Recent Advances and Challenges in Polymer-Based Materials for Space Radiation Shielding
Abstract
:1. Introduction
2. Experimental Studies
2.1. Polyethylene-Based Materials
2.2. Polyimide-Based Materials
2.3. Polydimethylsiloxane-Based Materials
2.4. Other PBMs
3. Numerical Studies
3.1. Radiation Transport Codes
3.1.1. HZETRN Codes
3.1.2. OLTARIS Software
3.1.3. SHIELD Codes
3.1.4. GEANT4 Codes
3.1.5. FLUKA Code
3.1.6. PHITS Code
3.1.7. MCPNX Code
3.1.8. UPROP Code
3.2. Comparison of Strengths and Weaknesses of Radiation Transport Codes
3.3. Shielding Simulations for Radiative Environments
3.3.1. GCR Environment
3.3.2. SPE Environment
3.3.3. LEO Environment
4. Summary and Challenges on the Design of Radiation-Shielding PBMs
4.1. Radiation Sources and PBM Design
4.2. Effects of Space Radiation on Polymers
4.3. Other Constraints for the PBM Design
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Townsend, L.W. Implications of the space radiation environment for human exploration in deep space. Radiat. Prot. Dosim. 2005, 115, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Belli, M.; Sapora, O.; Tabocchini, M.A. Molecular Targets in Cellular Response to Ionizing Radiation and Implications in Space Radiation Protection. J. Radiat. Res. 2002, 43, S13–S19. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, J.M.; Benton, E.R. Shielding effectiveness: A weighted figure of merit for space radiation shielding. Appl. Radiat. Isot. 2020, 161, 109141. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-H.Y.; George, K.A.; Cucinotta, F.A. Space Environment (Natural and Induced); NASA Johnson Space Center: Houston, TX, USA, 2007; pp. 1–37.
- Chancellor, J.C.; Scott, G.B.I.; Sutton, J.P. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit. Life 2014, 4, 491–510. [Google Scholar] [CrossRef]
- Zeitlin, C.; Hassler, D.; Cucinotta, F.; Ehresmann, B.; Wimmer-Schweingruber, R.; Brinza, D.; Kang, S.; Weigle, G.; Böttcher, S.; Böhm, E. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 2013, 340, 1080–1084. [Google Scholar] [CrossRef]
- Patel, Z.; Huff, J.; Saha, J.; Wang, M.; Blattnig, S.; Wu, H.; Cucinotta, F. Evidence Report: Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure; NASA Johnson Space Center: Houston, TX, USA, 2015.
- Wang, J.-A.J.; Singleterry, R.C., Jr.; Ellis, R.J.; Hunter, H.T. Radiation effects on spacecraft structural materials. In Proceedings of the International Conference on Advanced Nuclear Power Plants, Hollywood, FL, USA, 9–13 June 2002. [Google Scholar]
- Thibeault, S.A.; Kang, J.H.; Sauti, G.; Park, C.; Fay, C.C.; King, G.C. Nanomaterials for radiation shielding. MRS Bull. 2015, 40, 836–841. [Google Scholar] [CrossRef]
- Gohel, A.; Makwana, R. Multi-layered shielding materials for high energy space radiation. Radiat. Phys. Chem. 2022, 197, 110131. [Google Scholar] [CrossRef]
- Atxaga, G.; Marcos, J.; Jurado, M.; Carapelle, A.; Orava, R. Radiation shielding of composite space enclosures. In Proceedings of the 63rd International Astronautical Congress, Naples, Italy, 1–5 October 2012. [Google Scholar]
- Kim, J.; Lee, B.-C.; Uhm, Y.R.; Miller, W.H. Enhancement of thermal neutron attenuation of nano-B4C,-BN dispersed neutron shielding polymer nanocomposites. J. Nucl. Mater. 2014, 453, 48–53. [Google Scholar] [CrossRef]
- Mansouri, E.; Mesbahi, A.; Malekzadeh, R.; Janghjoo, A.G.; Okutan, M. A review on neutron shielding performance of nanocomposite materials. Int. J. Radiat. Res. 2020, 18, 611–622. [Google Scholar] [CrossRef]
- Künzel, R.; Okuno, E. Effects of the particle sizes and concentrations on the X-ray absorption by CuO compounds. Appl. Radiat. Isot. 2012, 70, 781–784. [Google Scholar] [CrossRef]
- Osman, A.F.; El Balaa, H.; El Samad, O.; Awad, R.; Badawi, M.S. Assessment of X-ray shielding properties of polystyrene incorporated with different nano-sizes of PbO. Radiat. Environ. Biophys. 2023, 62, 235–251. [Google Scholar] [CrossRef]
