An Easy-to-Handle Route for Bicomponent Porous Tubes Fabrication as Nerve Guide Conduits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. NGCs Tubular Scaffold Fabrication
2.3. Morphology
2.4. Physico-Chemical Analysis
2.5. Water Uptake
2.6. Mechanical Properties
2.7. In Vitro Studies
2.7.1. Cell Line and Chemicals
2.7.2. Cell Culture Conditions and NGC Tubular Scaffolds Preparation
2.7.3. Cell Viability
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lutzweiler, G.; Ndreu Halili, A.; Engin Vrana, N. The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics 2020, 12, 602. [Google Scholar] [CrossRef] [PubMed]
- Poh, P.S.P.; Valainis, D.; Bhattacharya, K.; Van Griensven, M.; Dondl, P. Optimization of Bone Scaffold Porosity Distributions. Sci. Rep. 2019, 9, 9170. [Google Scholar] [CrossRef] [PubMed]
- Guarino, V.; Guaccio, A.; Netti, P.A.; Ambrosio, L. Image Processing and Fractal Box Counting: User-Assisted Method for Multi-Scale Porous Scaffold Characterization. J. Mater. Sci. Mater. Med. 2010, 21, 3109–3118. [Google Scholar] [CrossRef]
- Madaghiele, M.; Sannino, A.; Yannas, I.V.; Spector, M. Collagen-Based Matrices with Axially Oriented Pores. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2008, 85, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-F.; Barrera, C.M.; Dauer, E.A.; Gu, W.; Andreopoulos, F.; Huang, C.-Y.C. Systematic Characterization of Porosity and Mass Transport and Mechanical Properties of Porous Polyurethane Scaffolds. J. Mech. Behav. Biomed. Mater. 2017, 65, 657–664. [Google Scholar] [CrossRef]
- Guarino, V.; Causa, F.; Ambrosio, L. Porosity and Mechanical Properties Relationship in PCL Porous Scaffolds. J. Appl. Biomater. Biomech. 2007, 5, 149–157. [Google Scholar]
- Offeddu, G.S.; Mohee, L.; Cameron, R.E. Scale and Structure Dependent Solute Diffusivity within Microporous Tissue Engineering Scaffolds. J. Mater. Sci. Mater. Med. 2020, 31, 46. [Google Scholar] [CrossRef]
- Ambekar, R.S.; Kandasubramanian, B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind. Eng. Chem. Res. 2019, 58, 6163–6194. [Google Scholar] [CrossRef]
- Flores-Jiménez, M.S.; Garcia-Gonzalez, A.; Fuentes-Aguilar, R.Q. Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach. ACS Appl. Bio Mater. 2023, 6, 1–23. [Google Scholar] [CrossRef]
- Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Development of Biomaterial Scaffold for Nerve Tissue Engineering: Biomaterial Mediated Neural Regeneration. J. Biomed. Sci. 2009, 16, 108. [Google Scholar] [CrossRef]
- Guarino, V.; Cirillo, V.; Ambrosio, L. Bicomponent Electrospun Scaffolds to Design Extracellular Matrix Tissue Analogs. Expert Rev. Med. Devices 2016, 13, 83–102. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Chen, X.; Lu, B.; Meng, K.; Zhang, K.-Q.; Zhao, H. Recent Advances on Nerve Guide Conduits Based on Textile Methods. Smart Mater. Med. 2023, 4, 368–383. [Google Scholar] [CrossRef]
