Thermally Conductive and Electrically Insulating Polymer-Based Composites Heat Sinks Fabricated by Fusion Deposition Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Materials Processing through FDM 3D Printing
2.3. Materials Characterization
2.4. Preparation and Characterization of 3D-Printed Heat Sinks
3. Results and Discussion
3.1. Materials Characterization
3.1.1. Morphological Analyses
3.1.2. Thermal Properties
3.1.3. Mechanical Properties
3.1.4. Thermal and Electrical Conductivities
3.2. Thermal Performances of 3D-Printed Heat Sinks
3.2.1. Modeling and Fabrication by FDM
3.2.2. IR Thermography
Conductive Heating Source
Irradiative Heating Source
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewis, J.S.; Perrier, T.; Barani, Z.; Kargar, F.; Balandin, A.A. Thermal Interface Materials with Graphene Fillers: Review of the State of the Art and Outlook for Future Applications. Nanotechnology 2021, 32, 142003. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Weng, L.; Ge, S.; Jiang, D.; Huang, M.; Mulvihill, D.M.; Chen, Q.; Guo, Z.; Jazzar, A.; et al. A Roadmap Review of Thermally Conductive Polymer Composites: Critical Factors, Progress, and Prospects. Adv. Funct. Mater. 2023, 33, 2301549. [Google Scholar] [CrossRef]
- Ren, L.; Zhou, X.; Xue, J.; Song, Z.; Li, B.; Liu, Q.; Zhao, C. Thermal Metamaterials with Site-Specific Thermal Properties Fabricated by 3D Magnetic Printing. Adv. Mater. Technol. 2019, 4, 1900296. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Lv, J.-C.; Zheng, Z.-L.; Du, J.-G.; Dai, K.; Lei, J.; Xu, L.; Xu, J.-Z.; Li, Z.-M. Highly Thermally Conductive Graphene-Based Thermal Interface Materials with a Bilayer Structure for Central Processing Unit Cooling. ACS Appl. Mater. Interfaces 2021, 13, 25325–25333. [Google Scholar] [CrossRef]
- Luo, W.; Wang, Y.; Hitz, E.; Lin, Y.; Yang, B.; Hu, L. Solution Processed Boron Nitride Nanosheets: Synthesis, Assemblies and Emerging Applications. Adv. Funct. Mater. 2017, 27, 1701450. [Google Scholar] [CrossRef]
- Liu, J.; Guo, Y.; Weng, C.; Zhang, H.; Zhang, Z. High Thermal Conductive Epoxy Based Composites Fabricated by Multi-Material Direct Ink Writing. Compos. Part Appl. Sci. Manuf. 2020, 129, 105684. [Google Scholar] [CrossRef]
- Saidina, D.S.; Abdullah, M.Z.; Hussin, M. Metal Oxide Nanofluids in Electronic Cooling: A Review. J. Mater. Sci. Mater. Electron. 2020, 31, 4381–4398. [Google Scholar] [CrossRef]
- Gao, J.; Hao, M.; Wang, Y.; Kong, X.; Yang, B.; Wang, R.; Lu, Y.; Zhang, L.; Gong, M.; Zhang, L.; et al. 3D Printing Boron Nitride Nanosheets Filled Thermoplastic Polyurethane Composites with Enhanced Mechanical and Thermal Conductive Properties. Addit. Manuf. 2022, 56, 102897. [Google Scholar] [CrossRef]
- Ong, K.S.; Tan, C.F.; Lai, K.C.; Tan, K.H. Heat Spreading and Heat Transfer Coefficient with Fin Heat Sink. Appl. Therm. Eng. 2017, 112, 1638–1647. [Google Scholar] [CrossRef]
- Timbs, K.; Khatamifar, M.; Antunes, E.; Lin, W. Experimental Study on the Heat Dissipation Performance of Straight and Oblique Fin Heat Sinks Made of Thermal Conductive Composite Polymers. Therm. Sci. Eng. Prog. 2021, 22, 100848. [Google Scholar] [CrossRef]
- Chen, X.; Su, Y.; Reay, D.; Riffat, S. Recent Research Developments in Polymer Heat Exchangers—A Review. Renew. Sustain. Energy Rev. 2016, 60, 1367–1386. [Google Scholar] [CrossRef]
- Blom, P.W.M. Polymer Electronics: To Be or Not to Be? Adv. Mater. Technol. 2020, 5, 2000144. [Google Scholar] [CrossRef]
