Organic Bulk–Heterojunction Blends with Vertical Phase Separation for Enhanced Organic Photodetector Performance
Abstract
1. Introduction
2. Experimental Section
3. Measurements
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, B.-H.; Lin, D.-W.; Shiu, M.-N.; Su, Y.-W.; Tsai, T.-H.; Tsai, P.-H.; Shieh, T.-S.; Chan, C.K.; Lu, J.-H.; Chen, C.-P. Efficient, Ambient-Stable, All-Polymer Organic Photodetector for Machine Learning-Promoted Intelligent Monitoring of Indoor Plant Growth. Adv. Opt. Mater. 2023, 11, 2203129. [Google Scholar] [CrossRef]
- Lu, J.-H.; Jiang, B.-H.; Hsiao, F.-C.; Peng, Y.-C.; Su, Y.-W.; Lin, Y.-R.; Tsai, T.-H.; Shiu, M.-N.; Lin, C.-Y.; Fang, Y.-T.; et al. High-Performance Organic Photodiodes for Blue-Light Hazard Detection. Chem. Eng. J. 2022, 437, 135327. [Google Scholar] [CrossRef]
- Ren, H.; Chen, J.-D.; Li, Y.-Q.; Tang, J.-X. Recent Progress in Organic Photodetectors and their Applications. Adv. Sci. 2021, 8, 2002418. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Chen, Z.; Ying, L.; Huang, F.; Cao, Y. Near-infrared organic photoelectric materials for light-harvesting systems: Organic photovoltaics and organic photodiodes. InfoMat 2020, 2, 57–91. [Google Scholar] [CrossRef]
- Chow, P.C.Y.; Someya, T. Organic Photodetectors for Next-Generation Wearable Electronics. Adv. Mater. 2020, 32, 1902045. [Google Scholar] [CrossRef]
- Park, S.; Fukuda, K.; Wang, M.; Lee, C.; Yokota, T.; Jin, H.; Jinno, H.; Kimura, H.; Zalar, P.; Matsuhisa, N.; et al. Ultraflexible Near-Infrared Organic Photodetectors for Conformal Photoplethysmogram Sensors. Adv. Mater. 2018, 30, 1802359. [Google Scholar] [CrossRef]
- Quan, H.; Zhong, Z.; Hao, T.; An, K.; Zhong, W.; Wang, C.; Liu, F.; Ying, L.; Huang, F. High-performance organic photodetectors enabled by a refined fibrillar multiphase morphology. Chem. Eng. J. 2023, 452, 139295. [Google Scholar] [CrossRef]
- Park, T.; Lee, S.; Kang, M.; Yu, S.H.; Nam, G.-H.; Sim, K.M.; Chung, D.S. Nanowire-embedded polymer photomultiplication photodiode with EQE over 250,000%. Chem. Eng. J. 2021, 418, 129354. [Google Scholar] [CrossRef]
- Simone, G.; Tordera, D.; Delvitto, E.; Peeters, B.; van Breemen, A.J.J.M.; Meskers, S.C.J.; Janssen, R.A.J.; Gelinck, G.H. High-Accuracy Photoplethysmography Array Using Near-Infrared Organic Photodiodes with Ultralow Dark Current. Adv. Opt. Mater. 2020, 8, 1901989. [Google Scholar] [CrossRef]
- Yu, Y.-Y.; Liu, C.-I.; Peng, Y.-C.; Jiang, B.-H.; Su, Y.-W.; Liu, S.-J.; Chen, C.-P. Ambient-Stable Near-Infrared Organic Photodetectors with Ultrahigh Detectivity and Ultrafast Response for Biometric Monitoring. Adv. Electron. Mater. 2022, 8, 2200585. [Google Scholar] [CrossRef]
- Kuo, K.H.; Estrada, R.; Lee, C.C.; Al Amin, N.R.; Li, Y.Z.; Hadiyanto, M.Y.; Liu, S.W.; Wong, K.T. A New Dioxasilepine-Aryldiamine Hybrid Electron-Blocking Material for Wide Linear Dynamic Range and Fast Response Organic Photodetector. ACS Appl. Mater. Interfaces 2022, 14, 18782–18793. [Google Scholar] [CrossRef]