- Farokhi, M.; Mottaghitalab, F.; Shokrgozar, M.A.; Kaplan, D.L.; Kim, H.-W.; Kundu, S.C. Prospects of Peripheral Nerve Tissue Engineering Using Nerve Guide Conduits Based on Silk Fibroin Protein and Other Biopolymers. Int. Mater. Rev. 2017, 62, 367–391. [Google Scholar] [CrossRef]
- Sarker, M.D.; Naghieh, S.; McInnes, A.D.; Schreyer, D.J.; Chen, X. Regeneration of Peripheral Nerves by Nerve Guidance Conduits: Influence of Design, Biopolymers, Cells, Growth Factors, and Physical Stimuli. Prog. Neurobiol. 2018, 171, 125–150. [Google Scholar] [CrossRef] [PubMed]
- Harley, B.A.; Hastings, A.Z.; Yannas, I.V.; Sannino, A. Fabricating Tubular Scaffolds with a Radial Pore Size Gradient by a Spinning Technique. Biomaterials 2006, 27, 866–874. [Google Scholar] [CrossRef]
- Chang, A.; Yannas, I.V.; Perutz, S.; Loree, H.; Sethi, R.R.; Krarup, C.; Norregaard, T.V.; Zervas, N.T.; Silver, J. Electrophysiological Study of Recovery of Peripheral Nerves Regenerated by a Collagen-Glycosaminoglycan Copolymer Matrix. In Progress in Biomedical Polymers; Springer: Berlin/Heidelberg, Germany, 1990; pp. 107–120. [Google Scholar]
- Salvatore, L.; Madaghiele, M.; Parisi, C.; Gatti, F.; Sannino, A. Crosslinking of Micropatterned Collagen-Based Nerve Guides to Modulate the Expected Half-Life. J. Biomed. Mater. Res. Part A 2014, 102, 4406–4414. [Google Scholar] [CrossRef]
- Cerri, F.; Salvatore, L.; Memon, D.; Boneschi, F.M.; Madaghiele, M.; Brambilla, P.; Del Carro, U.; Taveggia, C.; Riva, N.; Trimarco, A.; et al. Peripheral Nerve Morphogenesis Induced by Scaffold Micropatterning. Biomaterials 2014, 35, 4035–4045. [Google Scholar] [CrossRef]
- Mligiliche, N.L.; Tabata, Y.; Ide, C. Nerve Regeneration through Biodegradable Gelatin Conduits in Mice. East Afr. Med. J. 1999, 76, 400–406. [Google Scholar]
- Tian, L.; Prabhakaran, M.P.; Ramakrishna, S. Strategies for Regeneration of Components of Nervous System: Scaffolds, Cells and Biomolecules. Regen. Biomater. 2015, 2, 31–45. [Google Scholar] [CrossRef]
- Boecker, A.; Däschler, S.C.; Kneser, U.; Harhaus, L. Relevance and Recent Developments of Chitosan in Peripheral Nerve Surgery. Front. Cell. Neurosci. 2019, 13, 104. [Google Scholar] [CrossRef]
- Liu, H.; Wen, W.; Hu, M.; Bi, W.; Chen, L.; Liu, S.; Chen, P.; Tan, X. Chitosan Conduits Combined with Nerve Growth Factor Microspheres Repair Facial Nerve Defects. Neural Regen. Res. 2013, 8, 3139–3147. [Google Scholar] [PubMed]
- Zhang, M.; An, H.; Zhang, F.; Jiang, H.; Wan, T.; Wen, Y.; Han, N.; Zhang, P. Prospects of Using Chitosan-Based Biopolymers in the Treatment of Peripheral Nerve Injuries. Int. J. Mol. Sci. 2023, 24, 12956. [Google Scholar] [CrossRef] [PubMed]
- Böcker, A.; Aman, M.; Kneser, U.; Harhaus, L.; Siemers, F.; Stang, F. Closing the Gap: Bridging Peripheral Sensory Nerve Defects with a Chitosan-Based Conduit a Randomized Prospective Clinical Trial. J. Pers. Med. 2022, 12, 900. [Google Scholar] [CrossRef] [PubMed]
