Chemically Engineered Titanium Oxide Interconnecting Layer for Multijunction Polymer Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Analysis
2.3. Device Fabrication
2.4. Measurements and Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, G.Y.; Zhao, J.B.; Chow, P.C.Y.; Jiang, K.; Zhang, J.Q.; Zhu, Z.L.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chem. Rev. 2018, 118, 3447–3507. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.F.; Zhang, J.Q.; Xian, K.H.; Zhang, T.; Hong, L.; Wang, Y.M.; Xu, Y.; Ma, K.Q.; An, C.B.; et al. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Adv. Mater. 2020, 32, 1908205. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, J.D.; Song, J.L.; Xu, J.Q.; Zhang, H.T.; Zhang, X.N.; Guo, J.; Zhu, L.; Wei, D.H.; Han, G.C.; et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613. [Google Scholar] [CrossRef]
- Jia, Z.R.; Qin, S.C.; Meng, L.; Ma, Q.; Angunawela, I.; Zhang, J.Y.; Li, X.J.; He, Y.K.; Lai, W.B.; Li, N.; et al. High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nat. Commun. 2021, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wang, J.Q.; Bi, P.Q.; Ren, J.Z.; Wang, Y.F.; Yang, Y.; Liu, X.Y.; Zhang, S.Q.; Hou, J.H. Tandem Organic Solar Cell with 20.2% Efficiency. Joule 2022, 6, 171–184. [Google Scholar] [CrossRef]
- Meng, L.X.; Zhang, Y.M.; Wan, X.J.; Li, C.X.; Zhang, X.; Wang, Y.B.; Ke, X.; Xiao, Z.; Ding, L.M.; Xia, R.X.; et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098. [Google Scholar] [CrossRef] [PubMed]
- Ameri, T.; Li, N.; Brabec, C.J. Highly efficient organic tandem solar cells: A follow up review. Energ. Environ. Sci. 2013, 6, 2390–2413. [Google Scholar] [CrossRef]
- Yip, H.L.; Jen, A.K.Y. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energ. Environ. Sci. 2012, 5, 5994–6011. [Google Scholar] [CrossRef]
- Louwet, F.; Groenendaal, L.; Dhaen, J.; Manca, J.; Van Luppen, J.; Verdonck, E.; Leenders, L. PEDOT/PSS: Synthesis, characterization, properties and applications. Synth. Met. 2003, 135, 115–117. [Google Scholar] [CrossRef]
- Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J. Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer. Adv. Mater. 2004, 16, 1009–1013. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, K.; Coates, N.E.; Moses, D.; Nguyen, T.Q.; Dante, M.; Heeger, A.J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, 222–225. [Google Scholar] [CrossRef]
- Chen, C.C.; Chang, W.H.; Yoshimura, K.; Ohya, K.; You, J.B.; Gao, J.; Hong, Z.R.; Yang, Y. An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%. Adv. Mater. 2014, 26, 5670–5677. [Google Scholar] [CrossRef]
- Chung, W.-S.; Lee, H.; Lee, W.; Ko, M.J.; Park, N.-G.; Ju, B.-K.; Kim, K. Solution processed polymer tandem cell utilizing organic layer coated nano-crystalline TiO2 as interlayer. Org. Electron. 2010, 11, 521–528. [Google Scholar] [CrossRef]
- Lechêne, B.; Perrier, G.; Emmanouil, K.; Kennou, S.; Bouthinon, B.; de Bettignies, R. Design of intermediate layers for solution-processed tandem organic solar cells: Guidelines from a case study on TiOx and ZnO. Sol. Energ. Mat. Sol. C 2014, 120, 709–715. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, R.; Hong, Z.; He, Y.; Kumar, A.; Li, Y.; Yang, Y. A Robust Inter-Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells. Adv. Mater. 2011, 23, 3465–3470. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhang, S.; Zhang, M.; Zhao, K.; Ye, L.; Chen, Y.; Yang, B.; Hou, J. Highly Efficient Tandem Polymer Solar Cells with a Photovoltaic Response in the Visible Light Range. Adv. Mater. 2015, 27, 1189–1194. [Google Scholar] [CrossRef]
- Ullah, F.; Chen, C.-C.; Choy, W.C.H. Recent Developments in Organic Tandem Solar Cells toward High Efficiency. Adv. Energy Sustain. Res. 2021, 2, 2000050. [Google Scholar] [CrossRef]
- Park, Y.D.; Park, J.K.; Lee, W.H.; Kang, B.; Cho, K.; Bazan, G.C. Post-deposition dipping method for improving the electronic properties of a narrow bandgap conjugated polymer. J. Mater. Chem. 2012, 22, 11462–11465. [Google Scholar] [CrossRef]
- Kim, S.; Park, J.K.; Park, Y.D. Charge transport behaviors of end-capped narrow band gap polymers in bottom-contact organic field-effect transistors. RSC Adv. 2014, 4, 39268–39272. [Google Scholar] [CrossRef]
- He, J.; Du, Y.-e.; Bai, Y.; An, J.; Cai, X.; Chen, Y.; Wang, P.; Yang, X.; Feng, Q. Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Molecules 2019, 24, 2996. [Google Scholar] [CrossRef]
- Linstrom, P.J.; Mallard, W.G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Testing (NIST): Gaithersburg, MD, USA, 2013. [Google Scholar] [CrossRef]
- Jackson, P.; Robinson, K.; Puxty, G.; Attalla, M. In situ Fourier Transform-Infrared (FT-IR) analysis of carbon dioxide absorption and desorption in amine solutions. Energy Procedia 2009, 1, 985–994. [Google Scholar] [CrossRef]