- Liu, J.; Gao, M.; Kim, J.; Zhou, Z.; Chung, D.S.; Yin, H.; Ye, L. Challenges and recent advances in photodiodes-based organic photodetectors. Mater. Today 2021, 51, 475–503. [Google Scholar] [CrossRef]
- Simone, G.; Dyson, M.J.; Weijtens, C.H.L.; Meskers, S.C.J.; Coehoorn, R.; Janssen, R.A.J.; Gelinck, G.H. On the Origin of Dark Current in Organic Photodiodes. Adv. Opt. Mater. 2020, 8, 1901568. [Google Scholar] [CrossRef]
- Park, B.; Jung, J.; Lim, D.H.; Lee, H.; Park, S.; Kyeong, M.; Ko, S.J.; Eom, S.H.; Lee, S.H.; Lee, C.; et al. Significant Dark Current Suppression in Organic Photodetectors Using Side Chain Fluorination of Conjugated Polymer. Adv. Funct. Mater. 2021, 32, 2108026. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, H.; Liu, T.; Wang, S.; Jiang, Y.; Song, Y.; Zhang, J.; Zhang, X.; Lu, G.; Huang, F.; et al. Self-Powered Organic Photodetectors with High Detectivity for Near Infrared Light Detection Enabled by Dark Current Reduction. Adv. Funct. Mater. 2021, 31, 2106326. [Google Scholar] [CrossRef]
- Jiang, B.-H.; Liao, Y.-T.; Tu, Y.-H.; Wong, K.-T.; Chen, C.-P. Solution-processed all-small-molecule organic photovoltaics and photodetectors based on isoindigo derivatives. Dye. Pigment. 2023, 215, 111285. [Google Scholar] [CrossRef]
- Jiang, B.-H.; Hsiao, F.-C.; Lin, Y.-R.; Lin, C.-H.; Shen, Y.A.; Hsu, Y.-Y.; Lee, P.-H.; Su, Y.-W.; Lu, H.-R.; Lin, C.-W.; et al. Highly Efficient Ternary Near-Infrared Organic Photodetectors for Biometric Monitoring. ACS Appl. Mater. Interfaces 2023, 15, 10907–10917. [Google Scholar] [CrossRef]
- Xia, Y.; Geng, C.; Bi, X.; Li, M.; Zhu, Y.; Yao, Z.; Wan, X.; Li, G.; Chen, Y. Biomimetic Flexible High-Sensitivity Near-Infrared II Organic Photodetector for Photon Detection and Imaging. Adv. Opt. Mater. 2024, 12, 2301518. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.; Liu, X.; Miao, J.; Han, Y.; Liu, J.; Wang, L. An n-Type All-Fused-Ring Molecule with Photoresponse to 1000 nm for Highly Sensitive Near-Infrared Photodetector. Adv. Mater. 2023, 35, 2211714. [Google Scholar] [CrossRef]
- Cho, K.; Ha, J.-W.; Nam, M.; Lee, C.; You, S.J.; Lee, A.Y.; Yoon, S.C.; Han, M.; Kim, J.H.; Ko, S.-J.; et al. Crystallization-Driven Optimization of Morphology and Performance in Near-Infrared Organic Photodetectors via Alkyl Side Chain Tuning of Narrow Bandgap Non-Fullerene Acceptors. Adv. Funct. Mater. 2024, 34, 2400676. [Google Scholar] [CrossRef]
- Fuentes-Hernandez, C.; Chou, W.F.; Khan, T.M.; Diniz, L.; Lukens, J.; Larrain, F.A.; Rodriguez-Toro, V.A.; Kippelenk, B. Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 2020, 370, 698–701. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, D.; Wang, Z.; Yu, J. Processes Controlling the Distribution of Vertical Organic Composition in Organic Photodetectors by Ultrasonic-Assisted Solvent Vapor Annealing. ACS Appl. Electron. Mater. 2020, 2, 2188–2195. [Google Scholar] [CrossRef]