- Prabhu, S.; Bubbly, S.G.; Gudennavar, S.B. Thermal, mechanical and γ-ray shielding properties of micro- and nano-Ta2O5 loaded DGEBA epoxy resin composites. J. Appl. Polym. Sci. 2021, 138, 51289. [Google Scholar] [CrossRef]
- Khanam, P.N.; AlMaadeed, M.A.A. Processing and characterization of polyethylene-based composites. Adv. Manuf. Polym. Compos. Sci. 2015, 1, 63–79. [Google Scholar] [CrossRef]
- Bair, H.E.; Salovey, R. The effect of molecular weight on the structure and thermal properties of polyethylene. J. Macromol. Sci. B 1969, 3, 3–18. [Google Scholar] [CrossRef]
- Li, D.; Zhou, L.; Wang, X.; He, L.; Yang, X. Effect of Crystallinity of Polyethylene with Different Densities on Breakdown Strength and Conductance Property. Materials 2019, 12, 1746. [Google Scholar] [CrossRef] [PubMed]
- Guetersloh, S.; Zeitlin, C.; Heilbronn, L.; Miller, J.; Komiyama, T.; Fukumura, A.; Iwata, Y.; Murakami, T.; Bhattacharya, M. Polyethylene as a radiation shielding standard in simulated cosmic-ray environments. Nucl. Instrum. Methods Phys. Res. B 2006, 252, 319–332. [Google Scholar] [CrossRef]
- Acedillo, S.M.M. Evaluation of the Application of Carbon Nanotubes for Radiation Shielding. In Proceedings of the AIAA SPACE 2015 Conference and Exposition, Pasadena, CA, USA, 31 August–2 September 2015; p. 4505. [Google Scholar]
- Zaccardi, F.; Toto, E.; Rastogi, S.; La Saponara, V.; Santonicola, M.G.; Laurenzi, S. Impact of Proton Irradiation on Medium Density Polyethylene/Carbon Nanocomposites for Space Shielding Applications. Nanomaterials 2023, 13, 1288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Feng, Y.; Althakafy, J.T.; Liu, Y.; Abo-Dief, H.M.; Huang, M.; Zhou, L.; Su, F.; Liu, C.; Shen, C. Ultrahigh molecular weight polyethylene fiber/boron nitride composites with high neutron shielding efficiency and mechanical performance. Adv. Compos. Hybrid Mater. 2022, 5, 2012–2020. [Google Scholar] [CrossRef]
- Lu, T.; Zhang, Y.; Wong, M.; Feiveson, A.; Gaza, R.; Stoffle, N.; Wang, H.; Wilson, B.; Rohde, L.; Stodieck, L.; et al. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station. Life Sci. Space Res. 2017, 12, 24–31. [Google Scholar] [CrossRef]
- Herrman, K.; Baxter, L.N.; Mishra, K.; Benton, E.; Singh, R.P.; Vaidyanathan, R.K. Mechanical characterization of polyethylene-based thermoplastic composite materials for radiation shielding. Compos. Commun. 2019, 13, 37–41. [Google Scholar] [CrossRef]
- Cucinotta, F.A. Review of NASA Approach to Space Radiation Risk Assessments for Mars Exploration. Health Phys. 2015, 108, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Yang, G.; Su, F.; Feng, Y.; Ji, Y.; Liu, D.; Yin, R.; Liu, C.; Shen, C. Multilayer polyethylene/hexagonal boron nitride composites showing high neutron shielding efficiency and thermal conductivity. Compos. Commun. 2020, 19, 147–153. [Google Scholar] [CrossRef]
- Aldhuhaibat, M.J.R.; Amana, M.S.; Aboud, H.; Salim, A.A. Radiation attenuation capacity improvement of various oxides via high density polyethylene composite reinforcement. Ceram. Int. 2022, 48, 25011–25019. [Google Scholar] [CrossRef]
- Gouzman, I.; Grossman, E.; Verker, R.; Atar, N.; Bolker, A.; Eliaz, N. Advances in Polyimide-Based Materials for Space Applications. Adv. Mater. 2019, 31, 1807738. [Google Scholar] [CrossRef] [PubMed]
- Toto, E.; Santonicola, M.G.; Laurenzi, S.; Circi, C.; Pellegrini, R.C.; Cavallini, E.; Serra, E.; Scaglione, S.; Zola, D. UV–VIS-NIR optical properties of micrometric-thick polyimide membranes for lightweight devices in space. Opt. Mater. 2023, 146, 114604. [Google Scholar] [CrossRef]
- Toto, E.; Santonicola, M.G.; Laurenzi, S.; Circi, C.; Pizzarelli, M.; Pizzurro, S.; Pellegrini, R.C.; Cavallini, E. High-performance polyimide membranes for use in solar sail propulsion. In Proceedings of the 73rd International Astronautical Congress, IAC 2022, Paris, France, 18–22 September 2022; pp. 1–7. [Google Scholar]
