Aortic Valve Engineering Advancements: Precision Tuning with Laser Sintering Additive Manufacturing of TPU/TPE Submillimeter Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermoplastic Polyurethanes
2.2. Thermoplastic Elastomers
2.3. Aortic Valve Models
CAO File and Aortic Valvular Models
2.4. Tensile Tests
2.5. Scanning Electron Microscopy (SEM)
3. Results
3.1. TPU Mechanical Properties
3.1.1. Influence of Laser Exposure Parameters on TPU Mechanical Properties
- LP represents the laser power in W;
- d is the layer thickness (0.1 mm);
- Ss denotes the laser scan speed in mm/s;
- Hs signifies the distance between two scan lines in mm.
3.1.2. Mechanical Characteristics of 0.5 mm TPU Thin Membranes
3.2. TPE Mechanical Properties
3.3. Scanning Electron Microscopy Analysis
3.4. Application to the Fabrication of Heart Valve Structures
3.4.1. Structural Considerations
- Leaflet thickness less than 1 mm;
- Resistance to repeated bending and shearing;
- Shape memory: Spontaneous maintenance and recovery of anatomical conformation even after significant structural deformation.
3.4.2. Ultrasound Imaging Properties of the TPU Models
4. Discussion
4.1. Modulating the Mechanical Properties of TPU and TPE through Exposure Parameters
4.2. Application to the Manufacture of Heart Valve Structures
4.3. Future Vision
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Salmi, M. Additive Manufacturing Processes in Medical Applications. Materials 2021, 14, 191. [Google Scholar] [CrossRef]
- Nachlas, A.L.Y.; Li, S.; Davis, M.E. Developing a Clinically Relevant Tissue Engineered Heart Valve—A Review of Current Approaches. Adv. Healthc. Mater. 2017, 6, 1700918. [Google Scholar] [CrossRef]
- Motta, S.E.; Lintas, V.; Fioretta, E.S.; Dijkman, P.E.; Putti, M.; Caliskan, E.; Biefer, H.R.C.; Lipiski, M.; Sauer, M.; Cesarovic, N.; et al. Human cell-derived tissue-engineered heart valve with integrated Valsalva sinuses: Towards native-like transcatheter pulmonary valve replacements. NPJ Regen. Med. 2019, 4, 14. [Google Scholar] [CrossRef]
- Di Francesco, D.; Pigliafreddo, A.; Casarella, S.; Di Nunno, L.; Mantovani, D.; Boccafoschi, F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023, 13, 1389. [Google Scholar] [CrossRef]
- Singh, D.; Harding, A.J.; Albadawi, E.; Boissonade, F.M.; Haycock, J.W.; Claeyssens, F. Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits. Acta Biomater. 2018, 78, 48–63. [Google Scholar] [CrossRef] [PubMed]
- Piegat, A.; El Fray, M. Thermoplastic Elastomers: Materials for Heart Assist Devices. Polym. Med. 2016, 46, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Pinchuk, L.; Wilson, G.J.; Barry, J.J.; Schoephoerster, R.T.; Parel, J.M.; Kennedy, J.P. Medical applications of poly(styrene-block-isobutylene-block-styrene) (“SIBS”). Biomaterials 2008, 29, 448–460. [Google Scholar] [CrossRef]
