Investigation of Gamma Ray Shielding Characteristics of Binary Composites Containing Polyester Resin and Lead Oxide
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
- Experimental data aligned well with the theoretical predictions.
- The μ results were recorded as 0.2314 cm−1, 0.3852 cm−1, 0.4832 cm−1, 0.6283 cm−1, 0.7153 cm−1, and 0.8499 cm−1 at a photon energy of 59.5 keV for the PbO-0, PbO-2, PbO-4, PbO-6, PbO-8, and PbO-10 composites, respectively.
- At 59.5 keV, the μ/ρ values for PbO-0, PbO-2, PbO-4, PbO-6, PbO-8, and PbO-10 were determined to be 0.1927 cm2/g, 0.2913 cm2/g, 0.3557 cm2/g, 0.4597 cm2/g, 0.5213 cm2/g, and 0.6128 cm2/g, respectively.
- For the HVL, TVL, and MFP, the ranking from the highest to the lowest was PbO-0, PbO-2, PbO-4, PbO-6, PbO-8, and PbO-10. Therefore, PbO-10, which had the smallest of these parameters, reduced the radiation intensity with the thinnest layer. The experimentally obtained HVL, TVL, and MFP for PbO-10 at 59.5 keV were 0.82, 2.71, and 1.18 cm, respectively.
- At 59.5 keV, the Zeff for PbO-0, PbO-2, PbO-4, PbO-6, PbO-8, and PbO-10 was found to be 4.7250, 7.0762, 8.5647, 10.9669, 12.3262, and 14.3627, respectively.
- The Neff at 59.5 keV for PbO-0, PbO-2, PbO-4, PbO-6, PbO-8, and PbO-10 was 3.3252 × 1023 electrons/g, 4.8903 × 1023 electrons/g, 5.8107 × 1023 electrons/g, 7.2987 × 1023 electrons/g, 8.0475 × 1023 electrons/g, and 9.1954 × 1023 electrons/g, respectively.
- For RPE at 59.5 keV, the values for PbO-0, PbO-2, PbO-4, PbO-6, PbO-8, and PbO-10 were determined to be 21.044%, 33.609%, 38.851%, 46.949%, 51.835%, and 60.417%, respectively.
- It has been observed that the increased amount of PbO has a positive effect on the gamma-ray shielding capacity of the produced binary composites.
- After assessing the μ, μ/ρ, HVL, TVL, and MFP results, it was concluded that the PbO-10 polymer sample, with the highest PbO content, exhibited the best shielding performance among the materials.
- With the production of such composites, the use of lead with a high toxicity level can be prevented or reduced.
- The obtained experimental and theoretical results are important in areas such as health, radiation, and space physics, and this composite can be used as an alternative to traditional gamma-ray shielding materials in environments where radiation is present, especially at low energies.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.-C.; Jien, M.-Y.; Hsu, C.-C.; Hwang, S.-S.; Feng, C.-T. Processing Effects on the Through-Plane Electrical Conductivities and Tensile Strengths of Microcellular-Injection-Molded Polypropylene Composites with Carbon Fibers. Polymers 2022, 14, 3251. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Nonn, A.; Heider, D.; Advani, S. Model-based characterization and enhancement of the through-thickness thermal conductivity of polymer composites using infrared camera. Int. J. Therm. Sci. 2014, 80, 118–125. [Google Scholar] [CrossRef]