- Toto, E.; Laurenzi, S.; Pellegrini, R.C.; Cavallini, E.; Santonicola, M.G. Eco-friendly synthesis of high-performance polyimide materials using bio-based greener solvents: Towards sustainable technologies in space environment. Mater. Today Sustain. 2024, 25, 100657. [Google Scholar] [CrossRef]
- Pavlenko, V.; Cherkashina, N.; Yastrebinsky, R. Synthesis and radiation shielding properties of polyimide/Bi2O3 composites. Heliyon 2019, 5, e01703. [Google Scholar] [CrossRef] [PubMed]
- Baykara, O.; İrim, Ş.G.; Wis, A.A.; Keskin, M.A.; Ozkoc, G.; Avcı, A.; Doğru, M. Polyimide nanocomposites in ternary structure: “A novel simultaneous neutron and gamma-ray shielding material”. Polym. Adv. Technol. 2020, 31, 2466–2479. [Google Scholar] [CrossRef]
- De Oliveira, P.R.; Sukumaran, A.K.; Benedetti, L.; John, D.; Stephens, K.; Chu, S.-H.; Park, C.; Agarwal, A. Novel polyimide-hexagonal boron nitride nanocomposites for synergistic improvement in tribological and radiation shielding properties. Tribol. Int. 2023, 189, 108936. [Google Scholar] [CrossRef]
- Cherkashina, N.I.; Pavlenko, V.I.; Noskov, A.V.; Romanyuk, D.S.; Sidelnikov, R.V.; Kashibadze, N.V. Effect of electron irradiation on polyimide composites based on track membranes for space systems. Adv. Space Res. 2022, 70, 3249–3256. [Google Scholar] [CrossRef]
- Li, Q.; Guo, Y.; Wu, M.; Deng, F.; Feng, J.; Liu, J.; Liu, S.; Ouyang, C.; Duan, W.; Yi, S.; et al. Fluorinated Polyimide/Allomelanin Nanocomposites for UV-Shielding Applications. Molecules 2023, 28, 5523. [Google Scholar] [CrossRef]
- Meng, R.; Wu, Z.; Xie, Q.-T.; Cheng, J.-S.; Zhang, B. Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Food Chem. 2021, 340, 127893. [Google Scholar] [CrossRef]
- Land, K.J.; Mbanjwa, M.B.; Govindasamy, K.; Korvink, J.G. Low cost fabrication and assembly process for re-usable 3D polydimethylsiloxane (PDMS) microfluidic networks. Biomicrofluidics 2011, 5, 036502. [Google Scholar] [CrossRef] [PubMed]
- Barra, G.; Guadagno, L.; Raimondo, M.; Santonicola, M.G.; Toto, E.; Vecchio Ciprioti, S. A Comprehensive Review on the Thermal Stability Assessment of Polymers and Composites for Aeronautics and Space Applications. Polymers 2023, 15, 3786. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zheng, J.; Gao, Q.; Zhang, J.; Zhang, J.; Omisore, O.M.; Wang, L.; Li, H. Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. Appl. Sci. 2018, 8, 345. [Google Scholar] [CrossRef]
- Toto, E.; Laurenzi, S.; Santonicola, M.G. Flexible Nanocomposites Based on Polydimethylsiloxane Matrices with DNA-Modified Graphene Filler: Curing Behavior by Differential Scanning Calorimetry. Polymers 2020, 12, 2301. [Google Scholar] [CrossRef] [PubMed]
- Ariati, R.; Sales, F.; Souza, A.; Lima, R.A.; Ribeiro, J. Polydimethylsiloxane Composites Characterization and Its Applications: A Review. Polymers 2021, 13, 4258. [Google Scholar] [CrossRef] [PubMed]
- Toto, E.; Laurenzi, S.; Paris, C.; Santonicola, M.G. Combined Effects of Solar Radiation and High Vacuum on the Properties of Graphene/Polysiloxane Nanocomposites in Simulated Space Environment. J. Compos. Sci. 2023, 7, 215. [Google Scholar] [CrossRef]
- Toto, E.; Laurenzi, S.; Santonicola, M.G. Recent Trends in Graphene/Polymer Nanocomposites for Sensing Devices: Synthesis and Applications in Environmental and Human Health Monitoring. Polymers 2022, 14, 1030. [Google Scholar] [CrossRef]
- Toto, E.; Palombi, M.; Laurenzi, S.; Santonicola, M.G. Functional nanocomposites with graphene-DNA hybrid fillers: Synthesis and surface properties under UV irradiation. Ceram. Int. 2019, 45, 9631–9637. [Google Scholar] [CrossRef]