- Gallocher, S.L.; Aguirre, A.F.; Kasyanov, V.; Pinchuk, L.; Schoephoerster, R.T. A novel polymer for potential use in a trileaflet heart valve. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 79, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Arjun, G.N.; Ramesh, P. Structural characterization, mechanical properties, and in vitro cytocompatibility evaluation of fibrous polycarbonate urethane membranes for biomedical applications. J. Biomed. Mater. Res. Part A 2012, 100, 3042–3050. [Google Scholar] [CrossRef] [PubMed]
- Rusu, L.-C.; Ardelean, L.C.; Jitariu, A.-A.; Miu, C.A.; Streian, C.G. An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine. Polymers 2020, 12, 1197. [Google Scholar] [CrossRef]
- Pande, C.S. Thermoplastic polyurethanes as insulating materials for long-life cardiac pacing leads. Pacing Clin. Electrophysiol. 1983, 6, 858–867. [Google Scholar] [CrossRef]
- Ronca, A.; Rollo, G.; Cerruti, P.; Fei, G.; Gan, X.; Buonocore, G.G.; Lavorgna, M.; Xia, H.; Silvestre, C.; Ambrosio, L. Selective Laser Sintering Fabricated Thermoplastic Polyurethane/Graphene Cellular Structures with Tailorable Properties and High Strain Sensitivity. Appl. Sci. 2019, 9, 864. [Google Scholar] [CrossRef]
- Vogels, R.R.M.; Lambertz, A.; Schuster, P.; Jockenhoevel, S.; Bouvy, N.D.; Disselhorst-Klug, C.; Neumann, U.P.; Klinge, U.; Klink, C.D. Biocompatibility and biomechanical analysis of elastic TPU threads as new suture material. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 99–106. [Google Scholar] [CrossRef]
- Guelcher, S.A.; Gallagher, K.M.; Didier, J.E.; Klinedinst, D.B.; Doctor, J.S.; Goldstein, A.S.; Wilkes, G.L.; Beckman, E.J.; Hollinger, J.O. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomater. 2005, 1, 471–484. [Google Scholar] [CrossRef]
- Daebritz, S.H.; Sachweh, J.S.; Hermanns, B.; Fausten, B.; Franke, A.; Groetzner, J.; Klosterhalfen, B.; Messmer, B.J. Introduction of a flexible polymeric heart valve prosthesis with special design for mitral position. Circulation 2003, 108, II-134–II-139. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, L.; Yang, Q.; Huang, S.; Shi, H.; Long, Q.; Qian, B.; Liu, Z.; Guan, Q.; Liu, M.; et al. Self-healing polyurethane-elastomer with mechanical tunability for multiple biomedical applications in vivo. Nat. Commun. 2021, 12, 4395. [Google Scholar] [CrossRef] [PubMed]
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef]
- Rollo, G.; Ronca, A.; Cerruti, P.; Gan, X.P.; Fei, G.; Xia, H.; Gorokhov, G.; Bychanok, D.; Kuzhir, P.; Lavorgna, M.; et al. On the Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets to Enhance the Functional Properties of SLS 3D-Printed Elastomeric Structures. Polymers 2020, 12, 1841. [Google Scholar] [CrossRef]
- Warren, P.D.; Sycks, D.G.; McGrath, D.V.; Vande Geest, J.P. Modeling the microstructurally dependent mechanical properties of poly(ester-urethane-urea)s. J. Biomed. Mater. Res. Part A 2013, 101, 3382–3387. [Google Scholar] [CrossRef]
