Synthesis Characterization and Physicochemical Properties of Rigid Alicyclic Polyimide Films Based on Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic Dianhydride
Abstract
1. Introduction
2. Experimental Materials
2.1. Polyimide Synthesis
2.2. Membrane Preparation
2.3. Characterization
2.4. Gas Transport Properties
3. Results and Discussion
3.1. Polyimide Synthesis and Characterization
3.2. Thermal Analysis
3.3. X-Ray Diffraction
3.4. Gas Transport Through Rigid BTD-Based Polyimide Membranes
Polyimide | Permeability (Barrer) | Selectivity | |||||
---|---|---|---|---|---|---|---|
He | O2 | N2 | CH4 | CO2 | αCO2/CH4 | αCO2/N2 | |
BTD-MIMA | 165.9 | 42.8 | 10.7 | 13.9 | 224.6 | 16.1 | 20.8 |
BTD-HFA | 274.6 | 41.9 | 9.9 | 7.1 | 212.9 | 29.9 | 21.4 |
BTD-FND | 61.6 | 8.6 | 1.7 | 1.7 | 47.7 | 28.5 | 27.4 |
BTD-TPM | 40.5 | 5.9 | 1.5 | 1.6 | 32.3 | 20.2 | 21.5 |
PIM-EA-TB [38] | 2150 | 525 | 699 | 7140 | 10.2 | 13.6 | |
Ac-CoPI-TB1 [10] | 919 | 331 | 81 | 33 | 1366 | 17 | 16.8 |
Ac-CoPI-TB2 [10] | 540 | 166 | 33 | 33 | 555 | 17 | 16.8 |
BTA-CANAL2 [12] | 392 | 112 | 125 | 1995 | 16 | 17.8 | |
BTA-CANAL4 [12] | 115 | 26 | 30 | 600 | 20 | 23.1 | |
BTA-CANAL3 [12] | 40 | 9.6 | 11 | 230 | 22 | 23.9 | |
POBI-1 [39] | 57 | 13.7 | 13.5 | 334 | 24.7 | 24.3 | |
POBI-2 [39] | 61 | 14.9 | 14.6 | 356 | 24.4 | 23.8 | |
POBI-3 [39] | 39 | 6.6 | 6.2 | 250 | 40.3 | 37.8 | |
POBI-4 [39] | 41 | 7.1 | 6.7 | 267 | 39.9 | 37.6 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Álvarez, C.; Lozano, A.E.; de la Campa, J.G. High-productivity gas separation membranes derived from pyromellitic dianhydride and nonlinear diamines. J. Membr. Sci. 2016, 501, 191–198. [Google Scholar] [CrossRef]
- Qiu, Z.; Chen, G.; Zhang, Q.; Zhang, S. Synthesis and gas transport property of polyimide from 2,2′-disubstituted biphenyltetracarboxylic dianhydrides (BPDA). Eur. Polym. J. 2007, 43, 194–204. [Google Scholar] [CrossRef]
- Toshihiko, M.; Daisuke, M.; Takahiro, H.; Motoaki, K.; Risa, T.; Shuichi, K. Alicyclic polyimides—A colorless and thermally stable polymer for opto-electronic devices. J. Phys. Conf. Ser. 2009, 187, 012005. [Google Scholar] [CrossRef]
- Sulub-Sulub, R.; Loría-Bastarrachea, M.I.; Vázquez-Torres, H.; Santiago-García, J.L.; Aguilar-Vega, M. Highly permeable polyimide membranes with a structural pyrene containing tert-butyl groups: Synthesis, characterization and gas transport. J. Membr. Sci. 2018, 563, 134–141. [Google Scholar] [CrossRef]
- Suzuki, H.; Kondo, Y.; Endo, K.; Narita, M.; Hamada, F. Synthesis of; Bis (4′-Oxa-3′; Dioxotricyclo-[4.3.0.12, 5] Decane-8′-Yloxy) Ethane Involving a Flexible Bridging Moiety by Combination of Heteropolyacids as Solid Acid Catalysts and 1, 4-Dioxane as a Bridging Reagent. Int. J. Soc. Mater. Eng. Resour. 2001, 9, 14–16. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, D.; Song, G.; Dang, G.; Chen, C.; Zhou, H.; Zhao, X. Novel soluble polyimides derived from 2,2′-bis [4-(5-amino-2-pyridinoxy)phenyl]hexafluoropropane: Preparation, characterization, and optical, dielectric properties. Polymer 2014, 55, 3634–3641. [Google Scholar] [CrossRef]