- Santonicola, M.; Toto, E.; Maria, P.; Paris, C.; Laurenzi, S. Experimental study of solar radiation effects on carbon nanocomposite sensors in simulated space environment. In Proceedings of the 69th International astronautical congress, IAC 2018, Bremen, Germany, 1–5 October 2018; pp. 1–8. [Google Scholar]
- Alorain, D.A.; Almuqrin, A.H.; Sayyed, M.I.; Elsafi, M. Impact of WO3 and BaO nanoparticles on the radiation shielding characteristics of polydimethylsiloxane composites. e-Polymers 2023, 23, 20230037. [Google Scholar] [CrossRef]
- Cheraghi, E.; Shaaer, A.; Chen, S.; Osei, E.; Yeow, J.T. Enhanced electron radiation shielding composite developed by well dispersed fillers in PDMS polymer. Radiat. Phys. Chem. 2023, 211, 110994. [Google Scholar] [CrossRef]
- Borjanović, V.; Bistričić, L.; Mikac, L.; McGuire, G.E.; Zamboni, I.; Jakšić, M.; Shenderova, O. Polymer nanocomposites with improved resistance to ionizing radiation. J. Vac. Sci. Technol. B 2012, 30, 041803. [Google Scholar] [CrossRef]
- Han, X.; Li, X.; Wang, R.; Liu, J.; Liu, L. Study on the Gamma Irradiation Characteristics of a Carbon Nanotube Sponge/Polydimethylsiloxane/Tungsten Oxide Flexible Force-Sensitive Structure. Micromachines 2022, 13, 1024. [Google Scholar] [CrossRef] [PubMed]
- Adeli, R.; Shirmardi, S.P.; Ahmadi, S.J. Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameters assay. Radiat. Phys. Chem. 2016, 127, 140–146. [Google Scholar] [CrossRef]
- Bel, T.; Arslan, C.; Baydogan, N. Radiation shielding properties of poly (methyl methacrylate)/colemanite composite for the use in mixed irradiation fields of neutrons and gamma rays. Mater. Chem. Phys. 2019, 221, 58–67. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, Y.; Wu, Y.; Li, D. Mechanical Properties and Gamma-Ray Shielding Performance of 3D-Printed Poly-Ether-Ether-Ketone/Tungsten Composites. Materials 2020, 13, 4475. [Google Scholar] [CrossRef]
- Cataldo, F.; Prata, M. New composites for neutron radiation shielding. J. Radioanal. Nucl. Chem. 2019, 320, 831–839. [Google Scholar] [CrossRef]
- Shemelya, C.M.; Rivera, A.; Perez, A.T.; Rocha, C.; Liang, M.; Yu, X.; Kief, C.; Alexander, D.; Stegeman, J.; Xin, H.; et al. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten–Polycarbonate Polymer Matrix Composite for Space-Based Applications. J. Electron. Mater. 2015, 44, 2598–2607. [Google Scholar] [CrossRef]
- Slaba, T.C.; Wilson, J.W.; Werneth, C.M.; Whitman, K. Updated deterministic radiation transport for future deep space missions. Life Sci. Space Res. 2020, 27, 6–18. [Google Scholar] [CrossRef]
- Schetakis, N.; Crespo, R.; Vázquez-Poletti, J.L.; Sastre, M.; Vázquez, L.; Di Iorio, A. Overview of the main radiation transport codes. Geosci. Instrum. Method. Data Syst. 2020, 9, 407–415. [Google Scholar] [CrossRef]
- Norbury, J.W.; Slaba, T.C.; Sobolevsky, N.; Reddell, B. Comparing HZETRN, SHIELD, FLUKA and GEANT transport codes. Life Sci. Space Res. 2017, 14, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Aghara, S.K.; Sriprisan, S.I.; Singleterry, R.C.; Sato, T. Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes. Life Sci. Space Res. 2015, 4, 79–91. [Google Scholar] [CrossRef]
- Lin, Z.W.; Adams, J.H.; Barghouty, A.F.; Randeniya, S.D.; Tripathi, R.K.; Watts, J.W.; Yepes, P.P. Comparisons of several transport models in their predictions in typical space radiation environments. Adv. Space Res. 2012, 49, 797–806. [Google Scholar] [CrossRef]
- Shinn, J.L.; Cucinotta, F.A.; Singleterry, R.C.; Wilson, J.W.; Badavi, F.F.; Badhwar, G.D.; Miller, J.; Zeitlin, C.; Heilbronn, L.; Tripathi, R.K. A Radiation Shielding Code for Spacecraft and Its Validation; NASA Johnson Space Center: Houston, TX, USA, 2000; pp. 1–15.
- Wilson, J.W.; Badavi, F.F.; Cucinotta, F.A.; Shinn, J.L.; Badhwar, G.D.; Silberberg, R.; Tsao, C.H.; Townsend, L.W.; Tripathi, R.K. HZETRN: Description of a Free-Space Ion and Nucleon Transport and Shielding Computer Program; NASA Langley Research Center: Hampton, VA, USA, 1995; pp. 1–143.