- Jaganathan, S.K.; Supriyanto, E.; Murugesan, S.; Balaji, A.; Asokan, M.K. Biomaterials in cardiovascular research: Applications and clinical implications. BioMed Res. Int. 2014, 2014, 459465. [Google Scholar] [CrossRef]
- Kusoglu, I.M.; Doñate-Buendía, C.; Barcikowski, S.; Gökce, B. Laser Powder Bed Fusion of Polymers: Quantitative Research Direction Indices. Materials 2021, 14, 1169. [Google Scholar] [CrossRef]
- Raviv, D.; Zhao, W.; McKnelly, C.; Papadopoulou, A.; Kadambi, A.; Shi, B.; Hirsch, S.; Dikovsky, D.; Zyracki, M.; Olguin, C.; et al. Active Printed Materials for Complex Self-Evolving Deformations. Sci. Rep. 2014, 4, 7422. [Google Scholar] [CrossRef] [PubMed]
- Bernacca, G.; Mackay, T.; Gulbransen, M.; Donn, A.; Wheatley, D. Polyurethane Heart Valve Durability: Effects of Leaflet Thickness and Material. Int. J. Artif. Organs 1997, 20, 327–331. [Google Scholar] [CrossRef]
- Daebritz, S.H.; Fausten, B.; Hermanns, B.; Schroeder, J.; Groetzner, J.; Autschbach, R.; Messmer, B.J.; Sachweh, J.S. Introduction of a flexible polymeric heart valve prosthesis with special design for aortic position1. Eur. J. Cardio-Thorac. Surg. 2004, 25, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Zulkifli, M.Z.A.; Nordin, D.; Shaari, N.; Kamarudin, S.K. Overview of Electrospinning for Tissue Engineering Applications. Polymers 2023, 15, 2418. [Google Scholar] [CrossRef] [PubMed]
- Coulter, F.B.; Schaffner, M.; Faber, J.A.; Rafsanjani, A.; Smith, R.; Appa, H.; Zilla, P.; Bezuidenhout, D.; Studart, A.R. Bioinspired Heart Valve Prosthesis Made by Silicone Additive Manufacturing. Matter 2019, 1, 266–279. [Google Scholar] [CrossRef]
- Stoia, D.I.; Linul, E.; Marsavina, L. Influence of manufacturing parameters on mechanical properties of porous materials by selective laser sintering. Materials 2019, 12, 871. [Google Scholar] [CrossRef]
- Kruth, J.-P.; Mercelis, P.; Van Vaerenbergh, J.; Froyen, L.; Rombouts, M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2005, 11, 26–36. [Google Scholar] [CrossRef]
- Ciobotaru, V.; Tadros, V.-X.; Batistella, M.; Maupas, E.; Gallet, R.; Decante, B.; Lebret, E.; Gerardin, B.; Hascoet, S. 3D-Printing to Plan Complex Transcatheter Paravalvular Leaks Closure. J. Clin. Med. 2022, 11, 4758. [Google Scholar] [CrossRef]
- Khoo, Z.X.; Teoh JE, M.; Liu, Y.; Chua, C.K.; Yang, S.; An, J.; Leong, K.F.; Yeong, W.Y. 3D printing of smart materials: A review on recent progresses in 4D printing. Virt. Phys. Prot. 2015, 10, 103–122. [Google Scholar] [CrossRef]
- Yuan, S.; Shen, F.; Bai, J.; Chua, C.K.; Wei, J.; Zhou, K. 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization. Mater. Des. 2017, 120, 317–327. [Google Scholar] [CrossRef]