- Chun, B.-W. Preparation and characterization of organic-soluble optically transparent polyimides from alicyclic dianhydride, bicyclo[2.2.2]-oct-7-ene-2,3,5,6-tetracarboxylic dianhydride. Polymer 1994, 35, 4203–4208. [Google Scholar] [CrossRef]
- Matsumoto, T.; Feger, C. Optical Properties of Polyalicyclic Polyimides. J. Photopolym. Sci. Technol. 1998, 11, 231–236. [Google Scholar] [CrossRef]
- Matsumoto, T.; Kurosaki, T. Soluble Polyimides with Polyalicyclic Structure. 4. Colorless Polyimides from Bicyclo[2.2.1]heptane-2-endo,3-endo,5-exo,6-exo-tetracarboxylic 2,3:5,6-Dianhydride. Macromolecules 1995, 28, 5684–5685. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, W.H.; Seong, J.G.; Bae, J.Y.; Zhuang, Y.; Feng, S.; Wan, Y.; Lee, Y.M. Alicyclic segments upgrade hydrogen separation performance of intrinsically microporous polyimide membranes. J. Membr. Sci. 2020, 611, 118363. [Google Scholar] [CrossRef]
- Abdulhamid, M.A.; Ma, X.; Ghanem, B.S.; Pinnau, I. Synthesis and Characterization of Organo-Soluble Polyimides Derived from Alicyclic Dianhydrides and a Dihydroxyl-Functionalized Spirobisindane Diamine. ACS Appl. Polym. Mater. 2019, 1, 63–69. [Google Scholar] [CrossRef]
- Yuan, P.; Zhang, M.; Pang, Y.; Chen, A.; Wang, Z.; Yan, J. Intrinsically Microporous Polyimides from Norbornyl Bis-benzocyclobutene-Containing Diamines and Rigid Dianhydrides for Membrane-Based Gas Separation. ACS Appl. Polym. Mater. 2023, 5, 1420–1429. [Google Scholar] [CrossRef]
- Likhatchev, D.; Alexandrova, L.; Tlenkopatchev, M.; Vilar, R.; Vera-Graziano, R. Soluble aromatic polyimides and polyamides based on 4,4′-diaminotriphenylmethane. J. Appl. Polym. Sci. 1995, 57, 37–44. [Google Scholar] [CrossRef]
- Sulub-Sulub, R.; Loría-Bastarrachea, M.I.; Santiago-García, J.L.; Aguilar-Vega, M. Synthesis and characterization of new polyimides from diphenylpyrene dianhydride and ortho methyl substituted diamines. RSC Adv. 2018, 8, 31881–31888. [Google Scholar] [CrossRef]
- Carrera-Figueiras, C.; Aguilar-Vega, M. Gas permeability and selectivity of hexafluoroisopropylidene aromatic isophthalic copolyamides. J. Polym. Sci. Part B Polym. Phys. 2005, 43, 2625–2638. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Mittal, K.L. (Eds.) Polyimides: Fundamentals and Applications; Marcel Dekker, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Likhatchev, B.D.; Vera-Graziano, R. Polyimide in High Performance Films. In Polymeric Materials Encyclopedia, Twelve Volume Set; Salamone, J.C., Ed.; CRC Press: Boca Raton, FL, USA, 1996; pp. 6275–6285. [Google Scholar] [CrossRef]
- Kuznetsov, A.A. One-Pot Polyimide Synthesis in Carboxylic Acid Medium. High Perform. Polym. 2000, 12, 445–460. [Google Scholar] [CrossRef]
- Korshak, V.V.; Vinogradova, S.V.; Vygodskii, Y.S.; Pavlova, S.A.; Boiko, L.V. Thermally stable soluble polyimides, Bulletin of the Academy of Sciences of the USSR. Div. Chem. Sci. 1967, 16, 2172–2178. [Google Scholar]
- An, H.-Y.; Zhan, M.-S.; Wang, K. Synthesis and properties of fluorene-based polyimide adhesives. Polym. Eng. Sci. 2011, 51, 1533–1540. [Google Scholar] [CrossRef]