- Wang, H.; Li, L.; Chen, Y.; Li, M.; Fu, H.; Hou, X.; Wu, X.; Lin, C.-T.; Jiang, N.; Yu, J. Efficient Thermal Transport Highway Construction Within Epoxy Matrix via Hybrid Carbon Fibers and Alumina Particles. ACS Omega 2020, 5, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Aldhuhaibat, M.J.R.; Amana, M.S.; Jubie, N.J.; Salim, A.A. Improved gamma radiation shielding traits of epoxy composites: Evaluation of mass attenuation coefficient, effective atomic and electron number. Radiat. Phys. Chem. 2021, 179, 109183. [Google Scholar] [CrossRef]
- Callister, W.D. Materials Science and Engineering: An Introduction, 7th ed.; John Wiley & Sons: New York, NY, USA, 2007; pp. 507–553. [Google Scholar]
- Mallick, P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 350–400. [Google Scholar]
- McCaffrey, J.P.; Shen, H.; Downton, B.; Mainegra-Hing, E. Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med. Phys. 2017, 44, 6471–6479. [Google Scholar] [CrossRef]
- Al-Hadeethi, Y.; Rammah, Y.S.; Alosfur, F.K.; Munir, S. Gamma-ray shielding properties of lead oxide soda-lime glass modified with TiO₂. Ceram. Int. 2019, 45, 8619–8628. [Google Scholar]
- Mostaf, A.M.A.; Issa, S.A.; Zakaly, H.M.; Alotaibi, B.M.; Gharghar, F.; Al-Zaibani, M.; El Agammy, E.F. Radiation shielding and optical features for a PbO–BaO–B2O3 system. Radiat. Phys. Chem. 2023, 202, 110566. [Google Scholar] [CrossRef]
- Al-Hadeethi, Y.; Sayyed, M.I.; Rammah, Y.S. Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceram. Int. 2020, 46, 2055–2062. [Google Scholar] [CrossRef]
- Kirdsiri, K.; Kaewkhao, J.; Chanthima, N.; Limsuwan, P. Comparative study of silicate glasses containing Bi2O3, PbO and BaO: Radiation shielding and optical properties. Ann. Nucl. Energy 2011, 38, 1438–1441. [Google Scholar] [CrossRef]
- Issa, S.A.; Tekin, H.O.; Erguzel, T.T.; Susoy, G. The effective contribution of PbO on nuclear shielding properties of xPbO-(100− x) P2O5 glass system: A broad range investigation. Appl. Phys. A 2019, 125, 640. [Google Scholar] [CrossRef]
- Singh, K.J.; Singh, N.; Kaundal, R.S.; Singh, K. Gamma-ray shielding and structural properties of PbO–SiO2 glasses. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2008, 266, 944–948. [Google Scholar] [CrossRef]
- El-Mallawany, R.; Sayyed, M.I.; Dong, M.G.; Rammah, Y.S. Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 2018, 151, 239–252. [Google Scholar] [CrossRef]
- El-Khatib, A.M.; Shalaby, T.I.; Antar, A.; Elsafi, M. Improving gamma ray shielding behaviors of polypropylene using PbO nanoparticles: An experimental study. Materials 2022, 15, 3908. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, K.; Razavi, S.M.; Ahmadi, S.J.; Kosari, M.; Abolghasemi, H. Thermal resistance, tensile properties, and gamma radiation shielding performance of unsaturated polyester/nanoclay/PbO composites. Radiat. Phys. Chem. 2018, 146, 5–10. [Google Scholar] [CrossRef]
- Almuqrin, A.H.; ALasali, H.J.; Sayyed, M.I.; Mahmoud, K.G. Preparation and experimental estimation of radiation shielding properties of novel epoxy reinforced with Sb2O3 and PbO. e-Polymers 2023, 23, 20230019. [Google Scholar] [CrossRef]
- Sabri, J.H.; Mahdi, K.H. A Comparative Study for Micro and Nano shield of (PbO) composite for gamma Radiation. Energy Procedia 2019, 157, 802–814. [Google Scholar] [CrossRef]