- Verbelen, L.; Dadbakhsh, S.; Eynde, M.V.D.; Strobbe, D.; Kruth, J.-P.; Goderis, B.; Van Puyvelde, P. Analysis of the material properties involved in laser sintering of thermoplastic polyurethane. Addit. Manuf. 2017, 15, 12–19. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Verbelen, L.; Vandeputte, T.; Strobbe, D.; Van Puyvelde, P.; Kruth, J.-P. Effect of Powder Size and Shape on the SLS Processability and Mechanical Properties of a TPU Elastomer. Phys. Procedia 2016, 83, 971–980. [Google Scholar] [CrossRef]
- Pilipović, A.; Brajlih, T.; Drstvenšek, I. Influence of Processing Parameters on Tensile Properties of SLS Polymer Product. Polymers 2018, 10, 1208. [Google Scholar] [CrossRef]
- Petrović, Z.S.; Ferguson, J. Polyurethane elastomers. Prog. Polym. Sci. 1991, 16, 695–836. [Google Scholar] [CrossRef]
- Ziegelmeier, S.; Christou, P.; Wöllecke, F.; Tuck, C.; Goodridge, R.; Hague, R.; Krampe, E.; Wintermantel, E. An experimental study into the effects of bulk and flow behavior of laser sintering polymer powders on resulting part properties. J. Mater. Process. Technol. 2015, 215, 239–250. [Google Scholar] [CrossRef]
- Goodridge, R.D.; Tuck, C.J.; Hague, R.J.M. Laser sintering of polyamides and other polymers. Prog. Mater. Sci. 2012, 57, 229–267. [Google Scholar] [CrossRef]
- Xu, T.; Shen, W.; Lin, X.; Xie, Y.M. Mechanical Properties of Additively Manufactured Thermoplastic Polyurethane (TPU) Material Affected by Various Processing Parameters. Polymers 2020, 12, 3010. [Google Scholar] [CrossRef]
- Yao, B.; Li, Z.; Zhu, F. Effect of powder recycling on anisotropic tensile properties of selective laser sintered PA2200 polyamide. Eur. Polym. J. 2020, 141, 110093. [Google Scholar] [CrossRef]
- Martin, C.; Sun, W. Biomechanical characterization of aortic valve tissue in humans and common animal models. J. Biomed. Mater. Res. Part A 2012, 100, 1591–1599. [Google Scholar] [CrossRef]
- Desai, A.; Vafaee, T.; Rooney, P.; Kearney, J.; Berry, H.; Ingham, E.; Fisher, J.; Jennings, L. In vitro biomechanical and hydrodynamic characterisation of decellularised human pulmonary and aortic roots. J. Mech. Behav. Biomed. Mater. 2017, 79, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Thubrikar, M.; Piepgrass, W.C.; Bosher, L.P.; Nolan, S.P. The elastic modulus of canine aortic valve leaflets in vivo and in vitro. Circ. Res. 1980, 47, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Duprey, A.; Trabelsi, O.; Vola, M.; Favre, J.-P.; Avril, S. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater. 2016, 42, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Bernacca, G.; Mackay, T.; Wilkinson, R.; Wheatley, D. Calcification and fatigue failure in a polyurethane heart valve. Biomaterials 1995, 16, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Atari, M.; Labbaf, S.; Javanmard, S.H. Fabrication and characterization of a 3D scaffold based on elastomeric poly-glycerol Sebacate polymer for heart valve applications. J. Manuf. Process. 2023, 102, 350–364. [Google Scholar] [CrossRef]