- Matsumoto, T.; Kurosaki, T. Soluble and Colorless Polyimides from Bicyclo[2.2.2]octane-2,3,5,6-tetracarboxylic 2,3:5,6-Dianhydrides. Macromolecules 1997, 30, 993–1000. [Google Scholar] [CrossRef]
- Huang, X.; Li, H.; Liu, C.; Wei, C. Design and synthesis of high heat-resistant, soluble, and hydrophobic fluorinated polyimides containing pyridine and trifluoromethylthiophenyl units. High Perform. Polym. 2019, 31, 107–115. [Google Scholar] [CrossRef]
- Santiago-García, J.L.; Pérez-Francisco, J.M.; Loría-Bastarrachea, M.I.; Aguilar-Vega, M. Synthesis and characterization of novel polyamides containing dibenzobarrelene pendant groups. Des. Monomers Polym. 2015, 18, 350–359. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Ren, X.; Wang, Z.; He, Z.; Yang, C.; Qi, Y.; Han, S.; Chen, S.; Yu, H.; Liu, J. Synthesis and Characterization of Organo-Soluble Polyimides Based on Polycondensation Chemistry of Fluorene-Containing Dianhydride and Amide-Bridged Diamines with Good Optical Transparency and Glass Transition Temperatures over 400 °C. Polymers 2023, 15, 3549. [Google Scholar] [CrossRef] [PubMed]
- Loría-Bastarrachea, M.I.; Aguilar-Vega, M. Synthesis of hexafluoroisopropylidene isophthalic polyesters and copolyesters and the relationship between their structure and gas transport properties. J. Appl. Polym. Sci. 2007, 103, 2207–2216. [Google Scholar] [CrossRef]
- López-Nava, R.; Vázquez-Moreno, F.S.; Palí-Casanova, R.; Aguilar-Vega, M. Gas permeability coefficients of isomeric aromatic Polyamides obtained from 4,4′-(9-fluorenylidene) diamine and aromatic diacid chlorides. Polym. Bull. 2002, 49, 165–172. [Google Scholar] [CrossRef]
- Pérez-Francisco, J.M.; Santiago-García, J.L.; Loría-Bastarrachea, M.I.; Aguilar-Vega, M. Evaluation of Gas Transport Properties of Highly Rigid Aromatic PI DPPD-IMM/PBI Blends. Ind. Eng. Chem. Res. 2017, 56, 9355–9366. [Google Scholar] [CrossRef]
- Santiago-García, J.L.; Álvarez, C.; Sánchez, F.; de la Campa, J.G. Gas transport properties of new aromatic polyimides based on 3,8-diphenylpyrene-1,2,6,7-tetracarboxylic dianhydride. J. Membr. Sci. 2015, 476, 442–448. [Google Scholar] [CrossRef]
- Aguilar-Lugo, C.; Santiago-García, J.L.; Loría-Bastarrachea, M.I.; Guzmán-Lucero, D.; Alexandrova, L.; Aguilar-Vega, M. Synthesis; characterization, and structure-property relationships of aromatic polyimides containing 4,4′-diaminotriphenylmethane. J. Polym. Res. 2016, 23, 49. [Google Scholar] [CrossRef]
- Sathiskumar, P.S.; Madras, G. Synthesis; characterization, degradation of biodegradable castor oil based polyesters. Polym. Degrad. Stab. 2011, 96, 1695–1704. [Google Scholar] [CrossRef]
- Fan, F.; Sun, Y.; Zhao, Q.; Zhang, J.; Guan, J.; He, G.; Ma, C. Fluorinated-cardo-based Co-polyimide membranes with enhanced selectivity for CO2 separation. Sep. Purif. Technol. 2023, 324, 124511. [Google Scholar] [CrossRef]
- Yong, W.F.; Li, F.Y.; Xiao, Y.C.; Chung, T.S.; Tong, Y.W. High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation. J. Membr. Sci. 2013, 443, 156–169. [Google Scholar] [CrossRef]
