Evaluation of Mechanical Properties of ABS-like Resin for Stereolithography Versus ABS for Fused Deposition Modeling in Three-Dimensional Printing Applications for Odontology
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Materials and Processing
2.2. Material Characterizations
Poisson’s Coefficient
2.3. Statistical Analysis
3. Results and Discussion
3.1. Mechanical Tests
3.2. Characterization of the Microstructure and Thermal Attributes
3.3. Application for Odontology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, J.Y.; Pfahnl, A.C. 3D printing of surgery instruments for long-duration space missions. Aviat. Space Environ. Med. 2014, 85, 758–763. [Google Scholar] [CrossRef]
- Pagac, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef]
- Park, S.M.; Park, J.M.; Kim, S.K.; Heo, S.J.; Koak, J.Y. flexural strength of 3D-Printing Resin Materials for Provisional Fixed Dental Prostheses. Materials 2020, 13, 3970. [Google Scholar] [CrossRef]
- Colorado, H.A.; Mendoza, D.E.; Lin, H.T.; Gutierrez-Velasquez, E. Additive manufacturing against the Covid-19 pandemic: A technological model for the adaptability and networking. J. Mater. Res. Technol. 2022, 16, 1150–1164. [Google Scholar] [CrossRef]
- ASTM F3529-21; Standard Practice for Digital Data Management, Comprehensiveness, and Technical Accuracy. ASTM International: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/f3529-21.html (accessed on 24 September 2024).
- Vergara, L.A.; Colorado, H.A. Additive manufacturing of Portland cement pastes with additions of kaolin, superplastificant and calcium carbonate. Constr. Build. Mater. 2020, 248, 118669. [Google Scholar] [CrossRef]
- Gil, L.D.; de Camargo, I.L.; Gutiérrez-Velásquez, E.I.; Colorado, H.A. Systematic overview of nanocomposites obtained by VAT photopolymerization techniques: A cost and life cycle assessment approach. Uis Ing. 2023, 22, 1–14. [Google Scholar] [CrossRef]
- Gardner, L. Metal additive manufacturing in structural engineering—Review, advances, opportunities and outlook. Structures 2023, 47, 2178–2193. [Google Scholar] [CrossRef]
- Sanchez, F.A.C.; Boudaoud, H.; Camargo, M.; Pearce, J.M. Plastic recycling in additive manufacturing: A systematic literature review and opportunities for the circular economy. J. Clean. Prod. 2020, 264, 121602. [Google Scholar] [CrossRef]
- Colorado, H.A.; Mendoza, D.E.; Valencia, F.L. The combined strategy of additive manufacturing I’m support multidisciplinary education in arts, biology, and engineering. J. Sci. Educ. Technol. 2021, 30, 58–73. [Google Scholar] [CrossRef]
- Galante, R.; Figueiredo-Pina, C.G.; Serro, A.P. Additive manufacturing of ceramics for dental applications: A review. Dent. Mater. 2019, 35, 825–846. [Google Scholar] [CrossRef]
- Sarvankar, S.G.; Yewale, S.N. Additive manufacturing in automobile industry. Int. J. Res. Aeronaut. Mech. Eng. 2019, 7, 1–10. [Google Scholar]
- Youssef, G.; Smilo, J.; Blourchian, A.; Huynh, N.U.; Karapetian, A.V. Multifunctional Fused Deposition Modeled Acrylonitrile Butadiene Styrene-Based Structures With Embedded Conductive Channels. J. Eng. Mater. Technol. 2020, 143, 011001. [Google Scholar] [CrossRef]
- Huynh, N.U.; Smilo, J.; Blourchian, A.; Karapetian, A.V.; Youssef, G. Property-map of epoxy-treated and as-printed polymeric additively manufactured materials. Int. J. Mech. Sci. 2020, 181, 105767. [Google Scholar] [CrossRef]