- Itai, S.; Suzuki, K.; Kurashina, Y.; Kimura, H.; Amemiya, T.; Sato, K.; Nakamura, M.; Onoe, H. Cell-Encapsulated Chitosan-Collagen Hydrogel Hybrid Nerve Guidance Conduit for Peripheral Nerve Regeneration. Biomed. Microdevices 2020, 22, 81. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, H.; Huang, H.; Bi, W.; Yan, R.; Tan, X.; Wen, W.; Wang, C.; Song, W.; Zhang, Y.; et al. Chitosan Conduit Combined with Hyaluronic Acid Prevent Sciatic Nerve Scar in a Rat Model of Peripheral Nerve Crush Injury. Mol. Med. Rep. 2018, 17, 4360–4368. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.-Y.; Lin, J.-H.; Yao, C.-H.; Chen, J.-H.; Lai, T.-Y.; Chen, Y.-S. In Vivo Evaluation of a Biodegradable EDC/NHS-Cross-Linked Gelatin Peripheral Nerve Guide Conduit Material. Macromol. Biosci. 2007, 7, 500–507. [Google Scholar] [CrossRef]
- Chiono, V.; Pulieri, E.; Vozzi, G.; Ciardelli, G.; Ahluwalia, A.; Giusti, P. Genipin-Crosslinked Chitosan/Gelatin Blends for Biomedical Applications. J. Mater. Sci. Mater. Med. 2008, 19, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Guarino, V.; Galizia, M.; Alvarez-Perez, M.; Mensitieri, G.; Ambrosio, L. Improving Surface and Transport Properties of Macroporous Hydrogels for Bone Regeneration. J. Biomed. Mater. Res. Part A 2015, 103, 1095–1105. [Google Scholar] [CrossRef]
- Guarino, V.; Lewandowska, M.; Bil, M.; Polak, B.; Ambrosio, L. Morphology and Degradation Properties of PCL/HYAFF11®composite Scaffolds with Multi-Scale Degradation Rate. Compos. Sci. Technol. 2010, 70, 1826–1837. [Google Scholar] [CrossRef]
- De Santis, R.; D’Amora, U.; Russo, T.; Ronca, A.; Gloria, A.; Ambrosio, L. 3D Fibre Deposition and Stereolithography Techniques for the Design of Multifunctional Nanocomposite Magnetic Scaffolds. J. Mater. Sci. Mater. Med. 2015, 26, 250. [Google Scholar] [CrossRef]
- Russo, T.; Gloria, A.; D’Antò, V.; D’Amora, U.; Ametrano, G.; Bollino, F.; De Santis, R.; Ausanio, G.; Catauro, M.; Rengo, S.; et al. Poly(∊-Caprolactone) Reinforced with Sol-Gel Synthesized Organic-Inorganic Hybrid Fillers as Composite Substrates for Tissue Engineering. J. Appl. Biomater. Biomech. 2010, 8, 146–152. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-12:2021; Biological Evaluation of Medical Devices Part 12: Sample Preparation and Reference Materials. ISO: Geneva, Switzerland, 2021.
- Hosseinkhani, H.; Hiraoka, Y.; Li, C.-H.; Chen, Y.-R.; Yu, D.-S.; Hong, P.-D.; Ou, K.-L. Engineering Three-Dimensional Collagen-IKVAV Matrix to Mimic Neural Microenvironment. ACS Chem. Neurosci. 2013, 4, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Cescon, M.; Megighian, A.; Ronaldo, P. Collagen VI Regulates Peripheral Nerve Myelination and Function. FASEB J. 2014, 28, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Boni, R.; Ali, A.; Shavandi, A.; Clarkson, A.N. Current and Novel Polymeric Biomaterials for Neural Tissue Engineering. J. Biomed. Sci. 2018, 25, 90. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Hao, M.; Wang, D.; Jiang, Z.; Sun, L.; Gao, Y.; Jin, Y.; Lei, P.; Zhuo, Y. The Application of Collagen in the Repair of Peripheral Nerve Defect. Front. Bioeng. Biotechnol. 2022, 10, 973301. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Li, Z.; Sun, Y.; Yao, K. A Preliminary Study on Chitosan/Gelatin Polyelectrolyte Complex Formation. J. Mater. Sci. 2005, 40, 4649–4652. [Google Scholar] [CrossRef]