- Ma, X.; Salinas, O.; Litwiller, E.; Pinnau, I. Novel Spirobifluorene- and Dibromospirobifluorene-Based Polyimides of Intrinsic Microporosity for Gas Separation Applications. Macromolecules 2013, 46, 9618–9624. [Google Scholar] [CrossRef]
- Budd, P.M.; McKeown, N.B.; Fritsch, D. Free volume and intrinsic microporosity in polymers. J. Mater. Chem. 2005, 15, 1977–1986. [Google Scholar] [CrossRef]
- Cetina-Mancilla, E.; Camacho-Zuñiga, C.; González-Díaz, M.O.; Alondra, C.T.; Ruiz-Treviño, A.F.; Vivaldo-Lima, E.; Vera-Graziano, R.; Zolotukhin, M.G.; Sulub-Sulub, R.; Aguilar-Vega, M. Room temperature synthesis, characterization and enhanced gas transport properties of novel poly(oxindolylidene arylene)s with dibenzothiophene, dibenzothiophene-S-oxide and dibenzothiophene-S,S-dioxide fragments in the main chain. Sep. Purif. Technol. 2024, 341, 126853. [Google Scholar] [CrossRef]
- Espeso, J.; Lozano, A.E.; de la Campa, J.G.; de Abajo, J. Effect of substituents on the permeation properties of polyamide membranes. J. Membr. Sci. 2006, 280, 659–665. [Google Scholar] [CrossRef]
- Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J.C.; Bernardo, P.; Bazzarelli, F.; McKeown, N.B. An Efficient Polymer Molecular Sieve for Membrane Gas Separations. Science 2013, 339, 303–307. [Google Scholar] [CrossRef]
- Chen, H.; Dai, F.; Wang, M.; Ke, Z.; Yan, K.; Li, D.; Chen, C.; Qian, G.; Yu, Y. Synthesis, characterization and properties of polyimides with spirobisbenzoxazole scaffold structure. Polymer 2022, 254, 125091. [Google Scholar] [CrossRef]
- Zhang, C.; Li, P. Preparation and Gas Separation Properties of Spirobichroman-Based Polyimides. Macromol. Chem. Phys. 2018, 219, 1800157. [Google Scholar] [CrossRef]
- Yong, W.F.; Li, F.Y.; Xiao, Y.C.; Li, P.; Pramoda, K.P.; Tong, Y.W.; Chung, T.S. Molecular engineering of PIM-1/Matrimid blend membranes for gas separation. J. Membr. Sci. 2012, 407–408, 47–57. [Google Scholar] [CrossRef]
- Shao, L.; Liu, L.; Cheng, S.-X.; Huang, Y.-D.; Ma, J. Comparison of diamino cross-linking in different polyimide solutions and membranes by precipitation observation and gas transport. J. Membr. Sci. 2008, 312, 174–185. [Google Scholar] [CrossRef]
- Zhang, C. Synthesis and characterization of bis(phenyl)fluorene-based cardo polyimide membranes for H2/CH4 separation. J. Mater. Sci. 2019, 54, 10560–10569. [Google Scholar] [CrossRef]
- Canto-Acosta, R.J.; Loría-Bastarrachea, M.I.; Carrillo-Escalante, H.J.; Hernández-Núñez, E.; Aguilar-Vega, M.; Santiago-García, J.L. Synthesis and characterization of poly(amide-imide)s derived from a new ortho-functional unsymmetrical dicarboxylic acid. RSC Adv. 2018, 8, 284–290. [Google Scholar] [CrossRef]
Polyimide | Mw (Dalton) | Mn (Dalton) | PDI | η a (dL/g) |
---|---|---|---|---|
BTD-MIMA b | 146,326 | 69,517 | 2.10 | 1.37 |
BTD-HFA c | 62,927 | 39,412 | 1.59 | 0.43 |
BTD-FND b | 68,052 | 43,419 | 1.56 | 0.48 |
BTD-TPM b | 99,611 | 48,303 | 2.06 | 0.63 |
Polyimide | NMP | DMF | DMAc | CHCl3 | DCE | TCE | THF | DMSO |