- Fang, J.; Deng, D.; Wang, Z.; Adil, M.A.; Xiao, T.; Wang, Y.; Lu, G.; Zhang, Y.; Zhang, J.; Ma, W.; et al. Critical Role of Vertical Phase Separation in Small-Molecule Organic Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 12913–12920. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Liu, T.; Luo, Z.; Guo, Q.; Xiao, Y.; Chen, Y.; Li, X.; Luo, S.; Lu, X.; Zhang, M.; et al. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci. China Chem. 2020, 63, 325–330. [Google Scholar] [CrossRef]
- Li, G.; Cheng, H.; Zhang, Y.; Yang, T.; Liu, Y. Higher open circuit voltage caused by chlorinated polymers endows improved efficiency of binary organic solar cell. Org. Electron. 2020, 83, 105776. [Google Scholar] [CrossRef]
- Jiang, B.-H.; Chen, C.-P.; Liang, H.-T.; Jeng, R.-J.; Chien, W.-C.; Yu, Y.-Y. The Role of Y6 as the Third Component in Fullerene-Free Ternary Organic Photovoltaics. Dye. Pigment. 2020, 181, 108613. [Google Scholar] [CrossRef]
- Du, X.; Heumueller, T.; Gruber, W.; Classen, A.; Unruh, T.; Li, N.; Brabec, C.J. Efficient Polymer Solar Cells Based on Non-fullerene Acceptors with Potential Device Lifetime Approaching 10 Years. Joule 2019, 3, 215–226. [Google Scholar] [CrossRef]
- Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148–7151. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, H.; Li, C.; Lu, K.; Zhang, L.; Shokrieh, A.; Zhang, J.; Lu, G.; Lei, S.; Wei, Z. Trifluoro alkyl side chains in the non-fullerene acceptors to optimize the phase miscibility and vertical distribution of organic solar cells. J. Mater. Chem. A 2022, 10, 8837–8845. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Z.; Feng, J.; Chen, Y.; Zhang, J.; Li, Y.; Jiang, W.; Zhai, T.; Lin, Y.; Wei, Z.; et al. Suppressed Trap Density Leads to Versatile p-i-n Heterojunction Photodiode with Enhanced Photovoltaic/Photodetection Dual-Function. Adv. Opt. Mater. 2023, 11, 2202606. [Google Scholar] [CrossRef]
- Simone, G.; Dyson, M.J.; Meskers, S.C.J.; Janssen, R.A.J.; Gelinck, G.H. Organic Photodetectors and their Application in Large Area and Flexible Image Sensors: The Role of Dark Current. Adv. Funct. Mater. 2020, 30, 1904205. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Fukuda, K.; Yokota, T.; Someya, T. A Highly Responsive Organic Image Sensor Based on a Two-Terminal Organic Photodetector with Photomultiplication. Adv. Mater. 2019, 31, 1903687. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Gao, Y.; Qian, K.; Wang, B.; Xu, R.; He, M.; Li, T.; Xing, G.; Yang, S.; Wei, G. A visible to near-infrared nanocrystalline organic photodetector with ultrafast photoresponse. J. Mater. Chem. C 2022, 10, 9391–9400. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Y.; Cao, Y.; Huang, F.; Guo, Y.; Zhu, X. Design of All-Fused-Ring Nonfullerene Acceptor for Highly Sensitive Self-Powered Near-Infrared Organic Photodetectors. ACS Mater. Lett. 2022, 4, 882–890. [Google Scholar] [CrossRef]