- Manzari-Tavakoli, A.; Tarasi, R.; Sedghi, R.; Moghimi, A.; Niknejad, H. Fabrication of Nanochitosan Incorporated Polypyrrole/Alginate Conducting Scaffold for Neural Tissue Engineering. Sci. Rep. 2020, 10, 22012. [Google Scholar] [CrossRef]
- Meek, M.F.; Coert, J.H. US Food and Drug Administration/Conformit Europe-Approved Absorbable Nerve Conduits for Clinical Repair of Peripheral and Cranial Nerves. Ann. Plast. Surg. 2008, 60, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, Y.; Gong, J.; Yang, L.; Niu, C.; Ni, X.; Wang, Y.; Peng, S.; Gu, X.; Sun, C.; et al. Chitosan Degradation Products Facilitate Peripheral Nerve Regeneration by Improving Macrophage-Constructed Microenvironments. Biomaterials 2017, 134, 64–77. [Google Scholar] [CrossRef]
- He, B.; Tao, H.-Y.; Liu, S.-Q. Neuroprotective Effects of Carboxymethylated Chitosan on Hydrogen Peroxide Induced Apoptosis in Schwann Cells. Eur. J. Pharmacol. 2014, 740, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Marcol, W.; Larysz-Brysz, M.; Kucharska, M.; Niekraszewicz, A.; Slusarczyk, W.; Kotulska, K.; Wlaszczuk, P.; Wlaszczuk, A.; Jedrzejowska-Szypulka, H.; Lewin-Kowalik, J. Reduction of Post-Traumatic Neuroma and Epineural Scar Formation in Rat Sciatic Nerve by Application of Microcrystallic Chitosan. Microsurgery 2011, 31, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Takeya, H.; Itai, S.; Kimura, H.; Kurashina, Y.; Amemiya, T.; Nagoshi, N.; Iwamoto, T.; Sato, K.; Shibata, S.; Matsumoto, M.; et al. Schwann Cell-Encapsulated Chitosan-Collagen Hydrogel Nerve Conduit Promotes Peripheral Nerve Regeneration in Rodent Sciatic Nerve Defect Models. Sci. Rep. 2023, 13, 11932. [Google Scholar] [CrossRef] [PubMed]
- Sogias, I.A.; Khutoryanskiy, V.V.; Williams, A.C. Exploring the Factors Affecting the Solubility of Chitosan in Water. Macromol. Chem. Phys. 2010, 211, 426–433. [Google Scholar] [CrossRef]
- Vinsova, J.; Vavrikova, E. Chitosan Derivatives with Antimicrobial, Antitumour and Antioxidant Activities-a Review. Curr. Pharm. Des. 2011, 17, 3596–3607. [Google Scholar] [CrossRef]
- Scialla, S.; Gullotta, F.; Izzo, D.; Palazzo, B.; Scalera, F.; Martin, I.; Sannino, A.; Gervaso, F. Genipin-Crosslinked Collagen Scaffolds Inducing Chondrogenesis: A Mechanical and Biological Characterization. J. Biomed. Mater. Res. Part A 2022, 110, 1372–1385. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Genipin-Crosslinked Gelatin/Chitosan-Based Functional Films Incorporated with Rosemary Essential Oil and Quercetin. Materials 2022, 15, 3769. [Google Scholar] [CrossRef]
- Queiroz, M.F.; Teodosio Melo, K.R.; Sabry, D.A.; Sassaki, G.L.; Rocha, H.A.O. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs 2014, 13, 141–158. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.-S.; Yan, K.; Qi, Y.; Wang, G.-F.; Cui, Y.-L. Preparation, Characterization, and Evaluation of Genipin Crosslinked Chitosan/Gelatin Three-Dimensional Scaffolds for Liver Tissue Engineering Applications. J. Biomed. Mater. Res. Part A 2016, 104, 1863–1870. [Google Scholar] [CrossRef] [PubMed]
