Mechanical and Thermal Analysis of Duroplastic Matrix Composites over a Range of Temperatures
Abstract
:1. Introduction
2. Experimental Studies
2.1. Materials
2.2. Preparation
3. Research Methodology
3.1. Mechanical Testing
3.2. DMTA
3.3. TMA
4. Results
4.1. Tensile Test
4.2. Thermal Analysis of Dynamic Mechanical Properties (DMTA)
- EP_1_1_: 80–160 °C
- EP_2_2_: 100–180 °C
- EP_2_1_: 80–140 °C
- EP_4_2_: 120–190 °C
- EP_1_1_: 80–180 °C
- EP_2_2_: 100–210 °C
- EP_2_1_: 80–160 °C
- EP_4_2_: 120–190 °C
4.3. Thermomechanical Analysis (TMA)
5. Conclusions
- The highest storage modulus values were obtained for the material using novolac-cured type A bisphenol resin. In contrast, the lowest storage modulus values were obtained for the material with brominated epoxy resin cured with dicyandiamide.
- The storage modulus of composite materials, which consist of two different types of epoxy resin (bisphenol A and a product of the reaction between epichlorohydrin and phenol–formaldehyde novolac in methyl ethyl ketone) and are cured with novolac, meets the conventional criterion,
- The lowest coefficient of thermal expansion was recorded for composite materials where epoxy resin based on bisphenol A is used but cured with different catalysts, dicyandiamide, and novolac. The coefficients of thermal expansion are 4.7118 and 4.8752 [10−5/°C], respectively.
- Laminates with different types of epoxy resin (phenol–formaldehyde novolac in methyl ethyl ketone and brominated epoxy resin) and different catalysts (novolac and dicyandiamide) are characterized by too high and unfavorable coefficients of thermal expansion.
- The preliminary research presented in this article will allow for the application of several modifications. Additives to reduce thermal expansion should be used for laminates with YDPN 638A80 resin, novolac hardener, YD-128 resin, and DICY hardener.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaharuzaman, M.A.; Sapuan, S.M.; Mansor, M.R. Sustainable materials selection: Principles and applications. In Design for Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; pp. 57–84. [Google Scholar] [CrossRef]
- Subramanian, C.; Senthilvelan, S. Effect of reinforced fiber length on the joint performance of thermoplastic leaf spring. Mater. Des. 2010, 31, 3733–3741. [Google Scholar] [CrossRef]
- Sápi, Z.; Butler, R. Properties of cryogenic and low temperature composite materials—A review. Cryogenics 2020, 111, 103190. [Google Scholar] [CrossRef]
- Takeda, T.; Miura, M.; Shindo, Y.; Narita, F. Fatigue delamination growth in woven glass/epoxy composite laminates under mixed-mode II/III loading conditions at cryogenic temperatures. Cryogenics 2013, 58, 55–61. [Google Scholar] [CrossRef]
- Schutz, J. Properties of composite materials for cryogenic applications. Cryogenics 1998, 38, 3–12. [Google Scholar] [CrossRef]
- Chen, D.; Li, J.; Yuan, Y.; Gao, C.; Cui, Y.; Li, S.; Liu, X.; Wang, H.; Peng, C.; Wu, Z. A Review of the Polymer for Cryogenic Application: Methods, Mechanisms and Perspectives. Polymers 2021, 13, 320. [Google Scholar] [CrossRef] [PubMed]
- Reed, R.; Golda, M. Cryogenic properties of unidirectional composites. Cryogenics 1994, 34, 909–928. [Google Scholar] [CrossRef]
- Sethi, S.; Ray, B.C. Mechanical Behavior of Polymer Composites at Cryogenic Temperatures. In Polymers at CRYOGENIC temperatures; Springer: Berlin/Heidelberg, Germany, 2013; pp. 59–113. [Google Scholar] [CrossRef]
- Bansemir, H.; Haider, O. Basic material data and structural analysis of fibre composite components for space application. Cryogenics 1991, 31, 298–306. [Google Scholar] [CrossRef]
- Kasen, M.B.; MacDonald, G.R.; Beekman, D.H.; Schramm, R.E. Mechanical, Electrical, and Thermal Characterization of G-10Cr and G-11Cr Glass-Cloth/Epoxy Laminates Between Room Temperature and 4 K. In Advances in Cryogenic Engineering Materials: Volume 26; Springer: Boston, MA, USA, 1980; pp. 235–244. [Google Scholar] [CrossRef]
- Hartwig, G.; Knaak, S. Fibre-epoxy composites at low temperatures. Cryogenics 1984, 24, 639–647. [Google Scholar] [CrossRef]
- Sakovsky, M.; Mihaly, J. Thin ply composite materials with embedded functional elements for cryogenic environments. Mater. Lett. 2023, 330, 133201. [Google Scholar] [CrossRef]