- Wan, Y.-J.; Li, G.; Yao, Y.-M.; Zeng, X.-L.; Zhu, P.-L.; Sun, R. Recent Advances in Polymer-Based Electronic Packaging Materials. Compos. Commun. 2020, 19, 154–167. [Google Scholar] [CrossRef]
- Huang, C.; Qian, X.; Yang, R. Thermal Conductivity of Polymers and Polymer Nanocomposites. Mater. Sci. Eng. R Rep. 2018, 132, 1–22. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, F.; Chen, C.-Y. Use of BN-Coated Copper Nanowires in Nanocomposites with Enhanced Thermal Conductivity and Electrical Insulation. Adv. Compos. Hybrid Mater. 2019, 2, 46–50. [Google Scholar] [CrossRef]
- Wang, D.; Lin, Y.; Hu, D.; Jiang, P.; Huang, X. Multifunctional 3D-MXene/PDMS Nanocomposites for Electrical, Thermal and Triboelectric Applications. Compos. Part Appl. Sci. Manuf. 2020, 130, 105754. [Google Scholar] [CrossRef]
- Leung, S.N. Thermally Conductive Polymer Composites and Nanocomposites: Processing-Structure-Property Relationships. Compos. Part B Eng. 2018, 150, 78–92. [Google Scholar] [CrossRef]
- Almuallim, B.; Harun, W.S.W.; Al Rikabi, I.J.; Mohammed, H.A. Thermally Conductive Polymer Nanocomposites for Filament-Based Additive Manufacturing. J. Mater. Sci. 2022, 57, 3993–4019. [Google Scholar] [CrossRef]
- Kominek, J.; Zachar, M.; Guzej, M.; Bartuli, E.; Kotrbacek, P. Influence of Ambient Temperature on Radiative and Convective Heat Dissipation Ratio in Polymer Heat Sinks. Polymers 2021, 13, 2286. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.R.; Kumar, S.; Kim, S. Ecofriendly Polymer–Graphene-Based Conductive Ink for Multifunctional Printed Electronics. Adv. Mater. Technol. 2023, 8, 2201917. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, Y.; Wang, R.; Sun, J.; Gao, L. Highly Thermal Conductive Copper Nanowire Composites with Ultralow Loading: Toward Applications as Thermal Interface Materials. ACS Appl. Mater. Interfaces 2014, 6, 6481–6486. [Google Scholar] [CrossRef]
- Laureto, J.; Tomasi, J.; King, J.A.; Pearce, J.M. Thermal Properties of 3-D Printed Polylactic Acid-Metal Composites. Prog. Addit. Manuf. 2017, 2, 57–71. [Google Scholar] [CrossRef]
- Cao, X.; Li, C.; Tong, Y.; He, G.; Gao, D.; Ru, Y.; Yang, Z. High Conductivity Thermoelectric Insulation Composite Silicone Rubber Prepared by Carbon Nanotubes and Silicon Carbide Composite Filler. Polym. Compos. 2022, 43, 2139–2149. [Google Scholar] [CrossRef]
- Moharana, B.R.; Biswal, D.K.; Maiti, A.; Pattanaik, A. An Investigation on Mechanical Properties of SiC Reinforced Epoxy Composite Synthesized at Room Temperature. Mater. Today Proc. 2022, 59, 1852–1857. [Google Scholar] [CrossRef]
- Sato, K.; Tominaga, Y.; Imai, Y. Optically Transparent and Thermally Conductive Composite Films of α-Alumina and Highly Refractive Polyimide. Polym. Bull. 2023, 80, 9479–9488. [Google Scholar] [CrossRef]
- Pan, L.; Gao, W.; Bo, R.; Li, Y.; Wang, C.; Wang, Y.; Han, Z. Gradient Structured Polyethylene Composites with Enhanced Thermal Conductivity, Dielectric and Mechanical Properties. J. Alloys Compd. 2023, 962, 171072. [Google Scholar] [CrossRef]
- Gao, Z.; Zhao, L. Effect of Nano-Fillers on the Thermal Conductivity of Epoxy Composites with Micro-Al2O3 Particles. Mater. Des. 2015, 66, 176–182. [Google Scholar] [CrossRef]
- Du, F.-P.; Tang, H.; Huang, D.-Y. Thermal Conductivity of Epoxy Resin Reinforced with Magnesium Oxide Coated Multiwalled Carbon Nanotubes. Int. J. Polym. Sci. 2013, 2013, 541823. [Google Scholar] [CrossRef]
- Akhtar, M.W.; Kim, J.S.; Memon, M.A.; Khan, M.Y.; Baloch, M.M. Surface Modification of Magnesium Oxide/Epoxy Composites with Significantly Improved Mechanical and Thermal Properties. J. Mater. Sci. Mater. Electron. 2021, 32, 15307–15316. [Google Scholar] [CrossRef]
