Organic Bulk–Heterojunction Blends with Vertical Phase Separation for Enhanced Organic Photodetector Performance
Abstract
:1. Introduction
2. Experimental Section
3. Measurements
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, B.-H.; Lin, D.-W.; Shiu, M.-N.; Su, Y.-W.; Tsai, T.-H.; Tsai, P.-H.; Shieh, T.-S.; Chan, C.K.; Lu, J.-H.; Chen, C.-P. Efficient, Ambient-Stable, All-Polymer Organic Photodetector for Machine Learning-Promoted Intelligent Monitoring of Indoor Plant Growth. Adv. Opt. Mater. 2023, 11, 2203129. [Google Scholar] [CrossRef]
- Lu, J.-H.; Jiang, B.-H.; Hsiao, F.-C.; Peng, Y.-C.; Su, Y.-W.; Lin, Y.-R.; Tsai, T.-H.; Shiu, M.-N.; Lin, C.-Y.; Fang, Y.-T.; et al. High-Performance Organic Photodiodes for Blue-Light Hazard Detection. Chem. Eng. J. 2022, 437, 135327. [Google Scholar] [CrossRef]
- Ren, H.; Chen, J.-D.; Li, Y.-Q.; Tang, J.-X. Recent Progress in Organic Photodetectors and their Applications. Adv. Sci. 2021, 8, 2002418. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Chen, Z.; Ying, L.; Huang, F.; Cao, Y. Near-infrared organic photoelectric materials for light-harvesting systems: Organic photovoltaics and organic photodiodes. InfoMat 2020, 2, 57–91. [Google Scholar] [CrossRef]
- Chow, P.C.Y.; Someya, T. Organic Photodetectors for Next-Generation Wearable Electronics. Adv. Mater. 2020, 32, 1902045. [Google Scholar] [CrossRef]
- Park, S.; Fukuda, K.; Wang, M.; Lee, C.; Yokota, T.; Jin, H.; Jinno, H.; Kimura, H.; Zalar, P.; Matsuhisa, N.; et al. Ultraflexible Near-Infrared Organic Photodetectors for Conformal Photoplethysmogram Sensors. Adv. Mater. 2018, 30, 1802359. [Google Scholar] [CrossRef]
- Quan, H.; Zhong, Z.; Hao, T.; An, K.; Zhong, W.; Wang, C.; Liu, F.; Ying, L.; Huang, F. High-performance organic photodetectors enabled by a refined fibrillar multiphase morphology. Chem. Eng. J. 2023, 452, 139295. [Google Scholar] [CrossRef]
- Park, T.; Lee, S.; Kang, M.; Yu, S.H.; Nam, G.-H.; Sim, K.M.; Chung, D.S. Nanowire-embedded polymer photomultiplication photodiode with EQE over 250,000%. Chem. Eng. J. 2021, 418, 129354. [Google Scholar] [CrossRef]
- Simone, G.; Tordera, D.; Delvitto, E.; Peeters, B.; van Breemen, A.J.J.M.; Meskers, S.C.J.; Janssen, R.A.J.; Gelinck, G.H. High-Accuracy Photoplethysmography Array Using Near-Infrared Organic Photodiodes with Ultralow Dark Current. Adv. Opt. Mater. 2020, 8, 1901989. [Google Scholar] [CrossRef]
- Yu, Y.-Y.; Liu, C.-I.; Peng, Y.-C.; Jiang, B.-H.; Su, Y.-W.; Liu, S.-J.; Chen, C.-P. Ambient-Stable Near-Infrared Organic Photodetectors with Ultrahigh Detectivity and Ultrafast Response for Biometric Monitoring. Adv. Electron. Mater. 2022, 8, 2200585. [Google Scholar] [CrossRef]
- Kuo, K.H.; Estrada, R.; Lee, C.C.; Al Amin, N.R.; Li, Y.Z.; Hadiyanto, M.Y.; Liu, S.W.; Wong, K.T. A New Dioxasilepine-Aryldiamine Hybrid Electron-Blocking Material for Wide Linear Dynamic Range and Fast Response Organic Photodetector. ACS Appl. Mater. Interfaces 2022, 14, 18782–18793. [Google Scholar] [CrossRef]