- Das, M.P.; Suguna, P.R.; Prasad, K.; Vijaylakshmi, J.V.; Renuka, M. Extraction and Characterization of Gelatin: A Functional Biopolymer. Int. J. Pharm. Pharm. Sci. 2017, 9, 239. [Google Scholar] [CrossRef]
- Grenier, J.; Duval, H.; Barou, F.; Lv, P.; David, B.; Letourneur, D. Mechanisms of Pore Formation in Hydrogel Scaffolds Textured by Freeze-Drying. Acta Biomater. 2019, 94, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Suo, H.; Zhang, D.; Yin, J.; Qian, J.; Wu, Z.L.; Fu, J. Interpenetrating Polymer Network Hydrogels Composed of Chitosan and Photocrosslinkable Gelatin with Enhanced Mechanical Properties for Tissue Engineering. Mater. Sci. Eng. C 2018, 92, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.-J.; Tsou, T.-L.; Wang, H.-J.; Hsu, S. Characterization of Chitosan--Gelatin Scaffolds for Dermal Tissue Engineering. J. Tissue Eng. Regen. Med. 2013, 7, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Ikeda, K.; Yamamoto, K.; Ishizaki, H.; Yoshizawa, Y.; Yanagiguchi, K.; Yamada, S.; Hayashi, Y. Fabrication and Characteristics of Chitosan Sponge as a Tissue Engineering Scaffold. BioMed Res. Int. 2014, 2014, 786892. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Dehiya, B.S.; Sindhu, A. Comparative Study of Chitosan and Chitosan--Gelatin Scaffold for Tissue Engineering. Int. nano Lett. 2017, 7, 285–290. [Google Scholar] [CrossRef]
- Pezeshki-Modaress, M.; Rajabi-Zeleti, S.; Zandi, M.; Mirzadeh, H.; Sodeifi, N.; Nekookar, A.; Aghdami, N. Cell-Loaded Gelatin/Chitosan Scaffolds Fabricated by Salt-Leaching/Lyophilization for Skin Tissue Engineering: In Vitro and In Vivo Study. J. Biomed. Mater. Res. Part A 2014, 102, 3908–3917. [Google Scholar] [CrossRef]
- Clifford, A.L.; Klifto, C.S.; Li, N.Y. Nerve Coaptation in 2023: Adjuncts to Nerve Repair Beyond Suture. J. Hand Surg. Glob. Online 2024, 6, 705–710. [Google Scholar] [CrossRef]
- Borschel, G.H.; Kia, K.F.; Kuzon, W.M., Jr.; Dennis, R.G. Mechanical Properties of Acellular Peripheral Nerve. J. Surg. Res. 2003, 114, 133–139. [Google Scholar] [CrossRef]
- Yang, Y.; Gu, X.; Tan, R.; Hu, W.; Wang, X.; Zhang, P.; Zhang, T. Fabrication and Properties of a Porous Chitin/Chitosan Conduit for Nerve Regeneration. Biotechnol. Lett. 2004, 26, 1793–1797. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Huang, J.; Ye, Z.; Xia, L.; Li, M.; Lv, B.; Shen, X.; Luo, Z. A Novel Scaffold with Longitudinally Oriented Microchannels Promotes Peripheral Nerve Regeneration. Tissue Eng. Part A 2009, 15, 3297–3308. [Google Scholar] [CrossRef]