- Xu, Y.; Chung, D.D.L.; Mroz, C. Thermally Conducting Aluminum Nitride Polymer-Matrix Composites. Compos. Part Appl. Sci. Manuf. 2001, 32, 1749–1757. [Google Scholar] [CrossRef]
- Lin, L.; Wu, H.; Ni, P.; Chen, Y.; Huang, Z.; Li, Y.; Lin, K.; Sheng, P.; Wu, S. Additive Manufacturing of Complex-Shaped and High-Performance Aluminum Nitride-Based Components for Thermal Management. Addit. Manuf. 2022, 52, 102671. [Google Scholar] [CrossRef]
- Xu, X.; Hu, R.; Chen, M.; Dong, J.; Xiao, B.; Wang, Q.; Wang, H. 3D Boron Nitride Foam Filled Epoxy Composites with Significantly Enhanced Thermal Conductivity by a Facial and Scalable Approach. Chem. Eng. J. 2020, 397, 125447. [Google Scholar] [CrossRef]
- Guiney, L.M.; Mansukhani, N.D.; Jakus, A.E.; Wallace, S.G.; Shah, R.N.; Hersam, M.C. Three-Dimensional Printing of Cytocompatible, Thermally Conductive Hexagonal Boron Nitride Nanocomposites. Nano Lett. 2018, 18, 3488–3493. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, X.; Sun, B.; Jiang, P. Highly Thermally Conductive Yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability. ACS Nano 2019, 13, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhang, C.; Zeng, X.; Ren, L.; Sun, R.; Xu, J. Recent Progress in Thermally Conductive Polymer/Boron Nitride Composites by Constructing Three-Dimensional Networks. Compos. Commun. 2021, 24, 100650. [Google Scholar] [CrossRef]
- Joy, J.; George, E.; Haritha, P.; Thomas, S.; Anas, S. An Overview of Boron Nitride Based Polymer Nanocomposites. J. Polym. Sci. 2020, 58, 3115–3141. [Google Scholar] [CrossRef]
- Mazumder, M.R.H.; Mathews, L.D.; Mateti, S.; Salim, N.V.; Parameswaranpillai, J.; Govindaraj, P.; Hameed, N. Boron Nitride Based Polymer Nanocomposites for Heat Dissipation and Thermal Management Applications. Appl. Mater. Today 2022, 29, 101672. [Google Scholar] [CrossRef]
- Guerra, V.; Wan, C.; McNally, T. Thermal Conductivity of 2D Nano-Structured Boron Nitride (BN) and Its Composites with Polymers. Prog. Mater. Sci. 2019, 100, 170–186. [Google Scholar] [CrossRef]
- Pan, D.; Su, F.; Liu, H.; Ma, Y.; Das, R.; Hu, Q.; Liu, C.; Guo, Z. The Properties and Preparation Methods of Different Boron Nitride Nanostructures and Applications of Related Nanocomposites. Chem. Rec. 2020, 20, 1314–1337. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Kang, W.; Liu, X.; Wang, Q. Current Advances and Future Perspectives of Additive Manufacturing for Functional Polymeric Materials and Devices. SusMat 2021, 1, 127–147. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D Printing of Polymer Matrix Composites: A Review and Prospective. Compos. Part B Eng. 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Liu, J.; Li, W.; Guo, Y.; Zhang, H.; Zhang, Z. Improved Thermal Conductivity of Thermoplastic Polyurethane via Aligned Boron Nitride Platelets Assisted by 3D Printing. Compos. Part Appl. Sci. Manuf. 2019, 120, 140–146. [Google Scholar] [CrossRef]
- Xu, W.; Jambhulkar, S.; Ravichandran, D.; Zhu, Y.; Kakarla, M.; Nian, Q.; Azeredo, B.; Chen, X.; Jin, K.; Vernon, B.; et al. 3D Printing-Enabled Nanoparticle Alignment: A Review of Mechanisms and Applications. Small 2021, 17, 2100817. [Google Scholar] [CrossRef]
- Deisenroth, D.C.; Moradi, R.; Shooshtari, A.H.; Singer, F.; Bar-Cohen, A.; Ohadi, M. Review of Heat Exchangers Enabled by Polymer and Polymer Composite Additive Manufacturing. Heat Transf. Eng. 2018, 39, 1648–1664. [Google Scholar] [CrossRef]