- A Hockaday, L.; Kang, K.H.; Colangelo, N.W.; Cheung, P.Y.C.; Duan, B.; Malone, E.; Wu, J.; Girardi, L.N.; Bonassar, L.J.; Lipson, H.; et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 2012, 4, 035005. [Google Scholar] [CrossRef]
- Schröter, F.; Kühnel, R.-U.; Hartrumpf, M.; Ostovar, R.; Albes, J.M. Progress on a Novel, 3D-Printable Heart Valve Prosthesis. Polymers 2023, 15, 4413. [Google Scholar] [CrossRef]
- Shin, E.J.; Jung, Y.S.; Park, C.H.; Lee, S. Eco-friendly TPU/PLA Blends for Application as Shape-Memory 3D Printing Filaments. J. Polym. Environ. 2023, 31, 3182–3196. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Soltanmohammadi, K.; Aberoumand, M.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. 4D printing of Porous PLA-TPU Structures: Effect of Applied Deformation, Loading Mode and Infill Pattern on the Shape Memory Performance. Phys. Scr. 2023, 99, 025013. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Soltanmohammadi, K.; Pahlavani, M.; Aberoumand, M.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. Shape memory performance assessment of FDM 3D printed PLA-TPU composites by Box-Behnken response surface methodology. Int. J. Adv. Manuf. Technol. 2023, 127, 935–950. [Google Scholar] [CrossRef]
- Hassanabad, A.F.; King, M.A.; Di Martino, E.; Fedak, P.W.M.; Garcia, J. Clinical implications of the biomechanics of bicuspid aortic valve and bicuspid aortopathy. Front. Cardiovasc. Med. 2022, 9, 922353. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Ehrlich, T.; de Kerchove, L.; Vojacek, J.; Boodhwani, M.; El-Hamamsy, I.; De Paulis, R.; Lansac, E.; Bavaria, J.E.; El Khoury, G.; Schäfers, H.-J. State-of-the art bicuspid aortic valve repair in 2020. Prog. Cardiovasc. Dis. 2020, 63, 457–464. [Google Scholar] [CrossRef]
- Unai, S.; Ozaki, S.; Johnston, D.R.; Saito, T.; Rajeswaran, J.; Svensson, L.G.; Blackstone, E.H.; Pettersson, G.B. Aortic Valve Reconstruction with Autologous Pericardium Versus a Bioprosthesis: The Ozaki Procedure in Perspective. J. Am. Heart Assoc. 2023, 12, e027391. [Google Scholar] [CrossRef]
- Shearn, A.I.; Ordoñez, M.V.; Rapetto, F.; Caputo, M.; Biglino, G. Rapid Prototyping Flexible Aortic Models Aids Sizing of Valve Leaflets and Planning the Ozaki Repair. JACC Case Rep. 2020, 2, 1137–1140. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Qin, T.; Xi, Z.; Sun, L.; Wu, H.; Li, D. 3D printing in adult cardiovascular surgery and interventions: A systematic review. J. Thorac. Dis. 2020, 12, 3227–3237. [Google Scholar] [CrossRef]
- Yu, S.; Xu, X.; Ma, L.; Cao, L.; Mao, J.; Chen, H.; Zhang, J.; Wang, Z. Emerging frontiers in surgical training: Progress in 3D printed gel models. J. 3D Print. Med. 2023, 7, 3DP013. [Google Scholar] [CrossRef]
- Oveissi, F.; Naficy, S.; Lee, A.; Winlaw, D.; Dehghani, F. Materials and manufacturing perspectives in engineering heart valves: A review. Mater. Today Bio 2019, 5, 100038. [Google Scholar] [CrossRef]