- Wu, J.L.; Lai, L.H.; Hsiao, Y.T.; Tsai, K.W.; Yang, C.M.; Sun, Z.W.; Hsieh, J.C.; Chang, Y.M. Top-Illuminated Organic Photodetectors beyond 1000 nm Wavelength Response Enabled by a Well-Defined Interfacial Engineering. Adv. Opt. Mater. 2021, 10, 2101723. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, T.; Yao, H.; Wang, J.; Bi, P.; Hou, J. Design of ultranarrow-bandgap acceptors for efficient organic photovoltaic cells and highly sensitive organic photodetectors. J. Energy Chem. 2022, 72, 388–394. [Google Scholar] [CrossRef]
- Xu, C.; Liu, P.; Feng, C.; He, Z.; Cao, Y. Organic Photodetectors with High Detectivity for Broadband Detection Covering UV-vis-NIR. J. Mater. Chem. C 2022, 10, 5787–5796. [Google Scholar] [CrossRef]
- Jacoutot, P.; Scaccabarozzi, A.D.; Zhang, T.; Qiao, Z.; Anies, F.; Neophytou, M.; Bristow, H.; Kumar, R.; Moser, M.; Nega, A.D.; et al. Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Non-Fullerene Acceptors for Biometric Monitoring. Small 2022, 18, e2200580. [Google Scholar] [CrossRef]
- Lan, Z.; Lau, Y.S.; Cai, L.; Han, J.; Suen, C.W.; Zhu, F. Dual-Band Organic Photodetectors for Dual-Channel Optical Communications. Laser Photonics Rev. 2022, 16, 2100602. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Yuan, L.; Xiao, J.; Jiang, Z.; Gu, D.; Li, W.; Tai, H.; Jiang, Y. Thermally Induced Anti-Aggregation Evolution of Thick Bulk-Heterojunction for vis–NIR Organic Photodetectors. Adv. Opt. Mater. 2022, 10, 2200340. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Q.; He, Z.; Wang, Y.; Shan, T.; Fu, Y.; Guo, X.; Zhong, H. Efficient Optoelectronic Devices Enabled by Near-Infrared Organic Semiconductors with a Photoresponse beyond 1050 nm. ACS Appl. Mater. Interfaces 2022, 14, 31066–31074. [Google Scholar] [CrossRef] [PubMed]
- Eisner, F.; Foot, G.; Yan, J.; Azzouzi, M.; Georgiadou, D.G.; Sit, W.Y.; Firdaus, Y.; Zhang, G.; Lin, Y.H.; Yip, H.L.; et al. Emissive Charge-Transfer States at Hybrid Inorganic/Organic Heterojunctions Enable Low Non-Radiative Recombination and High-Performance Photodetectors. Adv. Mater. 2022, 34, e2104654. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, L.; Zheng, J.; Li, J.; Lei, S.; Wu, Z.; Yang, D.; Ma, D.; Chen, J. A Simple Fused-Ring Acceptor toward High-Sensitivity Binary Near-Infrared Photodetector. Adv. Opt. Mater. 2022, 10, 2200371. [Google Scholar] [CrossRef]
- Perevedentsev, A.; Mejri, H.; Ruiz-Preciado, L.A.; Marszalek, T.; Lemmer, U.; Blom, P.W.M.; Hernandez-Sosa, G. Polarization-Sensitive Photodetectors Based on Directionally Oriented Organic Bulk-Heterojunctions. Adv. Opt. Mater. 2022, 10, 2102397. [Google Scholar] [CrossRef]
Material | Work Function |
---|---|
PM7 | −5.3647 eV |
IT-4F | −5.6447 eV |
Donor: Acceptor | Dark Current (A cm−2) (Bias) | R (A W−1) (Bias) | D* (Jones) (Bias) | Ref. |
