Applying the Taguchi Method to Improve Key Parameters of Extrusion Vacuum-Forming Quality
Abstract
:1. Introduction
2. Literature
3. Research Method and Analysis Experiment
3.1. Analysis Based on Three Iterations of the Delphi Technique
3.2. Analysis of Variance (ANOVA)
3.3. Taguchi Method: Optimization of the Key Factor Parameter Experiment [22]
3.4. Experimental Procedure of the Study
3.5. Analysis of Variance (ANOVA)
3.6. Experimental Confirmation
- (1)
- The original process S/N ratio formula calculation is predicted.
- (2)
- The S/N ratio formula under the best combination is calculated.
- (3)
- From the original process to the optimal process, the calculation formula for the increase in S/N ratio is:
Experimental Comparison after Process Improvement [34]
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Walther, B.A.; Yen, N.; Hu, C.-S. Strategies, actions, and policies by Taiwan’s ENGOs, media, and government to reduce plastic use and marine plastic pollution. Mar. Policy 2021, 126, 104391. [Google Scholar] [CrossRef]
- Silva, A.L.P.; Prata, J.C.; Walker, T.R.; Campos, D.; Duarte, A.C.; Soares, A.M.; Barcelò, D.; Rocha-Santos, T. Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Sci. Total. Environ. 2020, 742, 140565. [Google Scholar] [CrossRef] [PubMed]
- Borrelle, S.B.; Ringma, J.; Law, K.L.; Monnahan, C.C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G.H.; Hilleary, M.A.; et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020, 369, 1515–1518. [Google Scholar] [CrossRef] [PubMed]
- Clayton, C.A.B. Building Collective Ownership of Single-Use Plastic Waste in Youth Communities: A Jamaican Case Study. Soc. Sci. 2021, 10, 412. [Google Scholar] [CrossRef]
- Dybka-Stępień, K.; Antolak, H.; Kmiotek, M.; Piechota, D.; Koziróg, A. Disposable food packaging and serving materials—Trends and biodegradability. Polymers 2021, 13, 3606. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Kim, K.N.; Woo, J. Post-consumer plastic packaging waste from online food delivery services in South Korea. Waste Manag. 2023, 156, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Clive, M.; Theresa, C. Polypropylene: The Definitive User’s Guide and Databook; William Andrew: Norwich, NY, USA, 1998; Available online: https://www.sciencedirect.com/book/9781884207587/polypropylene (accessed on 10 December 2023).
- Somaye, A. Polypropylene in the Industry of Food Packaging. 2012. Available online: https://www.intechopen.com/chapters/37229 (accessed on 21 December 2023).
- Albert, K.A.; Cruz, C.A.; Palm, J.P.; Johnson, R.W. Polypropylene resins for sheeting and thermoforming. J. Plast. Film Sheeting 1985, 1, 250–257. [Google Scholar] [CrossRef]
- Alotaibi, M.; Aldhafeeri, T.; Barry, C. The Impact of Reprocessing with a Quad Screw Extruder on the Degradation of Polypropylene. Polymers 2022, 14, 2661. [Google Scholar] [CrossRef] [PubMed]
- Daronde, S.; Kuthe, A.; Keerti, S.; Khatirkar, R.; Bagde, A.; Kamble, M.; Dahake, S. The Effect of Vacuum on the Mechanical Properties of Sand Cast AA6061 Alloy. J. Mater. Eng. Perform. 2022, 31, 262–271. [Google Scholar] [CrossRef]
- Kan, M.; Ipek, O.; Koru, M. An investigation into the effect of vacuum conditions on the filling analysis of the pressure casting process. Int. J. Met. 2023, 17, 430–446. [Google Scholar] [CrossRef]
- SUNWELL. 2024. Available online: https://www.sunwellglobal.com.tw/ (accessed on 5 January 2024).
- FCFC. 2024. Available online: https://www.fcfc-plastics.com/pp-resin.htm/ (accessed on 5 January 2024).
- Hos Win Enterprise Co., Ltd. 2024. Available online: https://www.laiwell.com/ (accessed on 5 January 2024).
