Oral Administration of Berberine Hydrochloride Based on Chitosan/Carboxymethyl-β-Cyclodextrin Hydrogel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Microbial Strains, and Cell Strains
2.2. Selection of Detection Wavelength
2.3. Determination of the Solubility
2.4. Synthesis of CS/CMCD and Synthesis of BBH-Loaded CS/CMCD
2.5. Characterization of the CS/CMCD and CS/CMCD/BBH Composite Biomaterials
2.6. Drug Loading and Drug Delivery System
2.6.1. Determination of the Loading Capacity and Encapsulation Efficiency
2.6.2. In Vitro Drug Loading and Drug Release
2.7. Antimicrobial Assessment
2.8. Cell Viability Cytotoxicity Assay
2.9. Drug Efficacy Assay
2.10. Confocal or Staining Assay
2.11. Statistical Analysis
3. Results
3.1. Wavelength Study and Solubility
3.2. Synthesis of CS/CMCD and Synthesis of CS/CMCD-Loaded BBH Hydrogel
3.3. Characterization of CS/CMCD and CS/CMCD/BBH Hydrogels
3.3.1. Analysis of Water Content
3.3.2. Proton NMR
3.3.3. FTIR
3.3.4. XRD
3.3.5. TGA
3.3.6. Mechanical Properties
3.3.7. SEM
3.4. Drug Release and Loading System
3.4.1. Loading Capacity and Encapsulation Efficiency
3.4.2. Drug Release Profile
3.5. Antibacterial Effect of CS/CMCD and CS/CMCD/BBH Hydrogels
3.6. Cytotoxicity Effect of CS/CMCD and CS/CMCD/BHH Hydrogels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Conc. (mmol/L) | OD Value Absorbance Value | Absorbance Value |
---|---|---|
0.1 | 3.1123 | 0.0537 |
0.2 | 3.1581 | 0.0995 |
0.4 | 3.2017 | 0.1431 |
0.6 | 3.2441 | 0.1735 |
0.8 | 3.2725 | 0.2139 |
1.0 | 3.3204 | 0.2618 |
10 | 6.0000 | 2.9414 |
Samples | E. coli Inhibition Zone (mm) | S. aureus Inhibition Zone (mm) | C. albicans Inhibition Zone (mm) |
---|---|---|---|
BBH | 20.3 ± 0.5 | 18.3 ± 1.5 | 18.3 ± 0.5 |
CS/CMCD/BBH | 10.6 ± 0.1 | 15.3 ± 0.5 | 12.6 ± 0.5 |
CS | 5.3 ± 0.5 | 8 ± 0.1 | 6.6 ± 0.5 |
CS/CMCD | 9.6 ± 0.5 | 8 ± 0.1 | 5.6 ± 0.5 |
Samples | E. coli Inhibition Zone (mm) | S. aureus Inhibition Zone (mm) | C. albicans Inhibition Zone (mm) |
---|---|---|---|
BBH | 21.3 ± 0.5 | 19.3 ± 0.5 | 18.3 ± 0.5 |
CS/CMCD/BBH | 11.6 ± 1.1 | 16.3 ± 0.05 | 15 ± 0.5 |
CS | 6.3 ± 0.5 | 8.6 ± 0.1 | 7 ± 0.1 |
CS/CMCD | 10.3 ± 1.1 | 8.6 ± 0.1 | 8 ± 0.1 |
Samples | E. coli Inhibition Zone (mm) | S. aureus Inhibition Zone (mm) | C. albicans Inhibition Zone (mm) |
---|---|---|---|
BBH | 22.3 ± 0.5 | 20 ± 1 | 19.3 ± 0.5 |
CS/CMCD/BBH | 12.1 ± 0.2 | 16 ± 0.5 | 16.3 ± 0.5 |
CS | 7.6 ± 0.1 | 9.3 ± 0.5 | 8 ± 0.1 |
CS/CMCD | 10 ± 0.1 | 9.3 ± 0.5 | 8.3 ± 0.5 |
References
- Almowallad, S.; Al-Massabi, R. Berberine Modulates Cardiovascular Diseases as a Multitarget-Mediated Alkaloid with Insights into Its Downstream Signals Using In Silico Prospective Screening Approaches. Saudi J. Biol. Sci. 2024, 31, 103977. [Google Scholar] [CrossRef]
- Wu, S.; Yang, K.; Hong, Y.; Gong, Y.; Ni, J.; Yang, N.; Ding, W. A New Perspective on the Antimicrobial Mechanism of Berberine Hydrochloride against Staphylococcus aureus Revealed by Untargeted Metabolomic Studies. Front. Microbiol. 2022, 13, 917414. [Google Scholar] [CrossRef]
- Peng, L.; Kang, S.; Yin, Z.; Jia, R.; Song, X.; Li, L.; Li, Z.; Zou, Y.; Liang, X.; Li, L.; et al. Antibacterial Activity and Mechanism of Berberine against Streptococcus Agalactiae. Int. J. Clin. Exp. Pathol. 2015, 8, 5217–5223. [Google Scholar]