- Werneth, C.M.; De Wet, W.C.; Townsend, L.W.; Maung, K.M.; Norbury, J.W.; Slaba, T.C.; Norman, R.B.; Blattnig, S.R.; Ford, W.P. Relativistic Abrasion–Ablation De-excitation Fragmentation (RAADFRG) model. Nucl. Instrum. Methods Phys. Res. B 2021, 502, 118–135. [Google Scholar] [CrossRef]
- Slaba, T.C.; Whitman, K. The Badhwar-O’Neill 2020 GCR Model. Space Weather. 2020, 18, e2020SW002456. [Google Scholar] [CrossRef]
- Singleterry, R.C., Jr.; Blattnig, S.R.; Clowdsley, M.S.; Qualls, G.D.; Sandridge, C.A.; Simonsen, L.C.; Slaba, T.C.; Walker, S.A.; Badavi, F.F.; Spangler, J.L. OLTARIS: On-line tool for the assessment of radiation in space. Acta Astronaut. 2011, 68, 1086–1097. [Google Scholar] [CrossRef]
- Dementyev, A.V.; Sobolevsky, N.M. SHIELD—Universal Monte Carlo hadron transport code: Scope and applications. Radiat. Meas. 1999, 30, 553–557. [Google Scholar] [CrossRef]
- Latysheva, L.N.; Sobolevsky, N.M. LOENT-the Code for Monte Carlo Simulation of Neutron Transport in Complex Geometries; 1200; INR RAS: Moscow, Russia, 2008. [Google Scholar]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Dubois, P.A.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef]
- Battistoni, G.; Cerutti, F.; Fasso, A.; Ferrari, A.; Muraro, S.; Ranft, J.; Roesler, S.; Sala, P.R. The FLUKA code: Description and benchmarking. AIP Conf. Proc. 2007, 896, 31–49. [Google Scholar]
- Fassò, A.; Ferrari, A.; Ranft, J.; Sala, P.R. FLUKA: A Multi-Particle Transport Code (Program Version 2005); CERN-2005-10, INFN/TC-05/11; CERN: Genève, Switzerland, 2005. [Google Scholar]
- Boccone, V.; Bruce, R.; Brugger, M.; Calviani, M.; Cerutti, F.; Esposito, L.S.; Ferrari, A.; Lechner, A.; Mereghetti, A.; Nowak, E.; et al. Beam-machine Interaction at the CERN LHC. Nucl. Data Sheets 2014, 120, 215–218. [Google Scholar] [CrossRef]
- Böhlen, T.T.; Cerutti, F.; Chin, M.P.W.; Fassò, A.; Ferrari, A.; Ortega, P.G.; Mairani, A.; Sala, P.R.; Smirnov, G.; Vlachoudis, V. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nucl. Data Sheets 2014, 120, 211–214. [Google Scholar] [CrossRef]
- Niita, K.; Sato, T.; Iwase, H.; Nose, H.; Nakashima, H.; Sihver, L. PHITS—A particle and heavy ion transport code system. Radiat. Meas. 2006, 41, 1080–1090. [Google Scholar] [CrossRef]
- Waters, L.S.; McKinney, G.W.; Durkee, J.W.; Fensin, M.L.; Hendricks, J.S.; James, M.R.; Johns, R.C.; Pelowitz, D.B. The MCNPX Monte Carlo Radiation Transport Code. In Proceedings of the Hadronic Shower Simulation Workshop, Batavia, IL, USA, 6–8 September 2006; pp. 81–90. [Google Scholar] [CrossRef]
- Rising, M.E.; Armstrong, J.C.; Bolding, S.R.; Brown, F.B.; Bull, J.S.; Burke, T.P.; Clark, A.R.; Dixon, D.A.; Forster, R.A., III; Giron, J.F.; et al. MCNP® Code Version 6.3.0 Release Notes; LA-UR-22-33103 Rev.1; Los Alamos National Laboratory: Los Alamos, NM, USA, 2023.
- Talou, P.; Stetcu, I.; Jaffke, P.; Rising, M.E.; Lovell, A.E.; Kawano, T. Fission fragment decay simulations with the CGMF code. Comput. Phys. Commun. 2021, 269, 108087. [Google Scholar] [CrossRef]
- Slaba, T.C.; Blattnig, S.R.; Badavi, F.F. Faster and more accurate transport procedures for HZETRN. J. Comput. Phys. 2010, 229, 9397–9417. [Google Scholar] [CrossRef]
- Fasso, A.; Ferrari, A.; Roesler, S.; Ranft, J.; Sala, P.; Battistoni, G.; Campanella, M.; Cerutti, F.; De Biaggi, L.; Gadioli, E. The FLUKA code: Present applications and future developments. In Proceedings of the Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, CA, USA, 24–28 March 2003. [Google Scholar] [CrossRef]
- Adams, J.H.; Barghouty, A.F.; Mendenhall, M.H.; Reed, R.A.; Sierawski, B.D.; Warren, K.M.; Watts, J.W.; Weller, R.A. CRÈME: The 2011 Revision of the Cosmic Ray Effects on Micro-Electronics Code. IEEE Trans. Nucl. Sci. 2012, 59, 3141–3147. [Google Scholar] [CrossRef]
- Serban, A.-G.; Coronetti, A.; Alia, R.G.; Pujol, F.S. Nuclear elastic scattering of protons below 250 MeV in FLUKA v4-4.0 and its role in single-event-upset production in electronics. arXiv 2023, arXiv:2312.12300. [Google Scholar] [CrossRef]
- Li, J.-Y.; Gu, L.; Xu, H.-S.; Korepanova, N.; Jiang, W.; Sheng, X.; Zhu, Y.-L.; Yu, R. FreeCAD based modeling study on MCNPX for accelerator driven system. Prog. Nucl. Energy 2018, 107, 100–109. [Google Scholar] [CrossRef]
- Kim, M.-H.Y. Performance Study of Galactic Cosmic Ray Shield Materials; NASA Langley Research Center: Hampton, VA, USA, 1994; p. 44.