- Chen, D.-C.; Chen, D.-F.; Huang, S.-M.; Huang, M.-J.; Shyr, W.-J.; Chiou, C.-F. Critical Success Factors to Improve the Business Performance of Tea Drink Chains. Sustainability 2021, 13, 8953. [Google Scholar] [CrossRef]
- Jou, Y.-T.; Silitonga, R.M.; Lin, M.-C.; Sukwadi, R.; Rivaldo, J. Application of Six Sigma Methodology in an Automotive Manufacturing Company: A Case Study. Sustainability 2022, 14, 14497. [Google Scholar] [CrossRef]
- Abdulai, M.N.; Prah, J.; Walker, E.; Afrifa, A.D. A fishbone analysis of the use of electronic health records (EHR) in a primary healthcare setting: The case of university of cape coast hospital. Int. J. Appl. Inf. Syst. (IJAIS) 2020, 12, 27–31. [Google Scholar] [CrossRef]
- Chen, D.-C.; Chen, D.-F.; Huang, S.-M.; Shyr, W.-J. The Investigation of Key Factors in Polypropylene Extrusion Molding Production Quality. Appl. Sci. 2022, 12, 5122. [Google Scholar] [CrossRef]
- Lakens, D.; Caldwell, A.R. Simulation-based power analysis for factorial analysis of variance designs. Adv. Methods Prac. Psychol. Sci. 2021, 4, 2515245920951503. Available online: https://api.semanticscholar.org/CorpusID:232484302 (accessed on 10 December 2023). [CrossRef]
- Mustapha, A.N.; Zhang, Y.; Zhang, Z.; Ding, Y.; Yuan, Q.; Li, Y. Taguchi and ANOVA analysis for the optimization of the microencapsulation of a volatile phase change material. J. Mater. Res. Technol. 2021, 11, 667–680. [Google Scholar] [CrossRef]
- Fahmi, N.K.A.; Bintara, R.D. Optimization Injection Molding Parameters of Polypropylene Materials to Minimize Flash Defects Using the Taguchi Method. Proceeding Int. Conf. Relig. Sci. Educ. 2022, 1, 619–625. Available online: https://sunankalijaga.org/prosiding/index.php/icrse/article/view/845 (accessed on 18 December 2023).
- Hiwa, B.; Ahmed, Y.M.; Rostam, S. Evaluation of tensile properties of Meriz fiber reinforced epoxy composites using Taguchi method. Results Eng. 2023, 18, 101037. [Google Scholar] [CrossRef]
- Alim, A.A.; Roslan, R.; Nadzirah, S.; Saidi, L.K.; Menon, P.S.; Aziah, I.; Fu, D.C.; Sulaiman, S.A.; Murad, N.A.A.; Hamzah, A.A. Geometrical Characterisation of TiO2-rGO Field-Effect Transistor as a Platform for Biosensing Applications. Micromachines 2023, 14, 1664. [Google Scholar] [CrossRef]
- Patel, N.; Parihar, P.L.; Makwana, J.S. Empirical study for Nusselt number optimization for the flow using ANOVA and Taguchi method. Case Stud. Therm. Eng. 2023, 50, 103505. [Google Scholar] [CrossRef]
- Lin, K.-W.; Chang, Y.-C. Use of the Taguchi Method to Optimize an Immunodetection System for Quantitative Analysis of a Rapid Test. Diagnostics 2021, 11, 1179. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-H.; Uribe, M.C.; Kwon, E.E.; Lin, K.-Y.A.; Park, Y.-K.; Ding, L.; Saw, L.H. A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). Renew. Sustain. Energy Rev. 2022, 169, 112917. [Google Scholar] [CrossRef]
- Abt, G.; Boreham, C.; Davison, G.; Jackson, R.; Nevill, A.; Wallace, E.; Williams, M. Power, precision, and sample size estimation in sport and exercise science research. J. Sports Sci. 2020, 38, 1933–1935. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, I.; He, K.; Li, Z.; Zhang, F.; Du, R. Optimization of the Polishing Efficiency and Torque by Using Taguchi Method and ANOVA in Robotic Polishing. Appl. Sci. 2020, 10, 824. [Google Scholar] [CrossRef]