- De Gaetano, F.; Bagnoli, P.; Zaffora, A.; Pandolfi, A.; Serrani, M.; Brubert, J.; Stasiak, J.; Moggridge, G.D.; Costantino, M.L. A Newly Developed Tri-Leaflet Polymeric Heart Valve Prosthesis. J. Mech. Med. Biol. 2015, 15, 1540009. [Google Scholar] [CrossRef]
- Zadeh, P.B.; Corbett, S.C.; Nayeb-Hashemi, H. In-vitro calcification study of polyurethane heart valves. Mater. Sci. Eng. C 2014, 35, 335–340. [Google Scholar] [CrossRef]
- Bazyar, M.; Tabary, S.B.; Rahmatabdi, D.; Mohammadi, K.; Hashemi, R. A novel practical method for the production of Functionally Graded Materials by varying exposure time via photo-curing 3D printing. J. Manuf. Process. 2023, 103, 136–143. [Google Scholar] [CrossRef]
- Amoroso, N.J.; D’amore, A.; Hong, Y.; Rivera, C.P.; Sacks, M.S.; Wagner, W.R. Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering. Acta Biomater. 2012, 8, 4268–4277. [Google Scholar] [CrossRef]
- Wheatley, D.; Raco, L.; Bernacca, G.; Sim, I.; Belcher, P.; Boyd, J. Polyurethane: Material for the next generation of heart valve prostheses? Eur. J. Cardio-Thorac. Surg. 2000, 17, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Corti, F.; Gislao, V.; Marchetto, G. Ozaki Technique: A Further Step toward Standardization. Ann. Thorac. Surg. 2022, 114, 2399. [Google Scholar] [CrossRef] [PubMed]
- Benedetto, U.; Sinha, S.; Dimagli, A.; Dixon, L.; Stoica, S.; Cocomello, L.; Quarto, C.; Angelini, G.D.; Dandekar, U.; Caputo, M. Aortic valve neocuspidization with autologous pericardium in adult patients: UK experience and meta-analytic comparison with other aortic valve substitutes. Eur. J. Cardiothorac. Surg. 2021, 60, 34–46. [Google Scholar] [CrossRef]
- Jiang, W.-J.; Cui, Y.-C.; Li, J.-H.; Zhang, X.-H.; Ding, H.-H.; Lai, Y.-Q.; Zhang, H.-J. Is Autologous or Heterologous Pericardium Better for Valvuloplasty? A Comparative Study of Calcification Propensity. Tex. Heart Inst. J. 2015, 42, 202–208. [Google Scholar] [CrossRef]
- Johnson, D.M.; Sapirstein, W. FDA’s requirements for in-vivo performance data for prosthetic heart valves. J. Heart Valve Dis. 1994, 3, 350–355. [Google Scholar]
- Bezuidenhout, D.; Williams, D.F.; Zilla, P. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials 2015, 36, 6–25. [Google Scholar] [CrossRef]
Sample | Tic (°C) | Tif (°C) | ΔT | Tc (°C) | Tf (°C) |
---|---|---|---|---|---|
TPU | 117.7 | 121.4 | 3.7 | 109.5 | 130.6 |
TPU | Hatching Distance (Hs-mm) | Laser Scan Speed (Ss-mm/s) | Laser Power (W) | Energy Density (J/mm3) |
---|---|---|---|---|
1 | 0.25 | 3000 | 12 | 0.16 |
2 | 0.25 | 3000 | 16 | 0.21 |
3 | 0.25 | 3000 | 18 | 0.24 |
4 | 0.25 | 3000 | 19 | 0.25 |
5 | 0,25 | 3000 | 25 | 0.33 |
6 | 0.25 | 2500 | 16 | 0.26 |
7 | 0.20 | 3000 | 16 | 0.27 |
8 | 0.25 | 3000 | 22 | 0.29 |
9 | 0.25 | 2500 | 19 | 0.30 |
10 | 0.20 | 3000 | 19 | 0.32 |
11 | 0.20 | 2500 | 16 | 0.32 |
12 | 0.25 | 2500 | 22 | 0.35 |