- Porter, L.E. Studies of observed trends in values of Bethe–Bloch parameters extracted from stopping power measurements. Int. J. Quantum Chem. 2004, 100, 973–980. [Google Scholar] [CrossRef]
- Zeitlin, C.; Heilbronn, L.; Miller, J.; Schimmerling, W.; Townsend, L.W.; Tripathi, R.K.; Wilson, J.W. The Fragmentation of 510 MeV/Nucleon Iron-56 in Polyethylene. II. Comparisons between Data and a Model. Radiat. Res. 1996, 145, 666. [Google Scholar] [CrossRef]
- Wilson, J.W.; Shinn, J.L.; Townsend, L.W.; Tripathi, R.K.; Badavi, F.F.; Chun, S.Y. NUCFRG2: A semiempirical nuclear fragmentation model. Nucl. Instrum. Methods Phys. Res. B 1994, 94, 95–102. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, P.M. Badhwar–O’Neill galactic cosmic ray model update based on advanced composition explorer (ACE) energy spectra from 1997 to present. Adv. Space Res. 2006, 37, 1727–1733. [Google Scholar] [CrossRef]
- Laurenzi, S.; De Zanet, G.; Santonicola, M.G. Numerical investigation of radiation shielding properties of polyethylene-based nanocomposite materials in different space environments. Acta Astronaut. 2020, 170, 530–538. [Google Scholar] [CrossRef]
- Barthel, J.; Sarigul-Klijn, N. Radiation production and absorption in human spacecraft shielding systems under high charge and energy Galactic Cosmic Rays: Material medium, shielding depth, and byproduct aspects. Acta Astronaut. 2018, 144, 254–262. [Google Scholar] [CrossRef]
- Dietze, G.; Bartlett, D.T.; Cool, D.A.; Cucinotta, F.A.; Jia, X.; McAulay, I.R.; Pelliccioni, M.; Petrov, V.; Reitz, G.; Sato, T. ICRP PUBLICATION 123: Assessment of Radiation Exposure of Astronauts in Space. Ann. ICRP 2013, 42, 1–339. [Google Scholar] [CrossRef]
- Nambiar, S.; Yeow, J.T.W. Polymer-Composite Materials for Radiation Protection. ACS Appl. Mater. Interfaces 2012, 4, 5717–5726. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Choi, W.I.; Ihm, J. Combinatorial Search for Optimal Hydrogen-Storage Nanomaterials Based on Polymers. Phys. Rev. Lett. 2006, 97, 056104. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jena, P. Li- and B-decorated cis-polyacetylene: A computational study. Phys. Rev. B 2008, 77, 193101. [Google Scholar] [CrossRef]
- Yang, D.; Bayazitoglu, Y. Polymer composites as radiation shield against galactic cosmic rays. J. Thermophys. Heat Trans. 2020, 34, 457–464. [Google Scholar] [CrossRef]
- Slaba, T.C.; Mertens, C.J.; Blattnig, S.R. Radiation Shielding Optimization on Mars; NASA Langley Research Center: Hampton, VA, USA, 2013; pp. 1–9.
- Zaman, F.; Townsend, L.W.; De Wet, W.C.; Schwadron, N.A.; Spence, H.E.; Wilson, J.K.; Jordan, A.P.; Smith, S.S.; Looper, M.D. Absorbed doses from GCR and albedo particles emitted by the lunar surface. Acta Astronaut. 2020, 175, 185–189. [Google Scholar] [CrossRef]
- Akisheva, Y.; Gourinat, Y. Utilisation of Moon Regolith for Radiation Protection and Thermal Insulation in Permanent Lunar Habitats. Appl. Sci. 2021, 11, 3853. [Google Scholar] [CrossRef]
- Llamas, H.J.; Aplin, K.L.; Berthoud, L. Effectiveness of Martian regolith as a radiation shield. Planet. Space Sci. 2022, 218, 105517. [Google Scholar] [CrossRef]
- Zaccardi, F.; Toto, E.; Santonicola, M.G.; Laurenzi, S. 3D printing of radiation shielding polyethylene composites filled with Martian regolith simulant using fused filament fabrication. Acta Astronaut. 2022, 190, 1–13. [Google Scholar] [CrossRef]
- Al Zaman, M.A.; Kunja, L.A. Effectiveness of radiation shields constructed from Martian regolith and different polymers for human habitat on Mars using MULASSIS/GEANT4 and OLTARIS. AIP Adv. 2023, 13, 085108. [Google Scholar] [CrossRef]
- Nelson, G.A. Space Radiation and Human Exposures, A Primer. Radiat. Res. 2016, 185, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Thibeault, S.A.; Fay, C.C.; Lowther, S.E.; Earle, K.D.; Sauti, G.; Kang, J.H.; Park, C.; McMullen, A.M. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study; NASA Langley Research Center: Hampton, VA, USA, 2012; pp. 1–29.