- Fei, N.C.; Mehat, N.M.; Kamaruddin, S. Practical application of TAGUCHI optimization methodology to medical facilities: An integrated study. J. Mech. Med. Biol. 2022, 22, 2240025. [Google Scholar] [CrossRef]
- Neag, E.; Stupar, Z.; Varaticeanu, C.; Senila, M.; Roman, C. Optimization of Lipid Extraction from Spirulina spp. by Ultrasound Application and Mechanical Stirring Using the Taguchi Method of Experimental Design. Molecules 2022, 27, 6794. [Google Scholar] [CrossRef] [PubMed]
- Oemar, B.; Chang, W.-C. Taguchi method for optimizing process parameters in the production of activated carbon from rubber seed shell. Int. J. Adv. Manuf. Technol. 2020, 107, 4609–4620. [Google Scholar] [CrossRef]
- Maguluri, N.; Suresh, G.; Rao, K.V. Assessing the effect of FDM processing parameters on mechanical properties of PLA parts using Taguchi method. J. Thermoplast. Compos. Mater. 2023, 36, 1472–1488. [Google Scholar] [CrossRef]
- Minh, P.S.; Dang, H.-S.; Ha, N.C. Optimization of 3D Cooling Channels in Plastic Injection Molds by Taguchi-Integrated Principal Component Analysis (PCA). Polymers 2023, 15, 1080. [Google Scholar] [CrossRef]
- Patnaik, P.K.; Mishra, S.K.; Swain, P.T.R.; Purohit, A.; Parija, S.K.; Panda, S.S. Multi-Objective optimization and experimental analysis of Electro-Discharge Machining parameters via Gray-Taguchi, TOPSIS-Taguchi and PSI-Taguchi methods. Mater. Today Proc. 2022, 62, 6189–6198. [Google Scholar] [CrossRef]
- Chalermthai, B.; Ashraf, M.T.; Bastidas-Oyanedel, J.-R.; Olsen, B.D.; Schmidt, J.E.; Taher, H. Techno-Economic Assessment of Whey Protein-Based Plastic Production from a Co-Polymerization Process. Polymers 2020, 12, 847. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-T.; Tasi, Z.-Y.; Ho, W.-H.; Chou, J.-H. Integrating Taguchi Method and Gray Relational Analysis for Auto Locks by Using Multiobjective Design in Computer-Aided Engineering. Polymers 2022, 14, 644. [Google Scholar] [CrossRef] [PubMed]
- Pazhamannil, R.V.; Hadidi, H.M.; Edacherian, A.; Puthumana, G. Prediction of the mechanical properties of heat-treated fused filament fabrication thermoplastics using adaptive neuro-fuzzy inference system. J. Thermoplast. Compos. Mater. 2023, 37, 1385–1406. [Google Scholar] [CrossRef]
Selection of Reference Values for Raw Material Properties | |||
---|---|---|---|
Typical Property | Test Method | Unit | Reference Value Range |
Melt flow rate (230 °C, 2.16 kg) | ASTM D1238 | g/10 min | 1.6 ± 0.2 |
Density | ASTM D792 | g/cm3 | 0.901 ± 0.001 |
Tensile strength at yield | ASTM D638 | kg/cm2 | 370 ± 10 |
Flexural modulus | ASTM D790 | kg/cm2 | 15,500 ± 1000 |
Rockwell hardness | ASTM D785 | R scale | 100 ± 5 |
23 °C Izod impact strength, notched 23 °C | ASTM D256 | kg-cm/cm | 5.0 ± 0.5 |
Deflection temperature (4.6 kg/cm2) | ASTM D648 | °C | 105 ± 2 |
Mold shrinkage | ASTM D955 | % | 1.5 ± 0.1 |
No. | Item | M | Mo | SD | K–S Z-Test |
---|---|---|---|---|---|