- Kalsoom, U.; Peristyy, A.; Nesterenko, P.N.; Paull, B. A 3D Printable Diamond Polymer Composite: A Novel Material for Fabrication of Low Cost Thermally Conducting Devices. RSC Adv. 2016, 6, 38140–38147. [Google Scholar] [CrossRef]
- Ligati Schleifer, S.; Regev, O. Additive Manufacturing of Anisotropic Graphene-Based Composites for Thermal Management Applications. Addit. Manuf. 2023, 70, 103567. [Google Scholar] [CrossRef]
- Nguyen, N.; Zhang, S.; Oluwalowo, A.; Park, J.G.; Yao, K.; Liang, R. High-Performance and Lightweight Thermal Management Devices by 3D Printing and Assembly of Continuous Carbon Nanotube Sheets. ACS Appl. Mater. Interfaces 2018, 10, 27171–27177. [Google Scholar] [CrossRef] [PubMed]
- Waheed, S.; Cabot, J.M.; Smejkal, P.; Farajikhah, S.; Sayyar, S.; Innis, P.C.; Beirne, S.; Barnsley, G.; Lewis, T.W.; Breadmore, M.C.; et al. Three-Dimensional Printing of Abrasive, Hard, and Thermally Conductive Synthetic Microdiamond–Polymer Composite Using Low-Cost Fused Deposition Modeling Printer. ACS Appl. Mater. Interfaces 2019, 11, 4353–4363. [Google Scholar] [CrossRef]
- Huttunen, E.; Nykänen, M.T.; Alexandersen, J. Material Extrusion Additive Manufacturing and Experimental Testing of Topology-Optimised Passive Heat Sinks Using a Thermally-Conductive Plastic Filament. Addit. Manuf. 2022, 59, 103123. [Google Scholar] [CrossRef]
- Akintola, T.M.; Tran, P.; Downes Sweat, R.; Dickens, T. Thermomechanical Multifunctionality in 3D-Printed Polystyrene-Boron Nitride Nanotubes (BNNT) Composites. J. Compos. Sci. 2021, 5, 61. [Google Scholar] [CrossRef]
- Blanco, I.; Cicala, G.; Recca, G.; Tosto, C. Specific Heat Capacity and Thermal Conductivity Measurements of PLA-Based 3D-Printed Parts with Milled Carbon Fiber Reinforcement. Entropy 2022, 24, 654. [Google Scholar] [CrossRef]
- Chen, C.; Xue, Y.; Li, Z.; Wen, Y.; Li, X.; Wu, F.; Li, X.; Shi, D.; Xue, Z.; Xie, X. Construction of 3D Boron Nitride Nanosheets/Silver Networks in Epoxy-Based Composites with High Thermal Conductivity via in-Situ Sintering of Silver Nanoparticles. Chem. Eng. J. 2019, 369, 1150–1160. [Google Scholar] [CrossRef]
- Spinelli, G.; Guarini, R.; Kotsilkova, R.; Ivanov, E.; Romano, V. Experimental, Theoretical and Simulation Studies on the Thermal Behavior of PLA-Based Nanocomposites Reinforced with Different Carbonaceous Fillers. Nanomaterials 2021, 11, 1511. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, Y.; Guo, H.; Lv, R.; Bai, S.-L. A Double Mixing Process to Greatly Enhance Thermal Conductivity of Graphene Filled Polyamide 6 Composites. Compos. Part Appl. Sci. Manuf. 2019, 126, 105578. [Google Scholar] [CrossRef]
- Yoo, Y.; Lee, H.L.; Ha, S.M.; Jeon, B.K.; Won, J.C.; Lee, S.-G. Effect of Graphite and Carbon Fiber Contents on the Morphology and Properties of Thermally Conductive Composites Based on Polyamide 6: Thermally Conductive Composites Based on Polyamide 6. Polym. Int. 2014, 63, 151–157. [Google Scholar] [CrossRef]
- Li, M.; Wan, Y.; Gao, Z.; Xiong, G.; Wang, X.; Wan, C.; Luo, H. Preparation and Properties of Polyamide 6 Thermal Conductive Composites Reinforced with Fibers. Mater. Des. 2013, 51, 257–261. [Google Scholar] [CrossRef]
- Sridhara, P.K.; Masso, F.; Olsén, P.; Vilaseca, F. Strong Polyamide-6 Nanocomposites with Cellulose Nanofibers Mediated by Green Solvent Mixtures. Nanomaterials 2021, 11, 2127. [Google Scholar] [CrossRef] [PubMed]
- ISO 1183-1:2019; Plastics—Methods for Determining the Density of Non-Cellular Plastics—Part 1: Immersion Method, Liquid Pycnometer Method and Titration Method. International Organization for Standardization: Geneva, Switzerland, 2019.