13 | 0.20 | 3000 | 22 | 0.37 |
14 | 0.20 | 2500 | 19 | 0.38 |
15 | 0.25 | 2000 | 16 | 0.32 |
16 | 0.25 | 2000 | 19 | 0.38 |
17 | 0.25 | 2500 | 25 | 0.40 |
18 | 0.25 | 2000 | 22 | 0.44 |
19 | 0.25 | 2000 | 25 | 0.50 |
TPU | Hs- mm | Ss-mm/s | LP- W | Ed J/mm3 | UTS MPa | dL(Fmax) % | Strength at Break | dL(rupture) % | Module E MPa |
---|---|---|---|---|---|---|---|---|---|
1 | 0.25 | 3000 | 12 | 0.16 | 3.28 ± 0.14 | 132.37 ± 10.82 | 3.20 ± 0.17 | 138.74 ± 9.61 | 28.23 ± 0.81 |
2 | 0.25 | 3000 | 16 | 0.21 | 5.22 ± 0.13 | 169.04 ± 4.55 | 4.98 ± 0.19 | 177.70 ± 5.67 | 47.27 ± 1.96 |
3 | 0.25 | 3000 | 18 | 0.24 | 5.61 ± 0.08 | 188.11 ± 9.45 | 5.35 ± 0.19 | 195.84 ± 12.20 | 52.07 ± 1.50 |
4 | 0.25 | 3000 | 19 | 0.25 | 5.07 ± 0.36 | 119.54 ± 42.61 | 4.88 ± 0.25 | 123.07 ± 45.20 | 53.93 ± 2.32 |
5 | 0.25 | 2500 | 16 | 0.26 | 4.48 ± 0.18 | 61.81 ± 13.54 | 4.40 ± 0.05 | 62.94 ± 13.93 | 55.78 ± 2.79 |
6 | 0.20 | 3000 | 16 | 0.27 | 7.19 ± 0.21 | 271.81 ± 10.78 | 6.87 ± 0.22 | 281.52 ± 10.67 | 63.35 ± 5.33 |
7 | 0.25 | 3000 | 22 | 0.29 | 5.90 ± 0.16 | 133.07 ± 15.80 | 5.73 ± 0.16 | 134.98 ± 15.91 | 62.89 ± 1.13 |
8 | 0.25 | 2500 | 19 | 0.30 | 5.61 ± 0.33 | 99.83 ± 18.66 | 5.50 ± 0.37 | 101.54 ± 18.25 | 60.65 ± 4.28 |
9 | 0.20 | 2500 | 16 | 0.32 | 7.88 ± 0.16 | 334.40 ± 10.76 | 7.50 ± 0.14 | 344.28 ± 10.79 | 72.31 ± 8.39 |
10 | 0.20 | 3000 | 19 | 0.32 | 7.50 ± 0.20 | 318.90 ± 14.52 | 7.26 ± 0.22 | 332.32 ± 18.21 | 66.28 ± 2.57 |
11 | 0.25 | 2000 | 16 | 0.32 | 4.99 ± 0.13 | 163.93 ± 7.24 | 4.83 ± 0.22 | 170.58 ± 8.30 | 57.87 ± 2.63 |
12 | 0.25 | 3000 | 25 | 0.33 | 7.07 ± 0.05 | 246.61 ± 8.08 | 6.76 ± 0.15 | 254.24 ± 11.37 | 70.26 ± 1.87 |
13 | 0.25 | 2500 | 22 | 0.35 | 6.47 ± 0.19 | 230.60 ± 32.43 | 6.17 ± 0.20 | 239.14 ± 32.27 | 67.65 ± 3.86 |
14 | 0.20 | 3000 | 22 | 0.37 | 8.43 ± 0.25 | 380.06 ± 27.16 | 8.07 ± 0.42 | 390.41 ± 25.52 | 74.17 ± 2.60 |
15 | 0.20 | 2500 | 19 | 0.38 | 8.69 ± 0.15 | 394.36 ± 8.35 | 8.40 ± 0.17 | 405.02 ± 10.19 | 75.85 ± 3.74 |
16 | 0.25 | 2000 | 19 | 0.38 | 5.78 ± 0.29 | 189.55 ± 17.50 | 5.59 ± 0.27 | 197.90 ± 18.35 | 63.20 ± 1.99 |
17 | 0.25 | 2500 | 25 | 0.40 | 6.80 ± 0.08 | 245.41 ± 7.71 | 6.58 ± 0.17 | 251.73 ± 7.22 | 72.47 ± 3.64 |
18 | 0.25 | 2000 | 22 | 0.44 | 6.17 ± 0.04 | 205.73 ± 5.60 | 5.93 ± 0.14 | 217.20 ± 8.73 | 66.75 ± 1.96 |
19 | 0.25 | 2000 | 25 | 0.50 | 6.17 ± 0.08 | 177.60 ± 7.55 | 6.01 ± 0.13 | 183.75 ± 8.14 | 71.28 ± 1.12 |
UTS (MPa) | dL(Fmax) | E (MPa) | |
---|---|---|---|
Simple contour 14 w (45°) | 1.85 ± 0.16 | 29.71 ± 5.68 | 22.55 ± 1.73 |
Simple contour 14 w (on edge) | 3.44 ± 0.20 | 88.40 ± 8.21 | 27.88 ± 1.27 |
Simple contour 14 w (upright) | 1.62 ± 0.24 | 25.40 ± 5.77 | 20.85 ± 2.76 |
Simple contour 16 w (45°) | 2.61 ± 0.09 | 29.71 ± 5.68 | 22.55 ± 0.87 |
Simple contour 16 w (on edge) | 4.47 ± 0.07 | 127.91 ± 6.41 | 32.06 ± 0.74 |
Simple contour 16 w (upright) | 2.03 ± 0.20 | 34.55 ± 3.40 | 22.97 ± 2.00 |