1 | PP extruder main screw output pressure control | 4.54 | 5 | 0.499 | 1.941 ** |
2 | PP extruder polymer temperature control | 4.46 | 4 | 0.499 | 1.941 ** |
3 | T-die lips adjustment depends on sheet thickness | 4.38 | 4 | 0.487 | 2.219 ** |
4 | Cooling rolls pressing stability | 4.38 | 4 | 0.487 | 2.219 ** |
5 | Cooling rolls temperature stability | 4.31 | 4 | 0.462 | 2.496 ** |
6 | Extruder main screw geometric design | 4.23 | 4 | 0.421 | 2.774 ** |
7 | Forming heating controller element stability | 4.46 | 4 | 0.499 | 1.941 ** |
8 | The deviation of forming heating constant temperature control area | 4.23 | 4 | 0.421 | 2.774 ** |
9 | Near to scenic sport or night markets | 4.46 | 4 | 0.499 | 1.941 ** |
10 | The maximum clamping force of thermoformer and mould forming area design | 4.23 | 4 | 0.421 | 2.774 ** |
1. Degrees of freedom | n: level number |
2. Variation | |
3. CF | |
4. Total sum of squares | |
5. Error variation | |
6. F significance test |
Factor | Control Factor Description | Unit | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|---|
A | Polypropylene new material ratio | % | 50 | 60 | |
B | Extrusion screw pressure speed | rpm | 480 | 485 | 490 |
C | Polymer temperature | °C | 210 | 220 | 230 |
D | T-die lips adjustment thickness | mm | 0.53 | 0.56 | 0.59 |
E | Mirror wheel temperature stability | °C | 25 | 30 | 35 |
F | Molding heating thermostatic control | °C | 235 | 240 | 245 |
G | Molding vacuum pressure time | seconds | 4.0 | 4.2 | 4.4 |
H | Forming mold area design | % | 60 | 75 | 90 |
Exp. | A | B | C | D | E | F | G | H | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | rpm | °C | mm | °C | °C | sec | % | ||||||||
1 | 50 | 480 | 210 | 0.51 | 25 | 235 | 4 | 60 | 3.50 | 3.40 | 3.35 | 3.30 | 3.30 | 3.30 | 3.25 |
2 | 50 | 480 | 220 | 0.53 | 30 | 240 | 4.2 | 75 | 3.50 | 3.60 | 3.45 | 3.45 | 3.40 | 3.40 | 3.45 |
3 | 50 | 480 | 230 | 0.55 | 40 | 245 | 4.4 | 90 | 3.50 | 3.30 | 3.60 | 3.35 | 3.45 | 3.35 | 3.40 |
4 | 50 | 485 | 210 | 0.51 | 30 | 240 | 4.4 | 90 | 3.50 | 3.40 | 3.30 | 3.65 | 3.45 | 3.40 | 3.40 |
5 | 50 | 485 | 220 | 0.53 | 40 | 245 | 4 | 60 | 3.50 | 3.45 | 3.40 | 3.35 | 3.50 | 3.40 | 3.45 |
6 | 50 | 485 | 230 | 0.55 | 25 | 235 | 4.2 | 75 | 3.50 | 3.30 | 3.30 | 3.20 | 3.25 | 3.50 | 3.40 |
7 | 50 | 490 | 210 | 0.53 | 25 | 245 | 4.2 | 90 | 3.50 | 3.30 | 3.25 | 3.30 | 3.30 | 3.30 | 3.60 |
8 | 50 | 490 | 220 | 0.55 | 30 | 235 | 4.4 | 60 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | 3.40 | 3.35 |
9 | 50 | 490 | 230 | 0.51 | 40 | 240 | 4 | 75 | 3.50 | 3.40 | 3.30 | 3.30 | 3.35 | 3.35 | 3.30 |
10 | 60 | 480 | 210 | 0.55 | 40 | 240 | 4.2 | 60 | 3.50 | 3.30 | 3.30 | 3.35 | 3.45 | 3.40 | 3.30 |
11 | 60 | 480 | 220 | 0.51 | 25 | 245 | 4.4 | 75 | 3.30 | 3.30 | 3.40 | 3.30 | 3.35 | 3.35 | 3.30 |
12 | 60 | 480 | 230 | 0.53 | 30 | 235 | 4 | 90 | 3.35 | 3.40 | 3.30 | 3.45 | 3.35 | 3.40 | 3.30 |
13 | 60 | 485 | 210 | 0.53 | 40 | 235 | 4.4 | 75 | 3.30 | 3.25 | 3.35 | 3.40 | 3.30 | 3.30 | 3.35 |
14 | 60 | 485 | 220 | 0.55 | 25 | 240 | 4 | 90 | 3.30 | 3.35 | 3.40 | 3.35 | 3.30 | 3.25 | 3.35 |
15 | 60 | 485 | 230 | 0.51 | 30 | 245 | 4.2 | 60 | 3.30 | 3.40 | 3.30 | 3.25 | 3.30 | 3.30 | 3.30 |