- Liu, J.; Gao, M.; Kim, J.; Zhou, Z.; Chung, D.S.; Yin, H.; Ye, L. Challenges and recent advances in photodiodes-based organic photodetectors. Mater. Today 2021, 51, 475–503. [Google Scholar] [CrossRef]
- Simone, G.; Dyson, M.J.; Weijtens, C.H.L.; Meskers, S.C.J.; Coehoorn, R.; Janssen, R.A.J.; Gelinck, G.H. On the Origin of Dark Current in Organic Photodiodes. Adv. Opt. Mater. 2020, 8, 1901568. [Google Scholar] [CrossRef]
- Park, B.; Jung, J.; Lim, D.H.; Lee, H.; Park, S.; Kyeong, M.; Ko, S.J.; Eom, S.H.; Lee, S.H.; Lee, C.; et al. Significant Dark Current Suppression in Organic Photodetectors Using Side Chain Fluorination of Conjugated Polymer. Adv. Funct. Mater. 2021, 32, 2108026. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, H.; Liu, T.; Wang, S.; Jiang, Y.; Song, Y.; Zhang, J.; Zhang, X.; Lu, G.; Huang, F.; et al. Self-Powered Organic Photodetectors with High Detectivity for Near Infrared Light Detection Enabled by Dark Current Reduction. Adv. Funct. Mater. 2021, 31, 2106326. [Google Scholar] [CrossRef]
- Jiang, B.-H.; Liao, Y.-T.; Tu, Y.-H.; Wong, K.-T.; Chen, C.-P. Solution-processed all-small-molecule organic photovoltaics and photodetectors based on isoindigo derivatives. Dye. Pigment. 2023, 215, 111285. [Google Scholar] [CrossRef]
- Jiang, B.-H.; Hsiao, F.-C.; Lin, Y.-R.; Lin, C.-H.; Shen, Y.A.; Hsu, Y.-Y.; Lee, P.-H.; Su, Y.-W.; Lu, H.-R.; Lin, C.-W.; et al. Highly Efficient Ternary Near-Infrared Organic Photodetectors for Biometric Monitoring. ACS Appl. Mater. Interfaces 2023, 15, 10907–10917. [Google Scholar] [CrossRef]
- Xia, Y.; Geng, C.; Bi, X.; Li, M.; Zhu, Y.; Yao, Z.; Wan, X.; Li, G.; Chen, Y. Biomimetic Flexible High-Sensitivity Near-Infrared II Organic Photodetector for Photon Detection and Imaging. Adv. Opt. Mater. 2024, 12, 2301518. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.; Liu, X.; Miao, J.; Han, Y.; Liu, J.; Wang, L. An n-Type All-Fused-Ring Molecule with Photoresponse to 1000 nm for Highly Sensitive Near-Infrared Photodetector. Adv. Mater. 2023, 35, 2211714. [Google Scholar] [CrossRef]
- Cho, K.; Ha, J.-W.; Nam, M.; Lee, C.; You, S.J.; Lee, A.Y.; Yoon, S.C.; Han, M.; Kim, J.H.; Ko, S.-J.; et al. Crystallization-Driven Optimization of Morphology and Performance in Near-Infrared Organic Photodetectors via Alkyl Side Chain Tuning of Narrow Bandgap Non-Fullerene Acceptors. Adv. Funct. Mater. 2024, 34, 2400676. [Google Scholar] [CrossRef]
- Fuentes-Hernandez, C.; Chou, W.F.; Khan, T.M.; Diniz, L.; Lukens, J.; Larrain, F.A.; Rodriguez-Toro, V.A.; Kippelenk, B. Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 2020, 370, 698–701. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, D.; Wang, Z.; Yu, J. Processes Controlling the Distribution of Vertical Organic Composition in Organic Photodetectors by Ultrasonic-Assisted Solvent Vapor Annealing. ACS Appl. Electron. Mater. 2020, 2, 2188–2195. [Google Scholar] [CrossRef]