- Li, H.; Zhao, W.; Wu, X.; Tang, H.; Li, Q.; Tan, J.; Wang, G. 3D Printing and Solvent Dissolution Recycling of Polylactide–Lunar Regolith Composites by Material Extrusion Approach. Polymers 2020, 12, 1724. [Google Scholar] [CrossRef]
- Aung, T.K.; Churei, H.; Tanabe, G.; Kinjo, R.; Togawa, K.; Li, C.; Tsuchida, Y.; Tun, P.S.; Hlaing, S.; Takahashi, H.; et al. Air Permeability, Shock Absorption Ability, and Flexural Strength of 3D-Printed Perforated ABS Polymer Sheets with 3D-Knitted Fabric Cushioning for Sports Face Guard Applications. Polymers 2021, 13, 1879. [Google Scholar] [CrossRef]
- Kravitz, N.D.; Groth, C.; Shannon, T. Software CAD/CAM para impressão tridimensional. J. Clin. Orthod. 2018, 52, 22–27. [Google Scholar]
- Mcglumphy, K.C.; Mendel, D.A.; Yilmaz, B.; Seidt, J.D. Estudo piloto de fotogrametria de correlação de imagem 3D para avaliar tensão e deformação de materiais de proteção bucal. Dente. Traumatol. 2014, 30, 236–239. [Google Scholar] [CrossRef]
- Liang, K.; Carmone, S.; Brambilla, D.; Leroux, J.-C. Ciências Aplicadas e Engenharia Impressão 3D de um dispositivo vestível de administração oral personalizada: Um estudo inédito em humanos. Ciência Adv. 2018, 4, eat2544. [Google Scholar] [CrossRef]
- Golab, M.; Massey, S.; Moultrie, J. How generalisable are material extrusion additive manufacturing parameter optimisation studies? A systematic review. Heliyon 2022, 18, e11592. [Google Scholar] [CrossRef]
- Khorsandi, D.; Fahimipour, A.; Abasian, P.; Saber, S.S.; Seyedi, M.; Ghanavati, S.; Ahmad, A.; De Stephanis, A.A.; Taghavinezhaddilami, F.; Leonova, A.; et al. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomater. 2021, 122, 26–49. [Google Scholar] [CrossRef]
- Anastasio, R.; Peerbooms, W.; Cardinaels, R.; Van Breemen, L.C.A. Characterization of ultraviolet-cured methacrylate networks: From photopolymerization to ultimate mechanical properties. Macromolecules 2019, 52, 9220–9231. [Google Scholar] [CrossRef]
- Youssef, G. Applied Mechanics of Polymers: Properties, Processing, and Behavior; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Singh, A.; Chen, M.; Youssef, G. Comparative characterization of the viscoelastic properties of additive manufacturing polymers. Mech. Time Depend. Mater. 2024, 1–19. [Google Scholar] [CrossRef]
- Lakkala, P.; Munnangi, S.R.; Bandari, S.; Repka, M. Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review. Int. J. Pharm. X 2023, 5, 100159. [Google Scholar] [CrossRef] [PubMed]
- Salih, R.M.; Kadauw, A.; Zeidler, H.; Aliyev, R. Investigation of LCD 3D Printing of Carbon Fiber Composites by Utilising Central Composite Design. J. Manuf. Mater. Process. 2023, 7, 58. [Google Scholar] [CrossRef]
- Gümperlein, I.; Fischer, E.; Dietrich-Gümperlein, G.; Karrasch, S.; Nowak, D.; Jörres, R.A.; Schierl, R. Acute health effects of desktop 3D printing (fused deposition modeling) using acrylonitrile butadiene styrene and polylactic acid materials: An experimental exposure study in human volunteers. Indoor Air 2018, 28, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Karwasz, A.; Osiński, F.; Łukaszewski, K. Pollutants Emitted from 3D Printers onto Operators. Sustainability 2022, 14, 1400. [Google Scholar] [CrossRef]
- Berli, C.; Thieringer, F.M.; Sharma, N.; Müller, J.A.; Dedem, P.; Fischer, J.; Rohr, N. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J. Prosthet. Dent. 2020, 124, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Sherman, S.L.; Kadioglu, O.; Currier, G.F.; Kierl, J.P.; Li, J. Accuracy of digital light processing printing of 3-dimensional dental models. Am. J. Orthod. Dentofac. Orthop. 2020, 157, 422–428. [Google Scholar] [CrossRef]