- Bandyopadhyay, S.; Patra, P.H.; Mahanti, A.; Mondal, D.K.; Dandapat, P.; Bandyopadhyay, S.; Samanta, I.; Lodh, C.; Bera, A.K.; Bhattacharyya, D.; et al. Potential Antibacterial Activity of Berberine against Multi Drug Resistant Enterovirulent Escherichia Coli Isolated from Yaks (Poephagus grunniens) with Haemorrhagic Diarrhoea. Asian Pac. J. Trop. Med. 2013, 6, 315–319. [Google Scholar] [CrossRef]
- Naz, I.; Masoud, M.S.; Chauhdary, Z.; Shah, M.A.; Panichayupakaranant, P. Anti-inflammatory Potential of Berberine-rich Extract via Modulation of Inflammation Biomarkers. J. Food Biochem. 2022, 46, e14389. [Google Scholar] [CrossRef]
- Mujtaba, M.A.; Akhter, M.H.; Alam, M.S.; Ali, M.D.; Hussain, A. An Updated Review on Therapeutic Potential and Recent Advances in Drug Delivery of Berberine: Current Status and Future Prospect. Curr. Pharm. Biotechnol. 2022, 23, 60–71. [Google Scholar] [CrossRef]
- Domínguez-Delgado, C.L.; Rodríguez-Cruz, I.M.; Fuentes-Prado, E.; Escobar-Chávez, J.J.; Vidal-Romero, G.; García-González, L.; Puente-Lee, R.I. Drug Carrier Systems Using Chitosan for Non Parenteral Routes. In Pharmacology and Therapeutics; Gowder, S.J.T., Ed.; InTech: London, UK, 2014; ISBN 978-953-51-1620-2. [Google Scholar]
- Garg, U.; Chauhan, S.; Nagaich, U.; Jain, N. Current Advances in Chitosan Nanoparticles Based Drug Delivery and Targeting. Adv. Pharm. Bull. 2019, 9, 195–204. [Google Scholar] [CrossRef]
- Parhi, R. Drug Delivery Applications of Chitin and Chitosan: A Review. Environ. Chem. Lett. 2020, 18, 577–594. [Google Scholar] [CrossRef]
- Utami, A.R.; Maksum, I.P.; Deawati, Y. Berberine and Its Study as an Antidiabetic Compound. Biology 2023, 12, 973. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.; Hasan, N.; Nadeem, M.; Rizvi, M.A.; Alam, K.; Kesharwani, P.; Ahmad, F.J. Optimized Formulation of Berberine Hydrochloride Loaded Nanoemulgel for Management of Skin Cancer. Colloids Surf. A Physicochem. Eng. Asp. 2024, 687, 133406. [Google Scholar] [CrossRef]
- Majidzadeh, H.; Araj-Khodaei, M.; Ghaffari, M.; Torbati, M.; Ezzati Nazhad Dolatabadi, J.; Hamblin, M.R. Nano-Based Delivery Systems for Berberine: A Modern Anti-Cancer Herbal Medicine. Colloids Surf. B Biointerfaces 2020, 194, 111188. [Google Scholar] [CrossRef]
- Tan, J.; Luo, Y.; Guo, Y.; Zhou, Y.; Liao, X.; Li, D.; Lai, X.; Liu, Y. Development of Alginate-Based Hydrogels: Crosslinking Strategies and Biomedical Applications. Int. J. Biol. Macromol. 2023, 239, 124275. [Google Scholar] [CrossRef]
- Mirhadi, E.; Rezaee, M.; Malaekeh-Nikouei, B. Nano Strategies for Berberine Delivery, a Natural Alkaloid of Berberis. Biomed. Pharmacother. 2018, 104, 465–473. [Google Scholar] [CrossRef]
- Javed Iqbal, M.; Quispe, C.; Javed, Z.; Sadia, H.; Qadri, Q.R.; Raza, S.; Salehi, B.; Cruz-Martins, N.; Abdulwanis Mohamed, Z.; Sani Jaafaru, M.; et al. Nanotechnology-Based Strategies for Berberine Delivery System in Cancer Treatment: Pulling Strings to Keep Berberine in Power. Front. Mol. Biosci. 2021, 7, 624494. [Google Scholar] [CrossRef]
- Vigata, M.; Meinert, C.; Hutmacher, D.W.; Bock, N. Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics 2020, 12, 1188. [Google Scholar] [CrossRef] [PubMed]
- Farooq, T.; Sohail, M.; Shah, S.A.; Mahmood, A.; Mohammad Qalawlus, A.H.; Rehman Kashif, M.U.; Kousar, M. Colloidal Curcumin-Laden pH-Responsive Hydrogels: A Promising Approach to Enhance Solubility, Dissolution, and Permeation of Hydrophobic Drug. J. Drug Deliv. Sci. Technol. 2023, 84, 104471. [Google Scholar] [CrossRef]