---|---|---|---|---|
PM7:IT-4F: IEICO-4F | 4.95 × 10−10 (−1 V) | 0.26 (−1 V) | 4.95 × 1013 (−1 V) | This work |
PTB7-Th:COT-Oct | 8.18 × 10−9 (−0.5 V) | 0.24 (−0.5 V) | 1.49 × 1012 (−0.5 V) | [20] |
PCE10:YZ1 | 5.3 × 10−11 (0 V) | 0.27 (0 V) | 9.24 × 1013 (0 V) | [18] |
PBDB-T: FM2 | 6.45 × 10−9 (−0.5 V) | 0.455 (−0.5 V) | 1.01 × 1013 (−0.5 V) | [19] |
PM6:PY-IT | 1.05 × 10−9 (−2 V) | 0.44 (−2 V) | 2.39 × 1013 (−2 V) | [1] |
PM6:Y6 | 8.77 × 10−10 (−2 V) | 0.516 (−2 V) | 3.1 × 1013 (−2 V) | [10] |
PffBT4T-2OD:PC71BM | 1.2 × 10−9 (–2 V) | 0.427 (–2 V) | 2.9 × 1013 (–2 V) | [2] |
PffBT4T-2OD:PC71BM:IEICO-4F | 6.3 × 10−11 (0 V) | 0.36 (0 V) | 8 × 1013 (0 V) | [17] |
D18:Y6 | 4.87 × 10−8 (−0.5 V) | 1.21 (−0.5 V) | 1.83 × 1013 (−0.5 V) | [33] |
DTDCPB:C70 | ≈1 × 10−9 (−3 V) | 0.30 (−3 V) | 7.09 × 1012 (−3 V) | [11] |
PM6:PDTTYM | 3.88 × 10−9 (−2 V) | 0.5 (0 V) | 1.35 × 1013 (0 V) | [34] |
PD004:PD-A2 | ≈2 × 10−8 (−4 V) | 0.63 (−4 V) | 6.6 × 1012 (−4 V) | [35] |
PBDB-T:DO4F | ≈1 × 10−5 (−2 V) | 0.5 (0 V) | 3.05 × 1013 (0 V) | [36] |
PTB7Th:COTIC-4F:Y6 | 1.2 × 10−9 (−0.1 V) | 0.41 (−0.1 V) | 8.2 × 1012 (−0.1 V) | [37] |
TQ-T:IEICO-4F | 8.4 × 10−3 (−2 V) | 0.09 (−2 V) | ≈10−10 (−2 V) | [38] |
PTB7-Th:PC71BM+ PTB7-Th: COi8DFIC:PC71BM | ≈1 × 10−3 (−1 V) | 0.43 (−1 V) | 8.8 × 1010 (−1 V) | [39] |
PBDB-T:Y6 | 8.7 × 10−8 (−2 V) | 0.5 (−0.5 V) | ≈1012 (−0.5 V) | [40] |
PTB7-Th:BFIC | ≈10−7 (−3 V) | 0.3 (0 V) | 5.46 × 1013 (0 V) | [41] |
PF:IT−4F | 3.73 × 10−10 (−2 V) | 0.37 (−2 V) | 3.39 × 1013 (−2 V) | [14] |
CuSCN:Y6 | ≈10−9 (−2 V) | 0.12 (−2 V) | 9.97 × 1012 (−0.5 V) | [42] |
PTB7-Th:NTQ | 1.5 × 10−4 (−2 V) | 0.25 (−0.1 V) | 3.72 × 1012 (−0.1 V) | [43] |
P3HT:N2200 | ≈10−5 (−3 V) | 0.07 (−2 V) | 7 × 1011 (−2 V) | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-P.; Peng, Y.-C.; Jiang, B.-H.; Hsu, M.-W.; Chan, C.K.; Du, H.-Y.; Yu, Y.-Y. Organic Bulk–Heterojunction Blends with Vertical Phase Separation for Enhanced Organic Photodetector Performance. Polymers 2024, 16, 3040. https://doi.org/10.3390/polym16213040
Chen C-P, Peng Y-C, Jiang B-H, Hsu M-W, Chan CK, Du H-Y, Yu Y-Y. Organic Bulk–Heterojunction Blends with Vertical Phase Separation for Enhanced Organic Photodetector Performance. Polymers. 2024; 16(21):3040. https://doi.org/10.3390/polym16213040
Chicago/Turabian StyleChen, Chih-Ping, Yan-Cheng Peng, Bing-Huang Jiang, Ming-Wei Hsu, Choon Kit Chan, He-Yun Du, and Yang-Yen Yu. 2024. "Organic Bulk–Heterojunction Blends with Vertical Phase Separation for Enhanced Organic Photodetector Performance" Polymers 16, no. 21: 3040. https://doi.org/10.3390/polym16213040
APA StyleChen, C.-P., Peng, Y.-C., Jiang, B.-H., Hsu, M.-W., Chan, C. K., Du, H.-Y., & Yu, Y.-Y. (2024). Organic Bulk–Heterojunction Blends with Vertical Phase Separation for Enhanced Organic Photodetector Performance. Polymers, 16(21), 3040. https://doi.org/10.3390/polym16213040