- Alauddin, M.; Baharuddin, A.; Ghazali, M.M. The Modern and Digital Transformation of Oral Health Care: A Mini Review. Healthcare 2021, 9, 118. [Google Scholar] [CrossRef] [PubMed Central]
- Finkelstein, J.; Zhang, F.; Levitin, S.A.; Cappelli, D. Using big data to promote precision oral health in the context of a learning healthcare system. J. Public Health Dent. 2020, 80, S43–S58. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pillai, S.; Upadhyay, A.; Khayambashi, P.; Farooq, I.; Sabri, H.; Tarar, M.; Lee, K.T.; Harb, I.; Zhou, S.; Wang, Y.; et al. Dental 3D-Printing: Transferring Art from the Laboratories to the Clinics. Polymers 2021, 13, 157. [Google Scholar] [CrossRef] [PubMed Central]
- Nahmias, H.L.M.; Vieira, R.M.; Goncalves, V.P.D.; Freire, B.B.; Chilvarquer, I.; Feghali, F.J.; de Azevedo, M.M.A. The perioguide in surgery for correction of gummy smile. Res. Soc. Dev. 2022, 11. [Google Scholar]
- ASTM D2240–15; Standard Test Method for Rubber Property—Durometer Hardness. American Society for Testing Materials: West Conshohocken, PA, USA, 2015.
- ASTM G154-16; Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM D638–10; Standard Test Method for Tensile Properties of Plastics. American Society for Testing Materials: West Conshohocken, PA, USA, 2010.
- Revelo, C.F.; Correa, M.; Aguilar, C.; Colorado, H.A. Composite materials made of waste tires and polyurethane resin: A case study of flexible tiles successfully applied in industry. Case Stud. Constr. Mater. 2021, 15, e00681. [Google Scholar] [CrossRef]
- ASTM D256–10; Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. American Society for Testing Materials: West Conshohocken, PA, USA, 2002.
- ASTM D790; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2017.
- ASTM D695; Standard Test Method for Compressive Properties of Rigid Plastics. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA.
- ASTM E132-86; Standard Test Method for Poisson’s Ratio at Room Temperature. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 1986.
- ASTM D792-20; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTME228; Standard Test Method for Linear Thermal Expansion of Solid Materials with a Push-Rod Dilatometer. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- ASTM D7334-08; Standard Practice for Surface Wettability of Coatings, Substrates and Pigments by Advancing Contact Angle Measurement. ASTM International: West Conshohocken, PA, USA, 2008.
- Joshi, S.; Rawat, K.; C, K.; Rajamohan, V.; Mathew, A.T.; Koziol, K.; Thakur, V.K.; A.S.S, B. 4D printing of materials for the future: Opportunities and challenges. Appl. Mater. Today 2020, 18, 100490. [Google Scholar] [CrossRef]
- Rafiee, M.; Farahani, R.D.; Therriault, D. Multi-Material 3D and 4D Printing: A Survey. Adv. Sci. 2020, 7, 1902307. [Google Scholar] [CrossRef]
- Barreto, G.; Restrepo, S.; Vieira, C.M.; Monteiro, S.N.; Colorado, H.A. Rice Husk with PLA: 3D Filament Making and Additive Manufacturing of Samples for Potential Structural Applications. Polymers 2024, 16, 245. [Google Scholar] [CrossRef]
- Pakkanen, J.; Manfredi, D.; Minetola, P.; Iuliano, L. About the Use of Recycled or Biodegradable Filaments for Sustainability of 3D Printing: State of the Art and Research Opportunities. Smart Innov. Syst. Technol. 2017, 68, 776–785. [Google Scholar]
- Tuli, N.T.; Khatun, S.; Bin Rashid, A. Unlocking the future of precision manufacturing: A comprehensive exploration of 3D printing with fiber-reinforced composites in aerospace, automotive, medical, and consumer industries. Heliyon 2024, 10, e27328. [Google Scholar] [CrossRef]