- Fang, J.; Deng, D.; Wang, Z.; Adil, M.A.; Xiao, T.; Wang, Y.; Lu, G.; Zhang, Y.; Zhang, J.; Ma, W.; et al. Critical Role of Vertical Phase Separation in Small-Molecule Organic Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 12913–12920. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Liu, T.; Luo, Z.; Guo, Q.; Xiao, Y.; Chen, Y.; Li, X.; Luo, S.; Lu, X.; Zhang, M.; et al. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci. China Chem. 2020, 63, 325–330. [Google Scholar] [CrossRef]
- Li, G.; Cheng, H.; Zhang, Y.; Yang, T.; Liu, Y. Higher open circuit voltage caused by chlorinated polymers endows improved efficiency of binary organic solar cell. Org. Electron. 2020, 83, 105776. [Google Scholar] [CrossRef]
- Jiang, B.-H.; Chen, C.-P.; Liang, H.-T.; Jeng, R.-J.; Chien, W.-C.; Yu, Y.-Y. The Role of Y6 as the Third Component in Fullerene-Free Ternary Organic Photovoltaics. Dye. Pigment. 2020, 181, 108613. [Google Scholar] [CrossRef]
- Du, X.; Heumueller, T.; Gruber, W.; Classen, A.; Unruh, T.; Li, N.; Brabec, C.J. Efficient Polymer Solar Cells Based on Non-fullerene Acceptors with Potential Device Lifetime Approaching 10 Years. Joule 2019, 3, 215–226. [Google Scholar] [CrossRef]
- Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148–7151. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, H.; Li, C.; Lu, K.; Zhang, L.; Shokrieh, A.; Zhang, J.; Lu, G.; Lei, S.; Wei, Z. Trifluoro alkyl side chains in the non-fullerene acceptors to optimize the phase miscibility and vertical distribution of organic solar cells. J. Mater. Chem. A 2022, 10, 8837–8845. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Z.; Feng, J.; Chen, Y.; Zhang, J.; Li, Y.; Jiang, W.; Zhai, T.; Lin, Y.; Wei, Z.; et al. Suppressed Trap Density Leads to Versatile p-i-n Heterojunction Photodiode with Enhanced Photovoltaic/Photodetection Dual-Function. Adv. Opt. Mater. 2023, 11, 2202606. [Google Scholar] [CrossRef]
- Simone, G.; Dyson, M.J.; Meskers, S.C.J.; Janssen, R.A.J.; Gelinck, G.H. Organic Photodetectors and their Application in Large Area and Flexible Image Sensors: The Role of Dark Current. Adv. Funct. Mater. 2020, 30, 1904205. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Fukuda, K.; Yokota, T.; Someya, T. A Highly Responsive Organic Image Sensor Based on a Two-Terminal Organic Photodetector with Photomultiplication. Adv. Mater. 2019, 31, 1903687. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Gao, Y.; Qian, K.; Wang, B.; Xu, R.; He, M.; Li, T.; Xing, G.; Yang, S.; Wei, G. A visible to near-infrared nanocrystalline organic photodetector with ultrafast photoresponse. J. Mater. Chem. C 2022, 10, 9391–9400. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Y.; Cao, Y.; Huang, F.; Guo, Y.; Zhu, X. Design of All-Fused-Ring Nonfullerene Acceptor for Highly Sensitive Self-Powered Near-Infrared Organic Photodetectors. ACS Mater. Lett. 2022, 4, 882–890. [Google Scholar] [CrossRef]