16 | 60 | 490 | 210 | 0.55 | 30 | 245 | 4 | 75 | 3.35 | 3.35 | 3.25 | 3.35 | 3.30 | 3.30 | 3.30 |
17 | 60 | 490 | 220 | 0.51 | 40 | 235 | 4.2 | 90 | 3.45 | 3.40 | 3.25 | 3.30 | 3.40 | 3.40 | 3.35 |
18 | 60 | 490 | 230 | 0.53 | 25 | 240 | 4.4 | 60 | 3.35 | 3.30 | 3.25 | 3.30 | 3.35 | 3.45 | 3.50 |
A | B | C | D | E | F | G | H | |
---|---|---|---|---|---|---|---|---|
Level 1 | 32.6 | 33.7 | 33.6 | 35.1 | 33.1 | 33.9 | 36.4 | 34.5 |
Level 2 | 36.0 | 34.7 | 35.1 | 33.4 | 34.5 | 33.7 | 32.7 | 35.6 |
Level 3 | 34.4 | 34.1 | 34.4 | 35.3 | 35.3 | 33.7 | 32.7 | |
E¹→² | 3.4 | 1.0 | 1.5 | −1.7 | 1.4 | −0.2 | −3.8 | 1.0 |
E²→³ | −0.3 | −1.1 | 1.0 | 0.8 | 1.6 | 1.1 | −2.9 | |
Range | 3.4 | 1.0 | 1.5 | 1.7 | 2.2 | 1.6 | 3.8 | 2.9 |
Rank | 2 | 8 | 7 | 5 | 4 | 6 | 1 | 3 |
Significant? | YES | NO | NO | YES | YES | NO | YES | YES |
Factor | Control Factor Description | Unit | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|---|
A | Polypropylene new material ratio | % | 50 | 60 | |
B | Extrusion screw pressure speed | rpm | 480 | 485 | 490 |
C | Polymer temperature | °C | 210 | 220 | 230 |
D | T-die lips adjustment thickness | mm | 0.53 | 0.56 | 0.59 |
E | Mirror wheel temperature stability | °C | 25 | 30 | 35 |
F | Molding heating thermostatic control | °C | 235 | 240 | 245 |
G | Molding vacuum pressure time | seconds | 4.0 | 4.2 | 4.4 |
H | Forming mold area design | % | 60 | 75 | 90 |
A | B | C | D | E | F | G | H | |
---|---|---|---|---|---|---|---|---|
Level 1 | 3.39 | 3.37 | 3.35 | 3.351 | 3.34 | 3.36 | 3.35 | 3.37 |
Level 2 | 3.34 | 3.36 | 3.39 | 3.373 | 3.38 | 3.37 | 3.35 | 3.34 |
Level 3 | 3.36 | 3.35 | 3.363 | 3.37 | 3.35 | 3.38 | 3.37 | |
E¹→² | −0.05 | −0.02 | 0.03 | 0.021 | 0.05 | 0.01 | 0.00 | −0.03 |
E²→³ | 0.00 | −0.04 | −0.010 | −0.02 | −0.02 | 0.03 | 0.03 | |
Range | 0.048 | 0.015 | 0.039 | 0.021 | 0.046 | 0.019 | 0.033 | 0.033 |
Rank | 1 | 8 | 3 | 6 | 2 | 7 | 4 | 5 |
Significant? | YES | NO | YES | NO | YES | NO | YES | YES |
Factor | SS | DOF (n − 1) | Var | F-Value |
---|---|---|---|---|
A | 0.0738 | 1 | 0.0738 | 13.4 * |
B | 0.0055 | 2 | 0.0028 | 0.5 |
C | 0.0386 | 2 | 0.0193 | 3.5 * |
D | 0.0097 | 2 | 0.0048 | 0.9 |
E | 0.0465 | 2 | 0.0232 | 4.2 * |
F | 0.0078 | 2 | 0.0039 | 0.7 |
G | 0.0281 | 2 | 0.0141 | 2.5 * |
H | 0.0300 | 2 | 0.0150 | 2.7 * |
Error | 0.5971 | 108 | 0.0055 | |
Total | 0.8484 | 125 | 0.0068 |
Factor | SS | DOF | Var | F-Value | Confidence | Significance * | Contribution |
---|---|---|---|---|---|---|---|
A | 0.074 | 1 | 0.074 | 13.4 | 99.96% | Yes | 8.70% |
B | 0.006 | 2 | 0.003 | 0.5 | 39.14% | No | 0.65% |
C | 0.039 | 2 | 0.019 | 3.5 | 96.61% | Yes | 4.55% |
D | 0.010 | 2 | 0.005 | 0.9 | 58.05% | No | 1.14% |
E | 0.046 | 2 | 0.023 | 4.2 | 98.25% | Yes | 5.48% |
F | 0.008 | 2 | 0.004 | 0.7 | 50.28% | No | 0.92% |
G | 0.028 | 2 | 0.014 | 2.5 | 91.68% | Yes | 3.32% |
H | 0.030 | 2 | 0.015 | 2.7 | 92.94% | Yes | 3.54% |
Others | 0.011 | 2 | 0.006 | 1.0 | 63.44% | No | 1.32% |
Error | 0.597 | 108 | 0.006 | S = 7.44% | 70.38% | ||
Total | 0.848 | 125 | 0.0068 | * At least 90% confidence | 100.00% |