- Depuydt, D.; Balthazar, M.; Hendrickx, K.; Six, W.; Ferraris, E.; Desplentere, F.; Ivens, J.; Van Vuure, A.W. Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polym. Compos. 2019, 40, 1951–1963. [Google Scholar] [CrossRef]
- Jamil, H.; Faizan, M.; Adeel, M.; Jesionowski, T.; Boczkaj, G.; Balčiūnaitė, A. Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties—A Comprehensive Review. Molecules 2024, 29, 1267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Szykiedans, K.; Credo, W. Mechanical Properties of FDM and SLA Low-cost 3-D Prints. Procedia Eng. 2016, 136, 257–262. [Google Scholar] [CrossRef]
- Górski, F.; Wichniarek, R.; Kuczko, W.; Burdzińska, M.; Jankowska, M. Mechanical Properties of Parts of Medical Components Produced Using Additive Manufacturing Technologies. Adv. Sci. Technol. Res. J. 2017, 11, 166–171. [Google Scholar] [CrossRef]
- Sivashankar, S.; Agambayev, S.; Alamoudi, K.; Buttner, U.; Khashab, N.; Salama, K.N. Compatibility analysis of 3D printer resin for biological applications. Micro Nano Lett. 2016, 11, 654–659. [Google Scholar] [CrossRef]
- Hassan, M.; Mohanty, A.K.; Misra, M. 3D printing in upcycling plastic and biomass waste to sustainable polymer blends and composites: A review. Mater. Des. 2024, 237, 112558. [Google Scholar] [CrossRef]
- Tao, Y.; Kong, F.; Li, Z.; Zhang, J.; Zhao, X.; Yin, Q.; Xing, D.; Li, P. A review on voids of 3D printed parts by fused filament fabrication. J. Mater. Res. Technol. 2021, 15, 4860–4879. [Google Scholar] [CrossRef]
- Gómez-Ortega, A.; Piedra, S.; Mondragón-Rodríguez, G.C.; Camacho, N. Dependence of the mechanical properties of nylon-carbon fiber composite on the FDM printing parameters. Compos. Part A Appl. Sci. Manuf. 2024, 186, 108419. [Google Scholar] [CrossRef]
- Alzyod, H.; Ficzere, P. Material-Dependent Effect of Common Printing Parameters on Residual Stress and Warpage Deformation in 3D Printing: A Comprehensive Finite Element Analysis Study. Polymers 2023, 15, 2893. [Google Scholar] [CrossRef]
- Mukhtarkhanov, M.; Perveen, A.; Talamona, D. Application of Stereolithography Based 3D Printing Technology in Investment Casting. Micromachines 2020, 11, 946. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pepelnjak, T.; Stojšić, J.; Sevšek, L.; Movrin, D.; Milutinović, M. Influence of Process Parameters on the Characteristics of Additively Manufactured Parts Made from Advanced Biopolymers. Polymers 2023, 15, 716. [Google Scholar] [CrossRef]
- Zakeri, S.; Vippola, M.; Levänen, E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Addit. Manuf. 2020, 35, 101177. [Google Scholar] [CrossRef]
- Pinho, A.C.; Piedade, A.P. Sandwich Multi-Material 3D-Printed Polymers: Influence of Aging on the Impact and Flexure Resistances. Polymers 2021, 13, 4030. [Google Scholar] [CrossRef]
- Grymak, A.; Waddell, J.N.; Aarts, J.M.; Ma, S.; Choi, J.J.E. Evaluation of wear behaviour of various occlusal splint materials and manufacturing processes. J. Mech. Behav. Biomed. Mater. 2022, 126, 105053. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Fouda, S.M. Factors affecting flexural strength of 3D-printed resins: A systematic review. J. Prosthodont. 2023, 32, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Grymak, A.; Aarts, J.M.; Ma, S.; Waddell, J.N.; Choi, J.J.E. Comparison of hardness and polishability of various occlusal splint materials. J. Mech. Behav. Biomed. Mater. 2021, 115, 104270. [Google Scholar] [CrossRef]