- Najm, A.; Niculescu, A.-G.; Bolocan, A.; Rădulescu, M.; Grumezescu, A.M.; Beuran, M.; Gaspar, B.S. Chitosan and Cyclodextrins-Versatile Materials Used to Create Drug Delivery Systems for Gastrointestinal Cancers. Pharmaceutics 2023, 16, 43. [Google Scholar] [CrossRef]
- Le-Deygen, I.M.; Skuredina, A.A.; Mamaeva, P.V.; Kolmogorov, I.M.; Kudryashova, E.V. Conjugates of Chitosan with β-Cyclodextrins as Promising Carriers for the Delivery of Levofloxacin: Spectral and Microbiological Studies. Life 2023, 13, 272. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Wang, H.; Chen, K.; Zhang, S.; Yu, L.; Elshazly, E.H.; Ke, L.; Gong, R. Oral Insulin Delivery by Carboxymethyl-β-Cyclodextrin-Grafted Chitosan Nanoparticles for Improving Diabetic Treatment. Artif. Cells Nanomed. Biotechnol. 2018, 46, 774–782. [Google Scholar] [CrossRef]
- Jafernik, K.; Ładniak, A.; Blicharska, E.; Czarnek, K.; Ekiert, H.; Wiącek, A.E.; Szopa, A. Chitosan-Based Nanoparticles as Effective Drug Delivery Systems—A Review. Molecules 2023, 28, 1963. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Y.; Chen, S.; Cheong, K.-L.; Teng, B. Carboxymethyl β-Cyclodextrin Grafted Carboxymethyl Chitosan Hydrogel-Based Microparticles for Oral Insulin Delivery. Carbohydr. Polym. 2020, 246, 116617. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.-W.; Yuan, X.-F.; Li, H.; Zhu, Y.; Zhao, B. Preparation, Characterization, and Physicochemical Property of the Inclusion Complexes of Cannabisin A with β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin. J. Mol. Struct. 2023, 1272, 134168. [Google Scholar] [CrossRef]
- Sahu, K.M.; Patra, S.; Swain, S.K. Host-Guest Drug Delivery by β-Cyclodextrin Assisted Polysaccharide Vehicles: A Review. Int. J. Biol. Macromol. 2023, 240, 124338. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Nguyen, T.X.; Tang, H.; Zhang, L.; Yang, G. Nano-Cellulose 3D-Networks as Controlled-Release Drug Carriers. J. Mater. Chem. B 2013, 1, 2976. [Google Scholar] [CrossRef] [PubMed]
- Sarabia-Vallejo, Á.; Caja, M.D.M.; Olives, A.I.; Martín, M.A.; Menéndez, J.C. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023, 15, 2345. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zong, L.; Zhang, Y.; Zhang, Y.; Guo, X.; Guo, G.; Zhao, L.; Ye, F.; Fu, Y. Antifungal Pentachloronitrobenzene/Hydroxypropyl-Beta-Cyclodextrin Inclusion Complex Nanofibers by Electrospun with No Polymer: Fabrication and Characterization. J. Clean. Prod. 2023, 413, 137499. [Google Scholar] [CrossRef]
- Pardeshi, C.V.; Kothawade, R.V.; Markad, A.R.; Pardeshi, S.R.; Kulkarni, A.D.; Chaudhari, P.J.; Longhi, M.R.; Dhas, N.; Naik, J.B.; Surana, S.J.; et al. Sulfobutylether-β-Cyclodextrin: A Functional Biopolymer for Drug Delivery Applications. Carbohydr. Polym. 2023, 301, 120347. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Nah, H.; Ko, W.-K.; Lee, D.; Moon, H.-J.; Lee, J.S.; Heo, M.; Hwang, Y.-S.; Bang, J.B.; An, S.-H.; et al. Facile Preparation of β-Cyclodextrin-Grafted Chitosan Electrospun Nanofibrous Scaffolds as a Hydrophobic Drug Delivery Vehicle for Tissue Engineering Applications. ACS Omega 2021, 6, 28307–28315. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Jia, M.; Wang, L.; Song, S.; Feng, J.; Zhang, X. Chitosan and β-Cyclodextrin-Epichlorohydrin Polymer Composite Film as a Plant Healthcare Material for Carbendazim-Controlled Release to Protect Rape against Sclerotinia sclerotiorum (Lib.) de Bary. Materials 2017, 10, 343. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Lim, D.Y.; Lee, C.H.; Jeon, J.