Factor | Original Design | Optimal Design | ||
---|---|---|---|---|
Setting | Effect (dB) | Setting | Effect (dB) | |
A | A2 | 1.7 | A2 | 1.7 |
B | (B2) | (B2) | ||
C | (C2) | (C3) | ||
D | D2 | −0.9 | D1 | 0.8 |
E | E2 | 0.2 | E3 | 1.0 |
F | (F2) | (F3) | ||
G | G2 | −1.6 | G1 | 2.2 |
H | H2 | 1.3 | H2 | 1.3 |
Average | 34.3 | 34.3 | ||
Predicted by Additive Model | 35.0 | 41.2 |
P1 | P2 | P3 | P4 | P5 | P6 | P7 | Ave. | SD | S/N | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Experiment | Predicted | ||||||||||
Original | 3.35 | 3.50 | 3.45 | 3.35 | 3.40 | 3.40 | 3.35 | 3.41 | 0.06 | 34.9 | 35.0 |
3.40 | 3.35 | 3.35 | 3.40 | 3.45 | 3.55 | 3.40 | |||||
Optimal | 3.30 | 3.28 | 3.30 | 3.32 | 3.30 | 3.36 | 3.32 | 3.32 | 0.03 | 41.1 | 41.2 |
3.28 | 3.34 | 3.30 | 3.34 | 3.32 | 3.38 | 3.34 | |||||
Improvement = | 6.21 | 6.24 |
The Delphi Research Analysis Result | Taguchi Method Quality Control Research Results | |||
---|---|---|---|---|
No. | The key factors( ten key subitems) | Factor | Description of important quality control factors | Optimal design parameters |
1 | PP extrusion main screw feed pressure control (revised: PP extrusion main screw discharge pressure control) | A | Polypropylene new material ratio | 60% |
2 | PP extrusion resin temperature change control | B | Extrusion screw pressure speed | 485 rpm |
3 | T-die lips adjustment sheet sta-bility (correction: die lips adjustment depends on sheet thickness) | C | Polymer temperature | 220 °C |
4 | mirror wheel pressing stability | D | T-die lips adjustment thickness | 0.53mm |
5 | mirror wheel temperature stability | E | Mirror wheel temperature stability | 35 °C |
6 | extrusion driving screw geometric design | F | Molding heating thermostatic control | 240 °C |
7 | molding heating con-troller element stability | G | Molding vacuum pressure time | 4 sec |
8 | molding heating thermostatic control area error value | H | Forming mold area design | 75% |
9 | molding vacuum and compressed air system stability | 1. Factors A, D, E, G, H are used to reduce variation. 2. Factors C and F are used to adjust quality characteristics to target values. 3. Factor B can be used to reduce costs. | ||
10 | molding machine maximum clamping force and molding area relation-ship design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.-C.; Chen, D.-F.; Huang, S.-M. Applying the Taguchi Method to Improve Key Parameters of Extrusion Vacuum-Forming Quality. Polymers 2024, 16, 1113. https://doi.org/10.3390/polym16081113
Chen D-C, Chen D-F, Huang S-M. Applying the Taguchi Method to Improve Key Parameters of Extrusion Vacuum-Forming Quality. Polymers. 2024; 16(8):1113. https://doi.org/10.3390/polym16081113
Chicago/Turabian StyleChen, Dyi-Cheng, Der-Fa Chen, and Shih-Ming Huang. 2024. "Applying the Taguchi Method to Improve Key Parameters of Extrusion Vacuum-Forming Quality" Polymers 16, no. 8: 1113. https://doi.org/10.3390/polym16081113
APA StyleChen, D. -C., Chen, D. -F., & Huang, S. -M. (2024). Applying the Taguchi Method to Improve Key Parameters of Extrusion Vacuum-Forming Quality. Polymers, 16(8), 1113. https://doi.org/10.3390/polym16081113