- Prpic, V.; Slacanin, I.; Schauperl, Z.; Catic, A.; Dulcic, N.; Cimic, S.; Prpic, V.; Slacanin, I.; Schauperl, Z.; Catic, A.; et al. A study of the flexural strength and surface hardness of different materials and technologies for occlusal device fabrication. J. Prosthet. Dent. 2019, 121, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Morita, R.; Shimada, K.; Kawakami, S. Facial Protection Masks After Fracture Treatment of the Nasal Bone to Prevent Re-injury in Contact Sports. J. Craniofacial Surg. 2007, 18, 143–145. [Google Scholar] [CrossRef]
- Procacci, P.; Ferrari, F.; Bettini, G.; Bissolotti, G.; Trevisiol, L.; Nocini, P.F. Soccer-related facial fractures: Postoperative management with facial protective shields. J. Craniofac. Surg. 2009, 20, 15–20. [Google Scholar] [CrossRef]
- Grillo, R.; Slusarenko da Silva, Y.; Tavares, M.G.; Borba, A.M.; Samieirad, S.; Naclério-Homem, M.G. Review: Which sports have a higher risk of maxillofacial injuries? J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101341. [Google Scholar] [CrossRef]
- Fowell, C.J.; Earl, P. Return-to-play guidelines following facial fractures. Br. J. Sports Med. 2013, 47, 654–656. [Google Scholar] [CrossRef]
- Ansari, U.; Wong, E.; Arvier, J.; Hyam, D.; Huang, W. Early return to sport post maxillofacial fracture injury in the professional athlete: A systematic review. J. Cranio-Maxillofacial Surg. 2019, 47, 1323–1330. [Google Scholar] [CrossRef]
- Antunes, L.S.; Torres, A.F.C.; Ferreira, G.; Prado, R.; Coto, N.P.; Antunes, L.A.A. Custom-made facemask as a coadjuvant in the postoperative treatment of sport-related facial trauma: Case report. Dent. Traumatol. 2018, 34, 378–381. [Google Scholar] [CrossRef]
- Gialain, I.O.; Coto, N.P.; Driemeier, L.; Noritomi, P.Y.; e Dias, R.B. A three-dimensional finite element analysis of the sports mouthguard. Dent. Traumatol. 2016, 32, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Gandy, J.R.; Fossett, L.; Wong, B.J. Face masks and basketball: NCAA division I consumer trends and a review of over-the-counter face masks. Laryngoscope 2016, 126, 1054–1060. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gonçalves, V.P.D.; Vieira, C.M.F.; Lopera, H.A.C. The production and materials of mouthguards: Conventional vs. additive manufacturing-A systematic review. Heliyon 2024, 10, e34294. [Google Scholar] [CrossRef]
Test | Standard | Machine | N° of Specimens | Standard |
---|---|---|---|---|
Shore D Hardness and Accelerated Aging | ASTM D2240 [35]. ASTM G-53 [36] | Shore D Hardness tester UV Accelerated Machine | 7 | Five indentations in an “X” format were performed, with a minimum distance of 12 mm from the edges and 6 mm between the test points. A representative sample of each material was subjected to a UV aging process simulating a cycle of 120 h. |
Tensile Test | ASTM D638 [37] | Universal Tensile Tester, Instron 5582 | 7 | With a machine speed of 0.5 mm/min [38] |
Impact Test Izod | ASTM D256-10 [39] | PANTEC Pendulum XC-50 | 7 | Using a 22 J hammer |
Flexural resistance 3 points | ASTM D790 [40] | Universal Tensile Tester, Instron 5582 | 7 | 3-point bending using a descent speed of 0.5 mm/min, and a distance of 80 mm. |
Compression Test | ASTM D695 [41] | Universal Tensile Tester, Instron 5582 | 7 | Cylinders with dimensions of 12.7 mm and a length of 25.4 mm |
Poisson coefficient | ASTM E132-86 [42] | Universal Tensile Tester, Instron 5582 | 7 | Session 2.2.1 |