- Kong, J.; Lee, J.; Kim, G.; Kang, H.; Choi, Y.; Lee, K. Building mechanism for a high open-circuit voltage in an all-solution-processed tandem polymer solar cell. Phys. Chem. Chem. Phys. 2012, 14, 10547–10555. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Kong, J.; Kim, J.; Kang, H.; Back, H.; Kim, H.; Lee, K. Overcoming the Light-Soaking Problem in Inverted Polymer Solar Cells by Introducing a Heavily Doped Titanium Sub-Oxide Functional Layer. Adv. Energy Mater. 2015, 5. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Maeda, M.; Watanabe, T. Visible light photocatalysis of nitrogen-doped titanium oxide films prepared by plasma-enhanced chemical vapor deposition. J. Electrochem. Soc. 2006, 153, C186–C189. [Google Scholar] [CrossRef]
- Sathish, M.; Viswanathan, B.; Viswanath, R.P.; Gopinath, C.S. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst. Chem. Mater. 2005, 17, 6349–6353. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects. Chem. Rev. 2014, 114, 9824–9852. [Google Scholar] [CrossRef]
- Livraghi, S.; Paganini, M.C.; Giamello, E.; Selloni, A.; Di Valentin, C.; Pacchioni, G. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J. Am. Chem. Soc. 2006, 128, 15666–15671. [Google Scholar] [CrossRef]
- Saha, N.C.; Tompkins, H.G. Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. Appl. Phys. 1992, 72, 3072–3079. [Google Scholar] [CrossRef]
- György, E.; Pérez del Pino, A.; Serra, P.; Morenza, J.L. Depth profiling characterisation of the surface layer obtained by pulsed Nd:YAG laser irradiation of titanium in nitrogen. Surf. Coat. Technol. 2003, 173, 265–270. [Google Scholar] [CrossRef]
- Chen, X.; Burda, C. Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles. J. Phys. Chem. B 2004, 108, 15446–15449. [Google Scholar] [CrossRef]
- Di Valentin, C.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Giamello, E. Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations. J. Phys. Chem. B 2005, 109, 11414–11419. [Google Scholar] [CrossRef] [PubMed]
- Li, H.X.; Li, J.X.; Huo, Y.I. Highly active TiO2N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions. J. Phys. Chem. B 2006, 110, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
- Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. J. Phys. Chem. B 2003, 107, 5483–5486. [Google Scholar] [CrossRef]
- Cong, Y.; Zhang, J.L.; Chen, F.; Anpo, M. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 2007, 111, 6976–6982. [Google Scholar] [CrossRef]
- Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Pham, H.H.; Wang, L.W. Oxygen vacancy and hole conduction in amorphous TiO2. Phys. Chem. Chem. Phys. 2015, 17, 541–550. [Google Scholar] [CrossRef]
- Liu, B.S.; Zhao, X.J.; Yu, J.G.; Parkins, I.P.; Fujishima, A.; Nakata, K. Intrinsic intermediate gap states of TiO2 materials and their roles in charge carrier kinetics. J. Photoch Photobio C 2019, 39, 1–57. [Google Scholar] [CrossRef]
- El Mesoudy, A.; Machon, D.; Ruediger, A.; Jaouad, A.; Alibart, F.; Ecoffey, S.; Drouin, D. Band gap narrowing induced by oxygen vacancies in reactively sputtered TiO2 thin films. Thin Solid Film. 2023, 769, 139737. [Google Scholar] [CrossRef]
- Rahimi, N.; Pax, R.A.; Gray, E.M. Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Chem. 2016, 44, 86–105. [Google Scholar] [CrossRef]
- Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810. [Google Scholar] [CrossRef]
- Lee, J.; Kang, H.; Kong, J.; Lee, K. A Depletion-Free, Ionic, Self-Assembled Recombination Layer for Tandem Polymer Solar Cells. Adv. Energy Mater. 2014, 4, 1301226. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.; Back, H.; Kong, J.; Naseer, L.; Jeong, J.; Son, J.; Lee, J.; Kang, S.-O.; Lee, K. Chemically Engineered Titanium Oxide Interconnecting Layer for Multijunction Polymer Solar Cells. Polymers 2024, 16, 595. https://doi.org/10.3390/polym16050595
Kim G, Back H, Kong J, Naseer L, Jeong J, Son J, Lee J, Kang S-O, Lee K. Chemically Engineered Titanium Oxide Interconnecting Layer for Multijunction Polymer Solar Cells. Polymers. 2024; 16(5):595. https://doi.org/10.3390/polym16050595
Chicago/Turabian StyleKim, Geunjin, Hyungcheol Back, Jaemin Kong, Laiba Naseer, Jiwon Jeong, Jaehyoung Son, Jongjin Lee, Sung-Oong Kang, and Kwanghee Lee. 2024. "Chemically Engineered Titanium Oxide Interconnecting Layer for Multijunction Polymer Solar Cells" Polymers 16, no. 5: 595. https://doi.org/10.3390/polym16050595
APA StyleKim, G., Back, H., Kong, J., Naseer, L., Jeong, J., Son, J., Lee, J., Kang, S. -O., & Lee, K. (2024). Chemically Engineered Titanium Oxide Interconnecting Layer for Multijunction Polymer Solar Cells. Polymers, 16(5), 595. https://doi.org/10.3390/polym16050595