Edge 12 w (45°) | 4.03 ± 0.37 | 61.21 ± 16.78 | 40.29 ± 0.40 |
Edge 12 w (on edge) | 5.66 ± 0.69 | 148.05 ± 16.74 | 40.41 ± 3.90 |
Edge 12 w (upright) | 3.27 ± 0.20 | 41.82 ± 6.12 | 36.38 ± 1.19 |
Double contour 12 w (45°) | 4.92 ± 0.17 | 53.61 ± 4.96 | 50.86 ± 0.74 |
Double contour 12 w (on edge) | 7.13 ± 0.51 | 150.53 ± 16.41 | 50.02 ± 2.34 |
Double contour 12 w (upright) | 4.26 ± 0.38 | 40.91 ± 3.05 | 47.91 ± 2.77 |
TPE | % Laser 14 W | % Edge | Ss Laser dps | Ed (J/mm3) | UTS (MPa) | dL(Fmax) % | Strength at Break (MPa) | dL(rupture) % | Modulus E (MPa) |
---|---|---|---|---|---|---|---|---|---|
1 | 70 | 65 | 10,000 | 1.36 | 1.06 ± 0.20 | 147.27 ± 57.24 | 0.94 ± 0.23 | 156.78 ± 58.77 | 4.10 ± 0.36 |
2 | 70 | 65 | 40,000 | 0.340 | 0.42 ± 0.03 | 117.01 ± 5.91 | 0.41 ± 0.04 | 119.01 ± 5.48 | 0.74 ± 0.04 |
3 | 70 | 65 | 45,000 | 0.302 | 0.43 ± 0.03 | 117.28 ± 5.98 | 0.43 ± 0.03 | 118.71 ± 5.53 | 0.87 ± 0.06 |
4 | 70 | 65 | 50,000 | 0.272 | 0.30 ± 0.02 | 100.41 ± 4.57 | 0.29 ± 0.02 | 102.82 ± 4.26 | 0.52 ± 0.04 |
5 | 100 | 95 | 10,000 | 1.94 | 1.40 ± 0.16 | 262.94 ± 44.35 | 1.35 ± 0.16 | 276.89 ± 45.97 | 4.59 ± 0.32 |
6 | 100 | 95 | 25,000 | 0.78 | 0.66 ± 0.01 | 85.19 ± 7.37 | 0.65 ± 0.01 | 93.88 ± 19.54 | 2.31 ± 0.26 |
7 | 100 | 95 | 30,000 | 0.648 | 0.93 ± 0.05 | 157.64 ± 10.89 | 0.91 ± 0.05 | 161.50 ± 11.26 | 2.18 ± 0.19 |
8 | 100 | 95 | 40,000 | 0.49 | 0.37 ± 0.06 | 96.54 ± 17.34 | 0.36 ± 0.06 | 101.83 ± 13.66 | 0.75 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciobotaru, V.; Batistella, M.; De Oliveira Emmer, E.; Clari, L.; Masson, A.; Decante, B.; Le Bret, E.; Lopez-Cuesta, J.-M.; Hascoet, S. Aortic Valve Engineering Advancements: Precision Tuning with Laser Sintering Additive Manufacturing of TPU/TPE Submillimeter Membranes. Polymers 2024, 16, 900. https://doi.org/10.3390/polym16070900
Ciobotaru V, Batistella M, De Oliveira Emmer E, Clari L, Masson A, Decante B, Le Bret E, Lopez-Cuesta J-M, Hascoet S. Aortic Valve Engineering Advancements: Precision Tuning with Laser Sintering Additive Manufacturing of TPU/TPE Submillimeter Membranes. Polymers. 2024; 16(7):900. https://doi.org/10.3390/polym16070900
Chicago/Turabian StyleCiobotaru, Vlad, Marcos Batistella, Emily De Oliveira Emmer, Louis Clari, Arthur Masson, Benoit Decante, Emmanuel Le Bret, José-Marie Lopez-Cuesta, and Sebastien Hascoet. 2024. "Aortic Valve Engineering Advancements: Precision Tuning with Laser Sintering Additive Manufacturing of TPU/TPE Submillimeter Membranes" Polymers 16, no. 7: 900. https://doi.org/10.3390/polym16070900
APA StyleCiobotaru, V., Batistella, M., De Oliveira Emmer, E., Clari, L., Masson, A., Decante, B., Le Bret, E., Lopez-Cuesta, J. -M., & Hascoet, S. (2024). Aortic Valve Engineering Advancements: Precision Tuning with Laser Sintering Additive Manufacturing of TPU/TPE Submillimeter Membranes. Polymers, 16(7), 900. https://doi.org/10.3390/polym16070900