- Wang, A.; Ao, Q.; Wei, Y.; Gong, K.; Liu, X.; Zhao, N.; Gong, Y.; Zhang, X. Physical Properties and Biocompatibility of a Porous Chitosan-Based Fiber-Reinforced Conduit for Nerve Regeneration. Biotechnol. Lett. 2007, 29, 1697–1702. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.-Y.; Ho, T.-Y.; Lee, H.-C.; Lai, Y.-L.; Lu, M.-C.; Yao, C.-H.; Chen, Y.-S. Highly Permeable Genipin-Cross-Linked Gelatin Conduits Enhance Peripheral Nerve Regeneration. Artif. Organs 2009, 33, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Garcia Garcia, C.E.; Bossard, F.; Rinaudo, M. Electrospun Biomaterials from Chitosan Blends Applied as Scaffold for Tissue Regeneration. Polymers 2021, 13, 1037. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, Z.; Wang, Y.; Xia, L.; Yu, S.; Li, H.; Zhang, W.; Liu, W.; Shao, K.; Han, B. Nerve Regeneration Effect of a Composite Bioactive Carboxymethyl Chitosan-Based Nerve Conduit with a Radial Texture. Molecules 2022, 27, 9039. [Google Scholar] [CrossRef]
- Bradke, F.; Fawcett, J.W.; Spira, M.E. Assembly of a New Growth Cone after Axotomy: The Precursor to Axon Regeneration. Nat. Rev. Neurosci. 2012, 13, 183–193. [Google Scholar] [CrossRef]
- Ben-Yaakov, K.; Dagan, S.Y.; Segal-Ruder, Y.; Shalem, O.; Vuppalanchi, D.; Willis, D.E.; Yudin, D.; Rishal, I.; Rother, F.; Bader, M.; et al. Axonal Transcription Factors Signal Retrogradely in Lesioned Peripheral Nerve. EMBO J. 2012, 31, 1350–1363. [Google Scholar] [CrossRef]
- Martins, R.S.; Bastos, D.; Siqueira, M.G.; Heise, C.O.; Teixeira, M.J. Traumatic Injuries of Peripheral Nerves: A Review with Emphasis on Surgical Indication. Arq. Neuropsiquiatr. 2013, 71, 811–814. [Google Scholar] [CrossRef]
- Yan, Y.; Yao, R.; Zhao, J.; Chen, K.; Duan, L.; Wang, T.; Zhang, S.; Guan, J.; Zheng, Z.; Wang, X.; et al. Implantable Nerve Guidance Conduits: Material Combinations, Multi-Functional Strategies and Advanced Engineering Innovations. Bioact. Mater. 2022, 11, 57–76. [Google Scholar] [CrossRef]
- Lezcano, M.F.; Martínez-Rodríguez, P.; Godoy, K.; Hermosilla, J.; Acevedo, F.; Gareis, I.E.; Dias, F.J. Exploring Schwann Cell Behavior on Electrospun Polyhydroxybutyrate Scaffolds with Varied Pore Sizes and Fiber Thicknesses: Implications for Neural Tissue Engineering. Polymers 2023, 15, 4625. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, V.; Clements, B.A.; Guarino, V.; Bushman, J.; Kohn, J.; Ambrosio, L. A Comparison of the Performance of Mono-and Bi-Component Electrospun Conduits in a Rat Sciatic Model. Biomaterials 2014, 35, 8970–8982. [Google Scholar] [CrossRef]
- Puhl, D.L.; Funnell, J.L.; Nelson, D.W.; Gottipati, M.K.; Gilbert, R.J. Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration. Bioengineering 2020, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Saracino, E.; Cirillo, V.; Marrese, M.; Guarino, V.; Benfenati, V.; Zamboni, R.; Ambrosio, L. Structural and Functional Properties of Astrocytes on PCL Based Electrospun Fibres. Mater. Sci. Eng. C 2021, 118, 111363. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, V.; Guarino, V.; Alvarez-Perez, M.A.; Marrese, M.; Ambrosio, L. Optimization of Fully Aligned Bioactive Electrospun Fibers for “in Vitro” Nerve Guidance. J. Mater. Sci. Mater. Med. 2014, 25, 2323–2332. [Google Scholar] [CrossRef] [PubMed]