- Wu, J.L.; Lai, L.H.; Hsiao, Y.T.; Tsai, K.W.; Yang, C.M.; Sun, Z.W.; Hsieh, J.C.; Chang, Y.M. Top-Illuminated Organic Photodetectors beyond 1000 nm Wavelength Response Enabled by a Well-Defined Interfacial Engineering. Adv. Opt. Mater. 2021, 10, 2101723. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, T.; Yao, H.; Wang, J.; Bi, P.; Hou, J. Design of ultranarrow-bandgap acceptors for efficient organic photovoltaic cells and highly sensitive organic photodetectors. J. Energy Chem. 2022, 72, 388–394. [Google Scholar] [CrossRef]
- Xu, C.; Liu, P.; Feng, C.; He, Z.; Cao, Y. Organic Photodetectors with High Detectivity for Broadband Detection Covering UV-vis-NIR. J. Mater. Chem. C 2022, 10, 5787–5796. [Google Scholar] [CrossRef]
- Jacoutot, P.; Scaccabarozzi, A.D.; Zhang, T.; Qiao, Z.; Anies, F.; Neophytou, M.; Bristow, H.; Kumar, R.; Moser, M.; Nega, A.D.; et al. Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Non-Fullerene Acceptors for Biometric Monitoring. Small 2022, 18, e2200580. [Google Scholar] [CrossRef]
- Lan, Z.; Lau, Y.S.; Cai, L.; Han, J.; Suen, C.W.; Zhu, F. Dual-Band Organic Photodetectors for Dual-Channel Optical Communications. Laser Photonics Rev. 2022, 16, 2100602. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Yuan, L.; Xiao, J.; Jiang, Z.; Gu, D.; Li, W.; Tai, H.; Jiang, Y. Thermally Induced Anti-Aggregation Evolution of Thick Bulk-Heterojunction for vis–NIR Organic Photodetectors. Adv. Opt. Mater. 2022, 10, 2200340. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Q.; He, Z.; Wang, Y.; Shan, T.; Fu, Y.; Guo, X.; Zhong, H. Efficient Optoelectronic Devices Enabled by Near-Infrared Organic Semiconductors with a Photoresponse beyond 1050 nm. ACS Appl. Mater. Interfaces 2022, 14, 31066–31074. [Google Scholar] [CrossRef] [PubMed]
- Eisner, F.; Foot, G.; Yan, J.; Azzouzi, M.; Georgiadou, D.G.; Sit, W.Y.; Firdaus, Y.; Zhang, G.; Lin, Y.H.; Yip, H.L.; et al. Emissive Charge-Transfer States at Hybrid Inorganic/Organic Heterojunctions Enable Low Non-Radiative Recombination and High-Performance Photodetectors. Adv. Mater. 2022, 34, e2104654. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, L.; Zheng, J.; Li, J.; Lei, S.; Wu, Z.; Yang, D.; Ma, D.; Chen, J. A Simple Fused-Ring Acceptor toward High-Sensitivity Binary Near-Infrared Photodetector. Adv. Opt. Mater. 2022, 10, 2200371. [Google Scholar] [CrossRef]
- Perevedentsev, A.; Mejri, H.; Ruiz-Preciado, L.A.; Marszalek, T.; Lemmer, U.; Blom, P.W.M.; Hernandez-Sosa, G. Polarization-Sensitive Photodetectors Based on Directionally Oriented Organic Bulk-Heterojunctions. Adv. Opt. Mater. 2022, 10, 2102397. [Google Scholar] [CrossRef]
Material | Work Function |
---|---|
PM7 | −5.3647 eV |
IT-4F | −5.6447 eV |
Donor: Acceptor | Dark Current (A cm−2) (Bias) | R (A W−1) (Bias) | D* (Jones) (Bias) | Ref. |