- Elsad, R.A.; Mahmoud, K.A.; Rammah, Y.S.; Abouhaswa, A.S. Fabrication, structural, optical, and dielectric properties of PVC-PbO nanocomposites, as well as their gamma-ray shielding capability. Radiat. Phys. Chem. 2021, 189, 109753. [Google Scholar] [CrossRef]
- El-Khatib, A.M.; Abbas, M.I.; Hammoury, S.I.; Gouda, M.M.; Zard, K.; Elsafi, M. Effect of PbO-nanoparticles on dimethyl polysiloxane for use in radiation shielding applications. Sci. Rep. 2022, 12, 15722. [Google Scholar] [CrossRef]
- Mahmoud, M.; El-Khatib, A.; Badawi, M.; Rashad, A.; El-Sharkawy, R.; Thabet, A. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat. Phys. Chem. 2017, 145, 160–173. [Google Scholar] [CrossRef]
- Alharshan, A.; Aloraini, A.; Abd, M.; Badawi, S.; Alabsy, T.; Abbas, I.; El-Khatib, M. A comparative study between nano-cadmium oxide and lead oxide reinforced in high density polyethylene as gamma rays shielding composites. Nucl. Techn. Rad. Protect. 2020, 35, 42–49. [Google Scholar] [CrossRef]
- Singh, V.P.; Medhat, M.E.; Badiger, N.M. Comparative studies on gamma-ray attenuation properties of lead and bismuth oxide micro- and nano-particles-dispersed polyester composite. Radiat. Phys. Chem. 2016, 120, 87–93. [Google Scholar]
- Nagaraja, N.; Manjunatha, H.C.; Seenappa, L.; Sridhar, K.N.; Ramalingam, H.B. Selection of shielding materials for gamma/X-ray and neutron radiations among the commonly used polymers. Int. J. Nucl. Energy Sci. Technol. 2019, 13, 325–339. [Google Scholar] [CrossRef]
- Marashdeh, M.; Abdulkarim, M. Determination of the Attenuation Coefficients of Epoxy Resin with Carbopol Polymer as a Breast Phantom Material at Low Photon Energy Range. Polymers 2023, 15, 2645. [Google Scholar] [CrossRef] [PubMed]
- Mirji, R.; Lobo, B. Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies. Radiat. Phys. Chem. 2017, 135, 32–44. [Google Scholar] [CrossRef]
- Gerward, L.; Guilbert, N.; Jensen, K.B.; Levring, H. WinXCom—A program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 2004, 71, 653–654. [Google Scholar] [CrossRef]
- ALMisned, G.; Akman, F.; AbuShanab, W.S.; Tekin, H.O.; Kaçal, M.R.; Issa, S.A.M.; Polat, H.; Oltulu, M.; Ene, A.; Zakaly, H.M.H. Novel Cu/Zn Reinforced Polymer Composites: Experimental Characterization for Radiation Protection Efficiency (RPE) and Shielding Properties for Alpha, Proton, Neutron, and Gamma Radiations. Polymers 2021, 13, 3157. [Google Scholar] [CrossRef]
- Özkalaycı, F.; Kaçal, M.R.; Polat, H.; Agar, O.; Almousa, N.; Akman, F. Lead-free Sb-based polymer composite for γ-ray shielding purposes. Radiochim. Acta 2022, 110, 393–402. [Google Scholar] [CrossRef]
- Akman, F.; Oğul, H.; Turhan, M.F.; Ağrılı, C.Ş. Interactions between X-/gamma rays and alloys used in dental braces: A study on theory and simulations. Radiat. Phys. Chem. 2024, 215, 111376. [Google Scholar] [CrossRef]
- Bashter, I.I. Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 1997, 24, 1389–1401. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Badawi, E.A.; Abdel-Hady, Y.L.; Kamel, N. Effect of sample thickness on the measured mass attenuation coefficients of some compounds and elements for 59.54, 661.6 and 1332:5 keV g-rays. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrometers Detect. Assoc. Equip. 2000, 447, 432–436. [Google Scholar] [CrossRef]
