranes from block copolymers: A review. Chem. Eng. J. 2021, 424, 128912. [Google Scholar] [CrossRef]
- Kong, X.; Lu, X.; Ren, K. Towards high-performance polysulfone membranes: A controllable membrane formation process using surfactant in NIPS. J. Taiwan Inst. Chem. Eng. 2021, 129, 171–179. [Google Scholar] [CrossRef]
- Wang, H.; Yu, T.; Zhao, C.; Du, Q. Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by adding polyvinylpyrrolidone. Fibers Polym. 2009, 10, 1–5. [Google Scholar] [CrossRef]
- Al Malek, S.; Abu Seman, M.; Johnson, D.; Hilal, N. Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone. Desalination 2012, 288, 31–39. [Google Scholar] [CrossRef]
- Wang, D.S.; Li, B.J.; Zhao, W.F.; Lu, Y.; Sun, S.D.; Zhao, C.S. Protein-grafted carboxylic poly(ether sulfone) membranes: Preparation and characterization. J. Appl. Polym. Sci. 2012, 126, 1277–1290. [Google Scholar] [CrossRef]
- Boom, R.M.; Wienk, I.M.; Van den Boomgaard, T.; Smolders, C.A. Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. J. Membr. Sci. 1992, 73, 277–292. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Jiang, J.; Zhao, D.; Shen, C.; Zha, S.; Qu, S.; Lin, R.; Wang, Y.; Dai, G. Rheological behavior of PES/PVP/DMAc solution and PVP structural regulation for hollow fiber membrane. J. Appl. Polym. Sci. 2022, 139, 52870. [Google Scholar] [CrossRef]
- Chokki, J.; Darracq, G.; Pölt, P.; Baron, J.; Gallard, H.; Joyeux, M.; Teychené, B. Investigation of Poly(ethersulfone)/Polyvinylpyrrolidone ultrafiltration membrane degradation by contact with sodium hypochlorite through FTIR mapping and two-dimensional correlation spectroscopy. Polym. Degrad. Stab. 2019, 161, 131–138. [Google Scholar] [CrossRef]
- Kumar, S.A.; Srinivasan, G.; Govindaradjane, S.; Kirubasankar, B.; Jayaraman, S. Modified polyethersulfone thin-film composite membrane via interfacial polymerization for an effective dye separation. Environ. Sustain. 2022, 5, 345–354. [Google Scholar] [CrossRef]
- Shao, W.; Wu, S.; Hong, Z.; Wang, Q.; Xiong, Y.; Yi, R.; Xie, Q.; Xiao, Z. Preparation and characterization of asymmetric polyethersulfone nanofiltration membranes: The effects of polyvinylpyrrolidone molecular weights and concentrations. J. Appl. Polym. Sci. 2016, 133, 43769. [Google Scholar] [CrossRef]
- Yurekli, Y.; Yildirim, M.; Aydin, L.; Savran, M. Filtration and removal performances of membrane adsorbers. J. Hazard. Mater. 2017, 332, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.B.; Zydney, A.L. Effect of solution pH on protein transport through ultrafiltration membranes. Biotechnol. Bioeng. 1999, 64, 27–37. [Google Scholar] [CrossRef]
- Linn, S. Strategies and consideration for protein purification. Methods Enzymol. 1990, 182, 9–15. [Google Scholar]
- Lebendiker, M.; Maes, M.; Friedler, A. A screening methodology for purifying proteins with aggregation problems. Methods Mol. Biol. 2015, 1258, 261–281. [Google Scholar]
- Labrou, N.E. Protein Purification Technologies. Methods Mol. Biol. 2021, 2178, 3–10. [Google Scholar] [PubMed]
- Walls, D.; Cooney, G.; Loughran, S.T. A Synopsis of Proteins and Their Purification. Methods Mol. Biol. 2017, 1485, 3–14. [Google Scholar] [PubMed]
Membranes | Dope Compositions (wt%) | |||
---|---|---|---|---|
PES | PVP-k30 | PEG | DMAc | |
PES00 | 20 | 0 | 8 | 72 |
PES01 | 20 | 5 | 8 | 67 |
PES02 | 20 | 12 | 8 | 60 |
PES03 | 20 | 16 | 8 | 56 |
PES04 | 20 | 20 | 8 | 52 |
Process Conditions | Parameters |
---|---|
Feed tank operating temperature (°C) | 60 |
Bore liquid tank operating temperature (°C) | 25 |
Gear pump operating temperature (°C) | 60 |
Spinneret operating temperature (°C) | 60 |
Bore liquid composition | H2O |
Spinning solution pump speed | 4 m/s |
Bore liquid pump speed | 10 m/s |
Coagulation bath | H2O |
Temperature of the coagulation bath | 20 °C |
Air gap | 10 cm |
Parameters | LYS | BSA |
---|---|---|
Molecular weight (Da) | 14,300 | 68,000 |
Molecular size (nm) | 4.5 × 3 × 3 | 14 × 3.8 × 3.8 |
Isoelectric point | 10.8 | 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; He, T.; Yao, S.; Tao, L.; Zhang, X.; Wang, Z.; Cui, Z.; Chen, R. Improved Protein Removal Performance of PES Hollow-Fiber Ultrafiltration Membrane with Sponge-like Structure. Polymers 2024, 16, 1194. https://doi.org/10.3390/polym16091194
Zhao H, He T, Yao S, Tao L, Zhang X, Wang Z, Cui Z, Chen R. Improved Protein Removal Performance of PES Hollow-Fiber Ultrafiltration Membrane with Sponge-like Structure. Polymers. 2024; 16(9):1194. https://doi.org/10.3390/polym16091194
Chicago/Turabian StyleZhao, Huyang, Ting He, Shuang Yao, Long Tao, Xinhai Zhang, Zhaohui Wang, Zhaoliang Cui, and Rizhi Chen. 2024. "Improved Protein Removal Performance of PES Hollow-Fiber Ultrafiltration Membrane with Sponge-like Structure" Polymers 16, no. 9: 1194. https://doi.org/10.3390/polym16091194
APA StyleZhao, H., He, T., Yao, S., Tao, L., Zhang, X., Wang, Z., Cui, Z., & Chen, R. (2024). Improved Protein Removal Performance of PES Hollow-Fiber Ultrafiltration Membrane with Sponge-like Structure. Polymers, 16(9), 1194. https://doi.org/10.3390/polym16091194