---|---|---|---|---|
PM7:IT-4F: IEICO-4F | 4.95 × 10−10 (−1 V) | 0.26 (−1 V) | 4.95 × 1013 (−1 V) | This work |
PTB7-Th:COT-Oct | 8.18 × 10−9 (−0.5 V) | 0.24 (−0.5 V) | 1.49 × 1012 (−0.5 V) | [20] |
PCE10:YZ1 | 5.3 × 10−11 (0 V) | 0.27 (0 V) | 9.24 × 1013 (0 V) | [18] |
PBDB-T: FM2 | 6.45 × 10−9 (−0.5 V) | 0.455 (−0.5 V) | 1.01 × 1013 (−0.5 V) | [19] |
PM6:PY-IT | 1.05 × 10−9 (−2 V) | 0.44 (−2 V) | 2.39 × 1013 (−2 V) | [1] |
PM6:Y6 | 8.77 × 10−10 (−2 V) | 0.516 (−2 V) | 3.1 × 1013 (−2 V) | [10] |
PffBT4T-2OD:PC71BM | 1.2 × 10−9 (–2 V) | 0.427 (–2 V) | 2.9 × 1013 (–2 V) | [2] |
PffBT4T-2OD:PC71BM:IEICO-4F | 6.3 × 10−11 (0 V) | 0.36 (0 V) | 8 × 1013 (0 V) | [17] |
D18:Y6 | 4.87 × 10−8 (−0.5 V) | 1.21 (−0.5 V) | 1.83 × 1013 (−0.5 V) | [33] |
DTDCPB:C70 | ≈1 × 10−9 (−3 V) | 0.30 (−3 V) | 7.09 × 1012 (−3 V) | [11] |
PM6:PDTTYM | 3.88 × 10−9 (−2 V) | 0.5 (0 V) | 1.35 × 1013 (0 V) | [34] |
PD004:PD-A2 | ≈2 × 10−8 (−4 V) | 0.63 (−4 V) | 6.6 × 1012 (−4 V) | [35] |
PBDB-T:DO4F | ≈1 × 10−5 (−2 V) | 0.5 (0 V) | 3.05 × 1013 (0 V) | [36] |
PTB7Th:COTIC-4F:Y6 | 1.2 × 10−9 (−0.1 V) | 0.41 (−0.1 V) | 8.2 × 1012 (−0.1 V) | [37] |
TQ-T:IEICO-4F | 8.4 × 10−3 (−2 V) | 0.09 (−2 V) | ≈10−10 (−2 V) | [38] |
PTB7-Th:PC71BM+ PTB7-Th: COi8DFIC:PC71BM | ≈1 × 10−3 (−1 V) | 0.43 (−1 V) | 8.8 × 1010 (−1 V) | [39] |
PBDB-T:Y6 | 8.7 × 10−8 (−2 V) | 0.5 (−0.5 V) | ≈1012 (−0.5 V) | [40] |
PTB7-Th:BFIC | ≈10−7 (−3 V) | 0.3 (0 V) | 5.46 × 1013 (0 V) | [41] |
PF:IT−4F | 3.73 × 10−10 (−2 V) | 0.37 (−2 V) | 3.39 × 1013 (−2 V) | [14] |
CuSCN:Y6 | ≈10−9 (−2 V) | 0.12 (−2 V) | 9.97 × 1012 (−0.5 V) | [42] |
PTB7-Th:NTQ | 1.5 × 10−4 (−2 V) | 0.25 (−0.1 V) | 3.72 × 1012 (−0.1 V) | [43] |
P3HT:N2200 | ≈10−5 (−3 V) | 0.07 (−2 V) | 7 × 1011 (−2 V) | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-P.; Peng, Y.-C.; Jiang, B.-H.; Hsu, M.-W.; Chan, C.K.; Du, H.-Y.; Yu, Y.-Y. Organic Bulk–Heterojunction Blends with Vertical Phase Separation for Enhanced Organic Photodetector Performance. Polymers 2024, 16, 3040. https://doi.org/10.3390/polym16213040
Chen C-P, Peng Y-C, Jiang B-H, Hsu M-W, Chan CK, Du H-Y, Yu Y-Y. Organic Bulk–Heterojunction Blends with Vertical Phase Separation for Enhanced Organic Photodetector Performance. Polymers. 2024; 16(21):3040. https://doi.org/10.3390/polym16213040
Chicago/Turabian StyleChen, Chih-Ping, Yan-Cheng Peng, Bing-Huang Jiang, Ming-Wei Hsu, Choon Kit Chan, He-Yun Du, and Yang-Yen Yu. 2024. "Organic Bulk–Heterojunction Blends with Vertical Phase Separation for Enhanced Organic Photodetector Performance" Polymers 16, no. 21: 3040. https://doi.org/10.3390/polym16213040
APA StyleChen, C.-P., Peng, Y.-C., Jiang, B.-H., Hsu, M.-W., Chan, C. K., Du, H.-Y., & Yu, Y.-Y. (2024). Organic Bulk–Heterojunction Blends with Vertical Phase Separation for Enhanced Organic Photodetector Performance. Polymers, 16(21), 3040. https://doi.org/10.3390/polym16213040