- Ma, H.-L.; Jia, Z.; Lau, K.-T.; Leng, J.; Hui, D. Impact properties of glass fiber/epoxy composites at cryogenic environment. Compos. Part B Eng. 2016, 92, 210–217. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, L.; Zhang, L.; Dong, N.; Wu, S.; Meng, Z. Tensile properties and damage evolution in a 3D C/SiC composite at cryogenic temperatures. Mater. Sci. Eng. A 2011, 528, 7524–7528. [Google Scholar] [CrossRef]
- Sapuan, S.; Mansor, M. Concurrent engineering approach in the development of composite products: A review. Mater. Des. 2014, 58, 161–167. [Google Scholar] [CrossRef]
- Kausar, A. Aeronautical composites and materials. In Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–21. [Google Scholar] [CrossRef]
- Elamin, M.; Li, B.; Tan, K. Impact damage of composite sandwich structures in arctic condition. Compos. Struct. 2018, 192, 422–433. [Google Scholar] [CrossRef]
- Sethi, S.; Panda, P.; Nayak, R.; Ray, B. Experimental studies on mechanical behavior and microstructural assessment of glass/epoxy composites at low temperatures. J. Reinf. Plast. Compos. 2012, 31, 77–84. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; Liu, M.; Peng, C.; Wu, Z. Epoxy-functionalized polysiloxane reinforced epoxy resin for cryogenic application. J. Appl. Polym. Sci. 2018, 136, 46930. [Google Scholar] [CrossRef]
- Wu, L.; Hoa, S.V.; Tan, M.; That, T. Effects of composition of hardener on the curing and aging for an epoxy resin system. J. Appl. Polym. Sci. 2005, 99, 580–588. [Google Scholar] [CrossRef]
- Lv, G.; Jensen, E.; Shen, C.; Yang, K.; Evans, C.M.; Cahill, D.G. Effect of Amine Hardener Molecular Structure on the Thermal Conductivity of Epoxy Resins. ACS Appl. Polym. Mater. 2020, 3, 259–267. [Google Scholar] [CrossRef]
- Chang, W.; Rose, L.F.; Islam, M.S.; Wu, S.; Peng, S.; Huang, F.; Kinloch, A.J.; Wang, C.H. Strengthening and toughening epoxy polymer at cryogenic temperature using cupric oxide nanorods. Compos. Sci. Technol. 2021, 208, 108762. [Google Scholar] [CrossRef]
- Escher, U. Thermal expansion of epoxy resins with different cross-link densities at low temperatures. Cryogenics 1995, 35, 775–778. [Google Scholar] [CrossRef]
- Kuo, L.-C.; Pan, H.-W.; Huang, S.-Y.; Chao, S. Mechanical Loss Angle Measurement for Stressed thin Film Using Cantilever Ring-Down Method. Mater. Res. 2018, 21, e20170869. [Google Scholar] [CrossRef]
- Vasudevan, A.; Senthil Kumaran, S.; Naresh, K.; Velmurugan, R. Experimental and analytical investigation of ther-mo-mechanical responses of pure epoxy and carbon/Kevlar/S-glass/E-glass/epoxy interply hybrid laminated composites for aerospace applications. Int. J. Polym. Anal. Charact. 2018, 23, 591–605. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Fang, C.; Liu, N.; Liu, D. Surface modification and thermal performance of a graphene oxide/novolac epoxy composite. RSC Adv. 2018, 8, 20505–20516. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, S.; Gupta, S.K.; Hojjati, M. Thermal cycling of composite laminates made of out-of-autoclave materials. Sci. Eng. Compos. Mater. 2017, 25, 1145–1156. [Google Scholar] [CrossRef]
- Dong, J.; Wang, H.; Zhang, Q.; Yang, H.; Cheng, J.; Xia, Z. Hydrocarbon Resin-Based Composites with Low Thermal Expansion Coefficient and Dielectric Loss for High-Frequency Copper Clad Laminates. Polymers 2022, 14, 2200. [Google Scholar] [CrossRef] [PubMed]
- Krzak, A.; Nowak, A. Mechanical analysis of multilayer composite materials with duroplastic matrix after exposure to low temperatures. Arch. Mater. Sci. Eng. 2023, 122, 49–57. [Google Scholar] [CrossRef]
- Krzak, A.; Al-Maqdasi, Z.; Nowak, A.J.; Joffe, R. Effect of Thermomechanical Loading at Low Temperatures on Damage Development in Glass Fiber Epoxy Laminates. Materials 2023, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- ASTM D3039; Standard Test Method for Tensile Testing of Composite Laminates. ASTM International: West Conshohocken, PA, USA, 2014.
- PN-EN ISO 6721-1:2019-07; Plastics-Determination of Dynamic Mechanical Properties—Part 1: General Principles. ISO: Warsaw, Poland, 2019.
- ISO 11359-2:2021; Thermomechanical Analysis (TMA)—Part 2: Determination of Coefficient of Linear Thermal Expansion and Glass Transition Temperature. ISO: Warsaw, Poland, 2021.