- Singh, K.; Kaur, G.; Sandhu, G.K.; Lark, B.S. Interaction of photons with some solutions. Radiat. Phys. Chem 2001, 61, 537–540. [Google Scholar] [CrossRef]
- Shakhreet, B.Z.; Chong, C.S.; Bandyopadhyay, T.; Bradley, D.A.; Tajuddin, A.A.; Shukri, A. Measurement of photon mass-energy absorption coefficients of paraffin wax and gypsum at 662 keV. Radiat. Phys. Chem. 2003, 68, 757–776. [Google Scholar] [CrossRef]
- Akman, F.; Oğul, H. Interaction Parameters of Some Polymers Used in Nuclear Power Plants with Ionizing Radiation, Produced Secondary Radiations and Radiation Damages. Macromol. Mater. Eng. 2024, 2400326. [Google Scholar] [CrossRef]
Composite Code | Elemental Content (wt%) | Density (g/cm3) | ||||
---|---|---|---|---|---|---|
H | C | O | Co | Pb | ||
PbO-0 | 4.5040 | 60.1779 | 35.3054 | 0.0126 | - | 1.2006 |
PbO-2 | 4.4167 | 58.9899 | 34.7541 | 0.0126 | 1.8266 | 1.3224 |
PbO-4 | 4.3295 | 57.8018 | 34.2027 | 0.0126 | 3.6533 | 1.3582 |
PbO-6 | 4.2423 | 56.6138 | 33.6514 | 0.0126 | 5.4799 | 1.3666 |
PbO-8 | 4.1550 | 55.4257 | 33.1001 | 0.0126 | 7.3065 | 1.3720 |
PbO-10 | 4.0678 | 54.2377 | 32.5487 | 0.0126 | 9.1331 | 1.3868 |
Energy (keV) | PbO-0 | PbO-2 | PbO-4 | |||
---|---|---|---|---|---|---|
Experimental | Theo. | Experimental | Theo. | Experimental | Theo. | |
59.5 | 0.1927 ± 0.0039 | 0.1883 | 0.2913 ± 0.0060 | 0.2778 | 0.3557 ± 0.0073 | 0.3675 |
81.0 | 0.1697 ± 0.0035 | 0.1695 | 0.2089 ± 0.0043 | 0.2090 | 0.2400 ± 0.0050 | 0.2486 |
122.1 | 0.1568 ± 0.0034 | 0.1501 | 0.2167 ± 0.0047 | 0.2084 | 0.2545 ± 0.0056 | 0.2667 |
136.5 | 0.1510 ± 0.0070 | 0.1452 | 0.1854 ± 0.0079 | 0.1888 | 0.2414 ± 0.0114 | 0.2324 |
276.4 | 0.1104 ± 0.0036 | 0.1149 | 0.1160 ± 0.0042 | 0.1215 | 0.1237 ± 0.0045 | 0.1281 |
302.9 | 0.1132 ± 0.0028 | 0.1111 | 0.1216 ± 0.0030 | 0.1162 | 0.1154 ± 0.0028 | 0.1214 |
356.0 | 0.1028 ± 0.0021 | 0.1044 | 0.1124 ± 0.0023 | 0.1078 | 0.1097 ± 0.0023 | 0.1111 |
383.9 | 0.0989 ± 0.0032 | 0.1014 | 0.1035 ± 0.0035 | 0.1041 | 0.1042 ± 0.0033 | 0.1068 |
511.0 | 0.0926 ± 0.0019 | 0.0902 | 0.0956 ± 0.0020 | 0.0914 | 0.0896 ± 0.0018 | 0.0926 |
661.7 | 0.0826 ± 0.0017 | 0.0806 | 0.0856 ± 0.0018 | 0.0812 | 0.0784 ± 0.0016 | 0.0817 |
778.9 | 0.0721 ± 0.0019 | 0.0749 | 0.0721 ± 0.0019 | 0.0752 | 0.0719 ± 0.0019 | 0.0755 |
834.8 | 0.0746 ± 0.0019 | 0.0725 | 0.0730 ± 0.0018 | 0.0727 | 0.0723 ± 0.0018 | 0.0729 |
867.4 | 0.0691 ± 0.0026 | 0.0712 | 0.0715 ± 0.0028 | 0.0713 | 0.0738 ± 0.0029 | 0.0715 |
964.1 | 0.0650 ± 0.0015 | 0.0677 | 0.0670 ± 0.0015 | 0.0678 | 0.0698 ± 0.0015 | 0.0679 |
1085.9 | 0.0643 ± 0.0016 | 0.0638 | 0.0642 ± 0.0017 | 0.0639 | 0.0612 ± 0.0016 | 0.0639 |
1112.1 | 0.0610 ± 0.0013 | 0.0631 | 0.0637 ± 0.0014 | 0.0631 | 0.0646 ± 0.0014 | 0.0631 |
1173.2 | 0.0590 ± 0.0012 | 0.0614 | 0.0633 ± 0.0013 | 0.0614 | 0.0619 ± 0.0013 | 0.0614 |
1212.9 | 0.0595 ± 0.0028 | 0.0604 | 0.0598 ± 0.0027 | 0.0604 | 0.0596 ± 0.0031 | 0.0604 |
1274.5 | 0.0566 ± 0.0012 | 0.0588 | 0.0603 ± 0.0013 | 0.0588 | 0.0583 ± 0.0012 | 0.0588 |
1299.1 | 0.0590 ± 0.0021 | 0.0583 | 0.0610 ± 0.0024 | 0.0583 | 0.0558 ± 0.0021 | 0.0582 |
1332.5 | 0.0557 ± 0.0012 | 0.0575 | 0.0576 ± 0.0012 | 0.0575 | 0.0559 ± 0.0012 | 0.0575 |