- Alipour, H.; Alizadeh, A.; Azarpira, N.; Saudi, A.; Alavi, O.; Tanideh, N.; Dehghani, F. Incorporating Fingolimod through Poly(Lactic-Co-Glycolic Acid) Nanoparticles in Electrospun Polyurethane/Polycaprolactone/Gelatin Scaffold: An in Vitro Study for Nerve Tissue Engineering. Polym. Adv. Technol. 2022, 33, 2589–2600. [Google Scholar] [CrossRef]
- Pozzobon, L.G.; Sperling, L.E.; Teixeira, C.E.; Malysz, T.; Pranke, P. Development of a Conduit of PLGA-Gelatin Aligned Nanofibers Produced by Electrospinning for Peripheral Nerve Regeneration. Chem. Biol. Interact. 2021, 348, 109621. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sun, X.; Wang, T.; Chen, S.; Zeng, C.; Xie, G.; Zhu, Q.; Liu, X.; Quan, D. Nano-Fibrous and Ladder-like Multi-Channel Nerve Conduits: Degradation and Modification by Gelatin. Mater. Sci. Eng. C 2018, 83, 130–142. [Google Scholar] [CrossRef]
- Deng, P.; Chen, F.; Zhang, H.; Chen, Y.; Zhou, J. Multifunctional Double-Layer Composite Hydrogel Conduit Based on Chitosan for Peripheral Nerve Repairing. Adv. Healthc. Mater. 2022, 11, 2200115. [Google Scholar] [CrossRef] [PubMed]
- Wlaszczuk, A.; Marcol, W.; Kucharska, M.; Wawro, D.; Palen, P.; Lewin-Kowalik, J. Poly(D,L-Lactide-Co-Glycolide) Tubes with Multifilament Chitosan Yarn or Chitosan Sponge Core in Nerve Regeneration. J. Oral Maxillofac. Surg. 2016, 74, 2327.e1–2327.e12. [Google Scholar] [CrossRef]
- Wang, G.; Lu, P.; Qiao, P.; Zhang, P.; Cai, X.; Tang, L.; Qian, T.; Wang, H. Blood Vessel Remodeling in Late Stage of Vascular Network Reconstruction Is Essential for Peripheral Nerve Regeneration. Bioeng. Transl. Med. 2022, 7, e10361. [Google Scholar] [CrossRef]
- Kasper, M.; Deister, C.; Beck, F.; Schmidt, C.E. Bench-to-Bedside Lessons Learned: Commercialization of an Acellular Nerve Graft. Adv. Healthc. Mater. 2020, 9, 2000174. [Google Scholar] [CrossRef]
- Gonzalez-Perez, F.; Cobianchi, S.; Geuna, S.; Barwig, C.; Freier, T.; Udina, E.; Navarro, X. Tubulization with Chitosan Guides for the Repair of Long Gap Peripheral Nerve Injury in the Rat. Microsurgery 2015, 35, 300–308. [Google Scholar] [CrossRef] [PubMed]
Type | CG Ratio | GP (% wGP/wCG) | TFreezing (°C) | tDrying (h) |
---|---|---|---|---|
CG10 | 1:0 | 0.5 | −18 | 24 |
CG31 | 3:1 | 0.5 | −18 | 24 |
CG11 | 1:1 | 0.5 | −18 | 24 |
CG01 | 0:1 | 0.5 | −18 | 24 |
Field of View (FOV, mm2) | Acquisition Resolution (µm/pixel) | X-ray Detector Position (mm) | Exposure Time (s) | Range of Sample Rotation Angle (Degrees) | Number of Projections | Scan Time (min) |
---|---|---|---|---|---|---|
2.662 × 2.662 | 1.3 | 2 | 5 | 180 | 600 | 70 |
10.65 × 10.65 | 5.2 | 2 | 5 | 180 | 600 | 70 |
Sample | Porosity (%) * | Porosity (%) § | Pore Size (μm) § | Aspect Ratio § α = a/b | |
---|---|---|---|---|---|
a | b | ||||
CG10 | 94.07 ± 1.04 | 94.95 ± 0.56 | 103.47 ± 23.17 | 134.16 ± 26.10 | 0.79 ± 0.17 |
CG31 | 94.03 ± 1.02 | 95.35 ± 1.14 | 96.74 ± 27.07 | 121.35 ± 30.33 | 0.80 ± 0.15 |