-H.; Choi, M.-K.; Song, I.-S. Enhanced Intestinal Absorption and Pharmacokinetic Modulation of Berberine and Its Metabolites through the Inhibition of P-Glycoprotein and Intestinal Metabolism in Rats Using a Berberine Mixed Micelle Formulation. Pharmaceutics 2020, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-J.; Hsu, L.-R.; Fang, J.-Y.; Lin, H.-H. Chitosan Hydrogel as a Base for Transdermal Delivery of Berberine and Its Evaluation in Rat Skin. Biol. Pharm. Bull. 1999, 22, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.Y.; Tong, J.N.; Ren, L.J.; Hao, P.Y.; Zheng, H.J.; Guo, X.M.; Chen, Y.W.; Li, J.B.; Park, H.J. Preparation and Performance of Chitosan/Cyclodextrin-g-Glutamic Acid Thermosensitive Hydrogel. J. Drug Deliv. Sci. Technol. 2022, 74, 103504. [Google Scholar] [CrossRef]
- Xiao, L.; Poudel, A.J.; Huang, L.; Wang, Y.; Abdalla, A.M.E.; Yang, G. Nanocellulose Hyperfine Network Achieves Sustained Release of Berberine Hydrochloride Solubilized with β-Cyclodextrin for Potential Anti-Infection Oral Administration. Int. J. Biol. Macromol. 2020, 153, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Mohamadi Zahedi, S.; Mansourpanah, Y. Construction of Chitosan-Carboxymethyl β-Cyclodextrin Silver Nanocomposite Hydrogel to Improve Antibacterial Activity. Plast. Rubber Compos. 2018, 47, 273–281. [Google Scholar] [CrossRef]
- Wang, Q.-S.; Li, K.; Gao, L.-N.; Zhang, Y.; Lin, K.-M.; Cui, Y.-L. Intranasal Delivery of Berberine via in Situ Thermoresponsive Hydrogels with Non-Invasive Therapy Exhibits Better Antidepressant-like Effects. Biomater. Sci. 2020, 8, 2853–2865. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.S.; Ahmad, M.; Alqahtani, M.S.; Mahmood, A.; Barkat, K.; Khan, M.T.; Tulain, U.R.; Rashid, A. β-Cyclodextrin Chitosan-Based Hydrogels with Tunable pH-Responsive Properties for Controlled Release of Acyclovir: Design, Characterization, Safety, and Pharmacokinetic Evaluation. Drug Deliv. 2021, 28, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Johari, N.; Moroni, L.; Samadikuchaksaraei, A. Tuning the Conformation and Mechanical Properties of Silk Fibroin Hydrogels. Eur. Polym. J. 2020, 134, 109842. [Google Scholar] [CrossRef]
- Tenório, F.S.; Do Amaral Montanheiro, T.L.; Dos Santos, A.M.I.; Dos Santos Silva, M.; Lemes, A.P.; Tada, D.B. Chitosan Hydrogel Covalently Crosslinked by Gold Nanoparticle: Eliminating the Use of Toxic Crosslinkers. J Appl. Polym. Sci. 2021, 138, 49819. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lin, Z.-R.; Tsai, L.-W.; Perevedentseva, E.; Karmenyan, A.; Cheng, C.-L. Spectral Analysis of Nanodiamond-Berberine Complex Interaction with Living Cells for Nanoparticle Mediated Drug Delivery. J. Biomed. Photonics Eng. 2017, 3, 010305. [Google Scholar] [CrossRef]
- Zhang, X.N.; Wang, Y.J.; Sun, S.; Hou, L.; Wu, P.; Wu, Z.L.; Zheng, Q. A Tough and Stiff Hydrogel with Tunable Water Content and Mechanical Properties Based on the Synergistic Effect of Hydrogen Bonding and Hydrophobic Interaction. Macromolecules 2018, 51, 8136–8146. [Google Scholar] [CrossRef]
- Lavertu, M.; Xia, Z.; Serreqi, A.N.; Berrada, M.; Rodrigues, A.; Wang, D.; Buschmann, M.D.; Gupta, A. A Validated 1H NMR Method for the Determination of the Degree of Deacetylation of Chitosan. J. Pharm. Biomed. Anal. 2003, 32, 1149–1158. [Google Scholar] [CrossRef]