1408.0 | 0.0539 ± 0.0011 | 0.0559 | 0.0579 ± 0.0012 | 0.0559 | 0.0559 ± 0.0011 | 0.0558 |
Energy (keV) | PbO-6 | PbO-8 | PbO-10 | |||
Experimental | Theo. | Experimental | Theo. | Experimental | Theo. | |
59.5 | 0.4597 ± 0.4591 | 0.0095 | 0.5213 ± 0.0108 | 0.5488 | 0.6128 ± 0.0128 | 0.6384 |
81.0 | 0.3032 ± 0.2890 | 0.0062 | 0.3149 ± 0.0066 | 0.3286 | 0.3534 ± 0.0075 | 0.3681 |
122.1 | 0.3173 ± 0.3263 | 0.0070 | 0.3748 ± 0.0088 | 0.3846 | 0.4499 ± 0.0107 | 0.4430 |
136.5 | 0.2723 ± 0.2770 | 0.0138 | 0.3318 ± 0.0170 | 0.3206 | 0.3531 ± 0.0170 | 0.3642 |
276.4 | 0.1307 ± 0.1349 | 0.0045 | 0.1394 ± 0.0047 | 0.1415 | 0.1473 ± 0.0053 | 0.1481 |
302.9 | 0.1224 ± 0.1267 | 0.0030 | 0.1377 ± 0.0035 | 0.1318 | 0.1327 ± 0.0032 | 0.1370 |
356.0 | 0.1104 ± 0.1145 | 0.0023 | 0.1123 ± 0.0023 | 0.1178 | 0.1197 ± 0.0025 | 0.1211 |
383.9 | 0.1129 ± 0.1095 | 0.0037 | 0.1135 ± 0.0039 | 0.1122 | 0.1163 ± 0.0039 | 0.1149 |
511.0 | 0.0964 ± 0.0938 | 0.0020 | 0.0940 ± 0.0019 | 0.0950 | 0.0964 ± 0.0020 | 0.0962 |
661.7 | 0.0844 ± 0.0822 | 0.0017 | 0.0828 ± 0.0017 | 0.0828 | 0.0829 ± 0.0017 | 0.0833 |
778.9 | 0.0739 ± 0.0758 | 0.0019 | 0.0742 ± 0.0019 | 0.0761 | 0.0750 ± 0.0020 | 0.0763 |
834.8 | 0.0764 ± 0.0731 | 0.0019 | 0.0741 ± 0.0019 | 0.0734 | 0.0702 ± 0.0018 | 0.0736 |
867.4 | 0.0716 ± 0.0717 | 0.0028 | 0.0691 ± 0.0027 | 0.0719 | 0.0712 ± 0.0027 | 0.0721 |
964.1 | 0.0654 ± 0.0680 | 0.0014 | 0.0651 ± 0.0015 | 0.0681 | 0.0657 ± 0.0015 | 0.0682 |
1085.9 | 0.0667 ± 0.0640 | 0.0018 | 0.0649 ± 0.0017 | 0.0640 | 0.0655 ± 0.0017 | 0.0640 |
1112.1 | 0.0614 ± 0.0632 | 0.0013 | 0.0616 ± 0.0013 | 0.0632 | 0.0612 ± 0.0013 | 0.0632 |
1173.2 | 0.0623 ± 0.0614 | 0.0013 | 0.0641 ± 0.0014 | 0.0614 | 0.0608 ± 0.0013 | 0.0614 |
1212.9 | 0.0594 ± 0.0603 | 0.0029 | 0.0608 ± 0.0030 | 0.0603 | 0.0595 ± 0.0028 | 0.0603 |
1274.5 | 0.0607 ± 0.0588 | 0.0013 | 0.0587 ± 0.0012 | 0.0588 | 0.0597 ± 0.0012 | 0.0587 |
1299.1 | 0.0608 ± 0.0582 | 0.0022 | 0.0565 ± 0.0021 | 0.0582 | 0.0575 ± 0.0021 | 0.0582 |
1332.5 | 0.0589 ± 0.0574 | 0.0012 | 0.0570 ± 0.0012 | 0.0574 | 0.0554 ± 0.0012 | 0.0574 |
1408.0 | 0.0582 ± 0.0558 | 0.0012 | 0.0546 ± 0.0011 | 0.0558 | 0.0569 ± 0.0012 | 0.0557 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özdoğan, H.; Üncü, Y.A.; Akman, F.; Polat, H.; Kaçal, M.R. Investigation of Gamma Ray Shielding Characteristics of Binary Composites Containing Polyester Resin and Lead Oxide. Polymers 2024, 16, 3324. https://doi.org/10.3390/polym16233324
Özdoğan H, Üncü YA, Akman F, Polat H, Kaçal MR. Investigation of Gamma Ray Shielding Characteristics of Binary Composites Containing Polyester Resin and Lead Oxide. Polymers. 2024; 16(23):3324. https://doi.org/10.3390/polym16233324
Chicago/Turabian StyleÖzdoğan, Hasan, Yiğit Ali Üncü, Ferdi Akman, Hasan Polat, and Mustafa Recep Kaçal. 2024. "Investigation of Gamma Ray Shielding Characteristics of Binary Composites Containing Polyester Resin and Lead Oxide" Polymers 16, no. 23: 3324. https://doi.org/10.3390/polym16233324
APA StyleÖzdoğan, H., Üncü, Y. A., Akman, F., Polat, H., & Kaçal, M. R. (2024). Investigation of Gamma Ray Shielding Characteristics of Binary Composites Containing Polyester Resin and Lead Oxide. Polymers, 16(23), 3324. https://doi.org/10.3390/polym16233324