CG11 | 95.01 ± 1.21 | 95.70 ± 0.49 | 67.86 ± 18.89 | 90.62 ± 23.99 | 0.76 ± 0.14 |
CG01 | 97.23 ± 1.15 | 96.86 ± 0.31 | 186.62 ± 58.96 | 276.65 ± 90.07 | 0.70 ± 0.19 |
DF | Sum of Squares | Mean Square | F Value | Prob > F | ||
---|---|---|---|---|---|---|
Young’s modulus | Model | 3 | 61.22204 | 20.40735 | 90.16932 | 3.07862 × 10−10 |
Error | 16 | 3.62116 | 0.22632 | |||
Total | 19 | 64.8432 | ||||
Tangent modulus | Model | 3 | 16.1404 | 5.38013 | 33.06527 | 4.32898 × 10−7 |
Error | 16 | 2.6034 | 0.16271 | |||
Total | 19 | 18.7438 | ||||
Maximum stress | Model | 3 | 0.2367 | 0.0789 | 144.38634 | 8.51763 × 10−12 |
Error | 16 | 0.00874 | 5.4645 × 10−4 | |||
Total | 19 | 0.24544 | ||||
Maximum strain | Model | 3 | 84.255 | 28.085 | 100.81163 | 1.32562 × 10−10 |
Error | 16 | 4.45742 | 0.27859 | |||
Total | 19 | 88.71242 |
NGCs Fabrication Technique | Material | Porosity (%) | Mechanical Data | Ref. |
---|---|---|---|---|
Native sciatic nerve | Rat source | N/A | Tensile strength = 6.5–11.7 MPa Elastic modulus = 0.58 MPa | [60] |
Acellularization | F344 rat sciatic nerves | N/A | Elastic modulus = 0.58 ± 0.16 MPa Tensile stress = 0.78 ± 0.28 MPa | [60] |
Freeze drying | Chitosan | - | Tensile stress = 0.75–0.95 MPa at 5.8% elongation | [61] |
Freeze drying | Chitosan/collagen | - | Tensile modulus = 0.087 ± 0.007 MPa | [62] |
Molding/freeze drying | Genipin-crosslinked chitosan/gelatin | 94.0–97.0 | Elastic modulus = 3.63–7.70 MPa Tensile strength = 0.367–0.634 MPa Maximum strain = 7.30–12.81% Toughness = 14.0–46.2 kJ/m3 | Our data |
Molding/freeze drying | Chitosan/chitosan yarns | - | Tensile strength = 3.69 ± 0.64 MPa | [63] |
Molding/freeze drying | Genipin-crosslinked gelatin | 90.8 ± 0.9% | Maximum tensile force = 0.03 ± 0.01 kN | [64] |
Electrospinning | Chitosan/PEO | 0.180 ± 0.02 g/cm3 (density) | Elastic modulus = 0.589 MPa | [65] |
Melt spinning | Chitosan/crosslinked carboxymethyl chitosan | 69.8% | Elastic modulus = 3.59 MPa Max load = 10.83 N | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, T.; Scialla, S.; D’Albore, M.; Cruz-Maya, I.; De Santis, R.; Guarino, V. An Easy-to-Handle Route for Bicomponent Porous Tubes Fabrication as Nerve Guide Conduits. Polymers 2024, 16, 2893. https://doi.org/10.3390/polym16202893
Russo T, Scialla S, D’Albore M, Cruz-Maya I, De Santis R, Guarino V. An Easy-to-Handle Route for Bicomponent Porous Tubes Fabrication as Nerve Guide Conduits. Polymers. 2024; 16(20):2893. https://doi.org/10.3390/polym16202893
Chicago/Turabian StyleRusso, Teresa, Stefania Scialla, Marietta D’Albore, Iriczalli Cruz-Maya, Roberto De Santis, and Vincenzo Guarino. 2024. "An Easy-to-Handle Route for Bicomponent Porous Tubes Fabrication as Nerve Guide Conduits" Polymers 16, no. 20: 2893. https://doi.org/10.3390/polym16202893
APA StyleRusso, T., Scialla, S., D’Albore, M., Cruz-Maya, I., De Santis, R., & Guarino, V. (2024). An Easy-to-Handle Route for Bicomponent Porous Tubes Fabrication as Nerve Guide Conduits. Polymers, 16(20), 2893. https://doi.org/10.3390/polym16202893