---|---|---|---|---|---|---|---|---|
BTD-MIMA | + | + | + | + | − | − | − | + |
BTD-HFA | − | ± | − | − | − | − | − | + |
BTD-FND | + | + | + | − | − | + | − | + |
BTD-TPM | + | + | + | − | − | + | − | + |
DDE1 | + | + | + | − | + | |||
DDM1 | + | + | + | − | NR | NR | NR | + |
BAB1 | + | + | + | + | NR | NR | NR | + |
PI-DP2 | ± | − | ± | − | NR | NR | − | − |
PI-6F2 | + | + | + | + | NR | NR | + | + |
Polyimide | Td(°C) | Tg(°C) | d-Spacing (Å) | Density (g/cm3) | Vw (cm3/mol) | FFV |
---|---|---|---|---|---|---|
BTD-MIMA | 460 | 345 | 7.32 | 1.177 | 299.51 | 0.1232 |
BTD-HFA | 437 | 355 | 6.56 | 1.427 | 256.57 | 0.1289 |
BTD-FND | 450 | - | 6.23 | 1.289 | 296.01 | 0.1150 |
BTD-TPM | 454 | 272 | 6.17 | 1.279 | 261.16 | 0.1070 |
Polyimide | Diffusion Coefficient (10−8 cm2/s) | Diffusion Selectivity | ||||
---|---|---|---|---|---|---|
O2 | N2 | CH4 | CO2 | αCO2/CH4 | αCO2/N2 | |
BTD-MIMA | 31.4 | 7.3 | 2.9 | 9.5 | 3.3 | 1.3 |
BTD-HFA | 32.0 | 6.6 | 2.4 | 10.7 | 4.4 | 1.6 |
BTD-FND | 6.9 | 1.7 | 1.0 | 3.7 | 3.7 | 2.1 |
BTD-TPM | 4.8 | 1.5 | 0.9 | 2.9 | 3.2 | 1.9 |
Polyimide | Solubility Coefficient (10−2 cm3(STP)/cm3cm Hg) | Solubility Selectivity | ||||
---|---|---|---|---|---|---|
O2 | N2 | CH4 | CO2 | αCO2/CH4 | αCO2/N2 | |
BTD-MIMA | 1.36 | 1.47 | 4.72 | 23.47 | 4.97 | 15.96 |
BTD-HFA | 1.31 | 1.49 | 2.96 | 19.90 | 6.72 | 13.35 |
BTD-FND | 1.25 | 1.00 | 1.68 | 12.73 | 7.57 | 12.73 |
BTD-TPM | 1.22 | 1.02 | 1.79 | 11.01 | 6.15 | 10.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Francisco, J.M.; Aguilar-Lugo, C.; Alexandrova, L.; Gonzalez-Diaz, M.O.; Sulub-Sulub, R.; Loría-Bastarrachea, M.I.; Aguilar-Vega, M. Synthesis Characterization and Physicochemical Properties of Rigid Alicyclic Polyimide Films Based on Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic Dianhydride. Polymers 2024, 16, 3188. https://doi.org/10.3390/polym16223188
Pérez-Francisco JM, Aguilar-Lugo C, Alexandrova L, Gonzalez-Diaz MO, Sulub-Sulub R, Loría-Bastarrachea MI, Aguilar-Vega M. Synthesis Characterization and Physicochemical Properties of Rigid Alicyclic Polyimide Films Based on Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic Dianhydride. Polymers. 2024; 16(22):3188. https://doi.org/10.3390/polym16223188
Chicago/Turabian StylePérez-Francisco, José Manuel, Carla Aguilar-Lugo, Larissa Alexandrova, María O. Gonzalez-Diaz, Rita Sulub-Sulub, María Isabel Loría-Bastarrachea, and Manuel Aguilar-Vega. 2024. "Synthesis Characterization and Physicochemical Properties of Rigid Alicyclic Polyimide Films Based on Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic Dianhydride" Polymers 16, no. 22: 3188. https://doi.org/10.3390/polym16223188
APA StylePérez-Francisco, J. M., Aguilar-Lugo, C., Alexandrova, L., Gonzalez-Diaz, M. O., Sulub-Sulub, R., Loría-Bastarrachea, M. I., & Aguilar-Vega, M. (2024). Synthesis Characterization and Physicochemical Properties of Rigid Alicyclic Polyimide Films Based on Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic Dianhydride. Polymers, 16(22), 3188. https://doi.org/10.3390/polym16223188