- ASTM E-1461; Standard Test Method for Thermal Diffusivity by the Flash Method. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
- Fujihara, T.; Cho, H.-B.; Nakayama, T.; Suzuki, T.; Jiang, W.; Suematsu, H.; Kim, H.D.; Niihara, K. Field-Induced Orientation of Hexagonal Boron Nitride Nanosheets Using Microscopic Mold for Thermal Interface Materials. J. Am. Ceram. Soc. 2012, 95, 369–373. [Google Scholar] [CrossRef]
- Davis, R.D.; Gilman, J.W.; VanderHart, D.L. Processing Degradation of Polyamide 6/Montmorillonite Clay Nanocomposites and Clay Organic Modifier. Polym. Degrad. Stab. 2003, 79, 111–121. [Google Scholar] [CrossRef]
- Pramoda, K.P.; Liu, T.; Liu, Z.; He, C.; Sue, H.-J. Thermal Degradation Behavior of Polyamide 6/Clay Nanocomposites. Polym. Degrad. Stab. 2003, 81, 47–56. [Google Scholar] [CrossRef]
- Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. FDM Process Parameters Influence over the Mechanical Properties of Polymer Specimens: A Review. Polym. Test. 2018, 69, 157–166. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Berto, F.; Ayatollahi, M.R.; Reinicke, T. Characterization of 3D-Printed PLA Parts with Different Raster Orientations and Printing Speeds. Sci. Rep. 2022, 12, 1016. [Google Scholar] [CrossRef] [PubMed]
- Elkholy, A.; Rouby, M.; Kempers, R. Characterization of the Anisotropic Thermal Conductivity of Additively Manufactured Components by Fused Filament Fabrication. Prog. Addit. Manuf. 2019, 4, 497–515. [Google Scholar] [CrossRef]
- Geng, Y.; He, H.; Jia, Y.; Peng, X.; Li, Y. Enhanced Through-plane Thermal Conductivity of Polyamide 6 Composites with Vertical Alignment of Boron Nitride Achieved by Fused Deposition Modeling. Polym. Compos. 2019, 40, 3375–3382. [Google Scholar] [CrossRef]
- Lindsay, L.; Broido, D.A. Enhanced Thermal Conductivity and Isotope Effect in Single-Layer Hexagonal Boron Nitride. Phys. Rev. B 2011, 84, 155421. [Google Scholar] [CrossRef]
- Xiao, C.; Guo, Y.; Tang, Y.; Ding, J.; Zhang, X.; Zheng, K.; Tian, X. Epoxy Composite with Significantly Improved Thermal Conductivity by Constructing a Vertically Aligned Three-Dimensional Network of Silicon Carbide Nanowires/ Boron Nitride Nanosheets. Compos. Part B Eng. 2020, 187, 107855. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, J.; Kou, K.; Zhang, Y.; Wu, G. Investigation of the Through-Plane Thermal Conductivity of Polymer Composites with in-Plane Oriented Hexagonal Boron Nitride. Int. J. Heat Mass Transf. 2018, 120, 1–8. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, W.; Guo, J.; Liu, K.; Wang, A. Preparation and Properties of ABS/BNNS Composites with High Thermal Conductivity for FDM. J. Polym. Eng. 2023, 43, 875–883. [Google Scholar] [CrossRef]
- Quill, T.J.; Smith, M.K.; Zhou, T.; Baioumy, M.G.S.; Berenguer, J.P.; Cola, B.A.; Kalaitzidou, K.; Bougher, T.L. Thermal and Mechanical Properties of 3D Printed Boron Nitride—ABS Composites. Appl. Compos. Mater. 2018, 25, 1205–1217. [Google Scholar] [CrossRef]