- Vuolo, M.; Baiocco, G.; Barbieri, S.; Bocchini, L.; Giraudo, M.; Gheysens, T.; Lobascio, C.; Ottolenghi, A. Exploring innovative radiation shielding approaches in space: A material and design study for a wearable radiation protection spacesuit. Life Sci. Space Res. 2017, 15, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, N.V.; Nikolaeva, N.I.; Nymmik, R.A.; Uzhegov, V.M.; Yakovlev, M.V.; Panasyuk, M.I. Comparison of the Models of Charged Particle Fluxes in Space. In Proceedings of the 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Moscow, Russia, 14–18 September 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Iguchi, D.; Ohashi, S.; Abarro, G.J.E.; Yin, X.; Winroth, S.; Scott, C.; Gleydura, M.; Jin, L.; Kanagasegar, N.; Lo, C. Development of hydrogen-rich benzoxazine resins with low polymerization temperature for space radiation shielding. ACS Omega 2018, 3, 11569–11581. [Google Scholar] [CrossRef] [PubMed]
- Winroth, S.; Scott, C.; Ishida, H. Structure and Performance of Benzoxazine Composites for Space Radiation Shielding. Molecules 2020, 25, 4346. [Google Scholar] [CrossRef] [PubMed]
- Rojdev, K.; Atwell, W. Hydrogen-and methane-loaded shielding materials for mitigation of galactic cosmic rays and solar particle events. Gravit. Space Res. 2015, 3, 59–81. [Google Scholar] [CrossRef]
- Loffredo, F.; Vardaci, E.; Roca, V.; Pugliese, M. Nomex with boron as a neutron shielding in space: Preliminary study. IL Nuovo C. C 2018, 41C, 1–6. [Google Scholar] [CrossRef]
- Bertucci, A.; Durante, M.; Gialanella, G.; Grossi, G.; Manti, L.; Pugliese, M.; Scampoli, P.; Mancusi, D.; Sihver, L.; Rusek, A. Shielding of relativistic protons. Radiat. Environ. Biophys. 2007, 46, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Mancusi, D.; Bertucci, A.; Gialanella, G.; Grossi, G.; Manti, L.; Pugliese, M.; Rusek, A.; Scampoli, P.; Sihver, L.; Durante, M. Comparison of aluminum and lucite for shielding against 1GeV protons. Adv. Space Res. 2007, 40, 581–585. [Google Scholar] [CrossRef]
- Kim, M.-H.; Hu, X.; Cucinotta, F. Effect of shielding materials from SPEs on the lunar and Mars surface. In Proceedings of the Space 2005, Long Beach, CA, USA, 30 August–1 September 2005. [Google Scholar] [CrossRef]
- Simonsen, L.C.; Wilson, J.W.; Kim, M.H.; Cucinotta, F.A. Radiation Exposure for Human Mars Exploration. Health Phys. 2000, 79, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Benton, E.R.; Benton, E.V. Space radiation dosimetry in low-Earth orbit and beyond. Nucl. Instrum. Methods Phys. Res. B 2001, 184, 255–294. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, K.S.; Keil, S.L.; Smartt, R.N. Solar drivers of the interplanetary and terrestrial disturbances. In Proceedings of the 16th international workshop National Solar Observatory, Sacramento Peak, Sunspot, NM, USA, 16–20 October 1995. [Google Scholar]
- Badhwar, G.; Keith, J.; Cleghorn, T. Neutron measurements onboard the space shuttle. Radiat. Meas. 2001, 33, 235–241. [Google Scholar] [CrossRef]
- Shavers, M.R.; Zapp, N.; Barber, R.E.; Wilson, J.W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F.A. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters. Adv. Space Res. 2004, 34, 1333–1337. [Google Scholar] [CrossRef]
- Emmanuel, A.; Raghavan, J. Influence of structure on radiation shielding effectiveness of graphite fiber reinforced polyethylene composite. Adv. Space Res. 2015, 56, 1288–1296. [Google Scholar] [CrossRef]
- Waller, J.M.; Rojdev, K.; Shariff, K.; Litteken, D.A.; Hagen, R.A.; Ross, A.J. Simulated Galactic Cosmic Ray and Solar Particle Event Radiation Effects on Inflatable Habitat, Composite Habitat, Space Suit and Space Hatch Cover Materials; NASA Langley Research Center: Hampton, VA, USA, 2020; pp. 1–137.