Characterization of the microstructure | - | JEOL JSM 6700R | 1 | Scanning electron microscopy (SEM) |
Density | ASTM E694-15 [43] | Mettler Toledo balance | 7 | Archimedes principle |
Confocal Microscopy | - | OLYMPUS LEXT OLS4000 | 1 | Addition to a magnification amplitude of up to 17,091× |
Dilatometry | ASTME228 [44] | Dilatometer Netzsch DIL 402 PC | 1 | 5 °C to 100 °C, with a heating rate of 2 °C/min |
Wettability | ASTM D7334-08 [45] | Drop tensiometer KSV K100 | 1 | Clean and dry substrate on which drops of distilled water were applied with a temperature control of 20° |
FTIR | - | Shimadzu IR-Affinity-1 spectrophotometer | 1 | Range 4000–400 cm−1, resolution 4 cm−1, and 32 scans. |
Nanoindentation | - | MicroMaterials NanoTest Vantage | 1 | Ten randomly selected indentation sites at 100 mN |
FFF | SLA | |
---|---|---|
Shore Hardness (Shore D) | 75D ± 0.5 | 75D ± 0.2 |
Weight Pre-Aging (g) | 11.87 ± 0.45 | 15.89 ± 0.76 |
Density Pre-Aging (g/cm3) | 1.14 ± 0.11 | 1.2 ± 0.22 |
Shore Hardness Accelerated Post Aging (Shore D) | 76.5D ± 0.3 | 80D ± 0.5 |
Weight After Early Aging (g) | 11.48 ± 0.89 | 14.89 ± 0.76 |
Post Premature Aging Density (g/cm3) | 1.13 ± 0.09 | 0.9 ± 0.13 |
Parameter | ABS—FFF | ABS—SLA | p-Value |
---|---|---|---|
Tensile strength | 25 ± 0.9 MPa | 15 ± 2.4 MPa | <0.001 |
Tensile modulus | 1140 ± 285 MPa | 482 ± 131 MPa | <0.001 |
Tensile strain | 4 ± 1% | 10 ± 5% | 0.016 |
Flexural strength | 46.96 ± 5.2 MPa | 24.2 ± 3.2 MPa | <0.001 |
Flexural strain | 5.28% ± 1% | 4.26% ± 2% | 0.020 |
Compressive strength | 92.9 MPa | 62 MPa | <0.001 |
Compression strain | 65.28% ± 3% | 29.35% ± 4% | 0.014 |
Poisson’s ratio | 0.38 | 0.41 | ------ |
ABS—FFF | ABS—SLA | p-Value | |
---|---|---|---|
Notch Strength | 89.7 ± 7.5 J/m | 18.8 ± 1.36 J/m | <0.01 |
Impact Strength | 7.7 ± 0.6 kJ/m2 | 1.7 ± 1.1 kJ/m2 | <0.01 |
Sample | Average Contact Angle | Classification |
---|---|---|
ABS–FDM | 35.25° | Hydrophilic |
ABS–SLA | 44.58° | Hydrophilic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias Gonçalves, V.P.; Vieira, C.M.F.; Simonassi, N.T.; Perissé Duarte Lopes, F.; Youssef, G.; Colorado, H.A. Evaluation of Mechanical Properties of ABS-like Resin for Stereolithography Versus ABS for Fused Deposition Modeling in Three-Dimensional Printing Applications for Odontology. Polymers 2024, 16, 2921. https://doi.org/10.3390/polym16202921
Dias Gonçalves VP, Vieira CMF, Simonassi NT, Perissé Duarte Lopes F, Youssef G, Colorado HA. Evaluation of Mechanical Properties of ABS-like Resin for Stereolithography Versus ABS for Fused Deposition Modeling in Three-Dimensional Printing Applications for Odontology. Polymers. 2024; 16(20):2921. https://doi.org/10.3390/polym16202921
Chicago/Turabian StyleDias Gonçalves, Victor Paes, Carlos Maurício Fontes Vieira, Noan Tonini Simonassi, Felipe Perissé Duarte Lopes, George Youssef, and Henry A. Colorado. 2024. "Evaluation of Mechanical Properties of ABS-like Resin for Stereolithography Versus ABS for Fused Deposition Modeling in Three-Dimensional Printing Applications for Odontology" Polymers 16, no. 20: 2921. https://doi.org/10.3390/polym16202921
APA StyleDias Gonçalves, V. P., Vieira, C. M. F., Simonassi, N. T., Perissé Duarte Lopes, F., Youssef, G., & Colorado, H. A. (2024). Evaluation of Mechanical Properties of ABS-like Resin for Stereolithography Versus ABS for Fused Deposition Modeling in Three-Dimensional Printing Applications for Odontology. Polymers, 16(20), 2921. https://doi.org/10.3390/polym16202921