- Lebedev, S.M. Thermophysical and Dielectric Properties of Polymer Composites Filled with Hexagonal Boron Nitride. Russ. Phys. J. 2022, 65, 91–98. [Google Scholar] [CrossRef]
- Bragaglia, M.; Lamastra, F.R.; Russo, P.; Vitiello, L.; Rinaldi, M.; Fabbrocino, F.; Nanni, F. A Comparison of Thermally Conductive Polyamide 6-boron Nitride Composites Produced via Additive Layer Manufacturing and Compression Molding. Polym. Compos. 2021, 42, 2751–2765. [Google Scholar] [CrossRef]
- Islam, S.; Bhat, G.; Sikdar, P. Thermal and Acoustic Performance Evaluation of 3D-Printable PLA Materials. J. Build. Eng. 2023, 67, 105979. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X.; Zhang, Y. Kubelka-Munk Revised Theory for High Solar Reflectance and High Long-Wave Emissivity Coatings Designing. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2016, 31, 100–107. [Google Scholar] [CrossRef]
Orientation | PA–32BN | PA–32BN–MgO | |
---|---|---|---|
Young’s modulus [MPa] | Oblique | 2865 ± 209 | 2861 ± 200 |
Vertical | 3158 ± 128 | 2944 ± 133 | |
Horizontal | 2626 ± 277 | 2569 ± 164 | |
Ultimate tensile strength [MPa] | Oblique | 24.3 ± 0.5 | 34.3 ± 0.4 |
Vertical | 30.4 ± 1.5 | 34.1 ± 0.1 | |
Horizontal | 21.4 ± 1.2 | 30.7 ± 0.4 | |
Strain at break [MPa] | Oblique | 3.5 ± 0.2 | 8.1 ± 0.9 |
Vertical | 4.5 ± 0.5 | 8.2 ± 0.9 | |
Horizontal | 3.4 ± 0.3 | 7.3 ± 0.6 |
PA–32BN | PA–32BN–MgO | ||
---|---|---|---|
Thermal conductivity | k// [W m−1 K−1] | 1.97 ± 0.11 | 1.22 ± 0.05 |
k⊥ [W m−1 K−1] | 0.69 ± 0.01 | 0.64 ± 0.02 | |
Electrical resistivity | ρs [Ω] | 3.0 × 1012 | 5.0 × 1012 |
ρv [Ω cm] | 1.7 × 1012 | 2.4 × 1012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagatella, S.; Cereti, A.; Manarini, F.; Cavallaro, M.; Suriano, R.; Levi, M. Thermally Conductive and Electrically Insulating Polymer-Based Composites Heat Sinks Fabricated by Fusion Deposition Modeling. Polymers 2024, 16, 432. https://doi.org/10.3390/polym16030432
Bagatella S, Cereti A, Manarini F, Cavallaro M, Suriano R, Levi M. Thermally Conductive and Electrically Insulating Polymer-Based Composites Heat Sinks Fabricated by Fusion Deposition Modeling. Polymers. 2024; 16(3):432. https://doi.org/10.3390/polym16030432
Chicago/Turabian StyleBagatella, Simone, Annacarla Cereti, Francesco Manarini, Marco Cavallaro, Raffaella Suriano, and Marinella Levi. 2024. "Thermally Conductive and Electrically Insulating Polymer-Based Composites Heat Sinks Fabricated by Fusion Deposition Modeling" Polymers 16, no. 3: 432. https://doi.org/10.3390/polym16030432
APA StyleBagatella, S., Cereti, A., Manarini, F., Cavallaro, M., Suriano, R., & Levi, M. (2024). Thermally Conductive and Electrically Insulating Polymer-Based Composites Heat Sinks Fabricated by Fusion Deposition Modeling. Polymers, 16(3), 432. https://doi.org/10.3390/polym16030432