- Prabhu, S.; Bubbly, S.G.; Gudennavar, S.B. X-Ray and γ-Ray Shielding Efficiency of Polymer Composites: Choice of Fillers, Effect of Loading and Filler Size, Photon Energy and Multifunctionality. Polym. Rev. 2023, 63, 246–288. [Google Scholar] [CrossRef]
- Abd El-Hameed, A.M. Radiation effects on composite materials used in space systems: A review. NRIAG J. Astron. Geophys. 2022, 11, 313–324. [Google Scholar] [CrossRef]
- Bijanu, A.; Arya, R.; Agrawal, V.; Tomar, A.S.; Gowri, V.S.; Sanghi, S.K.; Mishra, D.; Salammal, S.T. Metal-polymer composites for radiation protection: A review. J. Polym. Res. 2021, 28, 392. [Google Scholar] [CrossRef]
- Shehab, E.; Ma, W.; Wasim, A. Manufacturing cost modelling for aerospace composite applications. In Proceedings of the Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment: Proceedings of the 19th ISPE International Conference on Concurrent Engineering, Trier, Germany, 3–7 September 2012; pp. 425–433. [Google Scholar] [CrossRef]
- Boyer, R.; Cotton, J.; Mohaghegh, M.; Schafrik, R. Materials considerations for aerospace applications. MRS Bull. 2015, 40, 1055–1066. [Google Scholar] [CrossRef]
Polymer | Filler | Type of Shielded Radiation | Ref. |
---|---|---|---|
MDPE | Multiwalled carbon nanotubes, graphene nanoparticles | Protons | [22] |
UHMWPE fibers, PU | Boron nitride | Neutrons | [23] |
HDPE | Boron nitride, boron carbide | Neutrons | [25] |
HDPE, LDPE | Hexagonal boron nitride | Neutrons | [27] |
HDPE | Aluminum oxide, iron oxide, lead oxide | Gamma rays | [28] |
PI | Bismuth oxide | Gamma rays | [33] |
PI | Gadolinium oxide, hexagonal boron nitride | Gamma rays, neutrons | [34] |
PI | Hexagonal boron nitride | Neutrons | [35] |
PI | Lead | Electrons | [36] |
FPI | Allomelanin nanoparticles | Ultraviolet | [37] |
PDMS | Tungsten oxide, barium oxide | Gamma rays | [48] |
PDMS | Bismuth oxide, multiwalled carbon nanotubes | Electrons | [49] |
PDMS | Single-walled carbon nanotubes, detonation nanodiamond, zinc oxide | Protons | [50] |
PDMS | Tungsten oxide, carbon nanotube sponge (sandwich configuration) | Gamma rays | [51] |
DGEBA resin | Tantalum oxide | Gamma rays | [16] |
DGEBA resin | Boron carbide, tungsten oxide, aluminum trihydrate | Neutrons | [52] |
PMMA | Colemanite | Gamma rays, neutrons | [53] |
PEEK | Tungsten | Gamma rays | [54] |
PUR | Hexagonal boron nitride, amorphous boron | Neutrons | [55] |
PC | Tungsten oxide | X-rays | [56] |
Radiation Transport Codes | Strengths | Weaknesses | Ref. |
---|---|---|---|
HZETRN OLTARIS | Accurate heavy ion transport simulation | Basic modeling of secondary radiation | [79] |
GEANT4 | Simulation considers stochastic interactions between particles and materials | Computationally intensive | [58] |
FLUKA | Simulation of magnetic and hadronic interactions | Underestimation for proton irradiations below 10 MeV | [58,82] |
SHIELD | Well-simulated nuclear reactions | Energy threshold level lower than 1 MeV for charged particles | [58,59] |
PHITS | Simulation of magnetic and hadronic interactions | Ionization process is not treated as a collision but as a transport process | [58,75] |
MCNPX | Well-simulated nuclear reactions | Time-consuming simulations | [68,83] |
UPROP | Proton transport simulation | No neutron modeling | [81] |
Materials | Functions |
---|---|
Ortho-fabric | External cover |
Aluminized Mylar | Insulator |
Neoprene-coated nylon | Liner |
Dacron | Restraint |
Urethane-coated nylon | Pressure garment bladder (PGB) |
Nylon | Liquid and cooling ventilation garment (LCVG) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toto, E.; Lambertini, L.; Laurenzi, S.; Santonicola, M.G. Recent Advances and Challenges in Polymer-Based Materials for Space Radiation Shielding. Polymers 2024, 16, 382. https://doi.org/10.3390/polym16030382
Toto E, Lambertini L, Laurenzi S, Santonicola MG. Recent Advances and Challenges in Polymer-Based Materials for Space Radiation Shielding. Polymers. 2024; 16(3):382. https://doi.org/10.3390/polym16030382
Chicago/Turabian StyleToto, Elisa, Lucia Lambertini, Susanna Laurenzi, and Maria Gabriella Santonicola. 2024. "Recent Advances and Challenges in Polymer-Based Materials for Space Radiation Shielding" Polymers 16, no. 3: 382. https://doi.org/10.3390/polym16030382
APA StyleToto, E., Lambertini, L., Laurenzi, S., & Santonicola, M. G. (2024). Recent Advances and Challenges in Polymer-Based Materials for Space Radiation Shielding. Polymers, 16(3), 382. https://doi.org/10.3390/polym16030382