- Salmeron Perez, N.; Shaw, R.M.; Gower, M.R.L. Mechanical Testing of Fibre-Reinforced Polymer Matrix Composites at Cryogenic Temperatures (−165 °C); NCL: London, UK, 2022. [Google Scholar] [CrossRef]
- Kumarasamy, S.; Abidin, M.S.Z.; Abu Bakar, M.N.; Nazida, M.; Mustafa, Z.; Anjang, A. Effects of High and Low Temperature on the Tensile Strength of Glass Fiber Reinforced Polymer Composites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 370, 012021. [Google Scholar] [CrossRef]
- Anjaneyulu, J.; Moizuddin, M.; Chandra kumar, P. Evaluation of mechanical behaviour of Glass fibre-epoxy composite lam-inates. Mater. Today Proc. 2020, 22, 2899–2905. [Google Scholar] [CrossRef]
- Data Sheet, Mil I 24768/2 CRYOGENIC G10, American Material Supply. Available online: https://www.g10fr4.com/g10-cr.html (accessed on 21 January 2024).
- Kim, H.; Suzuki, T.; Takemura, K. Improvement of Mechanical and Thermal Properties of CFRP Laminates Using Micro-Fibrillated Cellulose. Int. J. Mod. Phys. Conf. Ser. 2012, 06, 622–627. [Google Scholar] [CrossRef]
- Data Sheet, TSE, IZOERG. Available online: https://www.izoerg.com.pl/for-transformer.html (accessed on 21 January 2024).
- Data Sheet, G-10, Laminated Plastics. Available online: https://laminatedplastics.com/g-10.pdf (accessed on 21 January 2024).
Parameter | Value |
---|---|
Grammage | 205 g/m2 |
Weave type | Plain weave |
Glass type | “E” |
Symbol | Viscosity [s] | Gel Time [min] | Fluidity [%] | Resin Content [%] |
---|---|---|---|---|
EP_1_1 | 44.00 | 2.53 | 24.60 | 38.00 |
EP_2_2 | 22.00 | 6.07 | 13.00 | 33.60 |
EP_2_1 | 118.00 | 3.44 | 17.90 | 35.48 |
EP_4_2 | 37.00 | 9.00 | 21.00 | 34.00 |
Material | Tensile Strength [MPa] | Young Modulus [GPa] |
---|---|---|
EP_1_1 | 443.45 | 22.52 |
EP_2_1 | 544.15 | 25.48 |
EP_2_2 | 551.82 | 25.88 |
EP_4_2 | 583.67 | 22.84 |
Material | Storage Modulus E′ [MPa] | Storage Modulus E′ Peak Maximum [°C] | Loss Modulus E″ [MPa] | Loss Modulus E″ Peak Maximum [°C] | Tan δ [°C] | Tan δ |
---|---|---|---|---|---|---|
EP_1_1 | 15,822 | 99 | 1521 | 116 | 122 | 0.15 |
EP_2_2 | 11,387 | 135 | 1137 | 154 | 160 | 0.25 |
EP_2_1 | 18,035 | 98 | 2481 | 109 | 114 | 0.20 |
EP_4_2 | 11,344 | 143 | 2059 | 151 | 155 | 0.32 |
Symbol | Linear Expansion Coefficient α in the Temperature Range −150 °C—RT [10−5/°C] | Linear Expansion Coefficient α in the Temperature Range −150 °C—RT [10−5/°C] Calculated from the Regression Model |
---|---|---|
EP_1_1_ | 5.5153 × 10−5 | 5.5890 × 10−5 |
EP_2_1_ | 4.7118 × 10−5 | 4.6776 × 10−5 |
EP_2_2_ | 4.8752 × 10−5 | 4.9996 × 10−5 |
EP_4_2_ | 5.5127 × 10−5 | 5.3334 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzak, A.; Nowak, A.J.; Heljak, M.; Antonowicz, J.; Garg, T.; Sumption, M. Mechanical and Thermal Analysis of Duroplastic Matrix Composites over a Range of Temperatures. Polymers 2024, 16, 606. https://doi.org/10.3390/polym16050606
Krzak A, Nowak AJ, Heljak M, Antonowicz J, Garg T, Sumption M. Mechanical and Thermal Analysis of Duroplastic Matrix Composites over a Range of Temperatures. Polymers. 2024; 16(5):606. https://doi.org/10.3390/polym16050606
Chicago/Turabian StyleKrzak, Anna, Agnieszka J. Nowak, Marcin Heljak, Jerzy Antonowicz, Tushar Garg, and Michael Sumption. 2024. "Mechanical and Thermal Analysis of Duroplastic Matrix Composites over a Range of Temperatures" Polymers 16, no. 5: 606. https://doi.org/10.3390/polym16050606
APA StyleKrzak, A., Nowak, A. J., Heljak, M., Antonowicz, J., Garg, T., & Sumption, M. (2024). Mechanical and Thermal Analysis of Duroplastic Matrix Composites over a Range of Temperatures. Polymers, 16(5), 606. https://doi.org/10.3390/polym16050606