- Dignam, C.F.; Randall, L.A.; Blacken, R.D.; Cunningham, P.R.; Lester, S.-K.G.; Brown, M.J.; French, S.C.; Aniagyei, S.E.; Wenzel, T.J. Carboxymethylated Cyclodextrin Derivatives as Chiral NMR Discriminating Agents. Tetrahedron Asymmetry 2006, 17, 1199–1208. [Google Scholar] [CrossRef]
- Tripathi, A.N.; Chauhan, L.; Thankachan, P.P.; Barthwal, R. Quantum Chemical and Nuclear Magnetic Resonance Spectral Studies on Molecular Properties and Electronic Structure of Berberine and Berberrubine. Magn. Reson. Chem. 2007, 45, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Manikyam, H.K.; Ramesh, C.; Poluri, K.M.; Assad, A. Microwave Assisted Subcritical Water Extraction of Berberine Hydrochloride from the Roots of Berberis Aristata Using Harmony Search Algorithm. J. Herb. Med. Res. 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Galante, R.; Rediguieri, C.F.; Kikuchi, I.S.; Vasquez, P.A.S.; Colaço, R.; Serro, A.P.; Pinto, T.J.A. About the Sterilization of Chitosan Hydrogel Nanoparticles. PLoS ONE 2016, 11, e0168862. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Hao, P.Y.; Jiang, S.Q.; Zhang, W.H.; Ren, L.J.; Zheng, H.J.; Chen, Y.W.; Chen, J.L.; Park, H.J. Preparation and Antibacterial Activity of Chitosan Grafted Cyclodextrin Hydrogel Loaded Berberine Hydrochloride Using Dual Gelling Agent. J. Mol. Struct. 2024, 1295, 136709. [Google Scholar] [CrossRef]
- Koide, T.; Iwata, M.; Maekawa, K.; Saito, H.; Tanimoto, T.; Okada, S. [Berberine Hydrochloride Reference Standard (Control 001) of National Institute of Health Sciences]. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku 2001, 97–100. [Google Scholar]
- Nagase, Y.; Hirata, M.; Wada, K.; Arima, H.; Hirayama, F.; Irie, T.; Kikuchi, M.; Uekama, K. Improvement of Some Pharmaceutical Properties of DY-9760e by Sulfobutyl Ether β-Cyclodextrin. Int. J. Pharm. 2001, 229, 163–172. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Divya, P.L.; Nima, J. Synthesis and Characterization of Novel Drug Delivery System Using Modified Chitosan Based Hydrogel Grafted with Cyclodextrin. Chem. Eng. J. 2016, 284, 1259–1269. [Google Scholar] [CrossRef]
- Taylor, L.S.; Braun, D.E.; Steed, J.W. Crystals and Crystallization in Drug Delivery Design. Cryst. Growth Des. 2021, 21, 1375–1377. [Google Scholar] [CrossRef]
- Shekunov, B.Y.; York, P. Crystallization Processes in Pharmaceutical Technology and Drug Delivery Design. J. Cryst. Growth 2000, 211, 122–136. [Google Scholar] [CrossRef]
- Mishra, A.K.; Allauddin, S.; Radhika, K.R.; Narayan, R.; Raju, K.V.S.N. Effect of NCO/OH Ratio and Ce-Zr Nanoparticles on the Thermo-mechanical Properties of Hyperbranched Polyurethane Urea Coatings. Polym. Adv. Technol. 2011, 22, 882–890. [Google Scholar] [CrossRef]
- Trotta, F.; Zanetti, M.; Camino, G. Thermal Degradation of Cyclodextrins. Polym. Degrad. Stab. 2000, 69, 373–379. [Google Scholar] [CrossRef]
- Gao, J.; Fan, D.; Song, P.; Zhang, S.; Liu, X. Preparation and Application of pH-Responsive Composite Hydrogel Beads as Potential Delivery Carrier Candidates for Controlled Release of Berberine Hydrochloride. R. Soc. Open Sci. 2020, 7, 200676. [Google Scholar] [CrossRef] [PubMed]
- Sgarminato, V.; Tonda-Turo, C.; Ciardelli, G. Reviewing Recently Developed Technologies to Direct Cell Activity through the Control of Pore Size: From the Macro- to the Nanoscale. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.M.; Haugh, M.G.; O’Brien, F.J. The Effect of Mean Pore Size on Cell Attachment, Proliferation and Migration in Collagen-Glycosaminoglycan Scaffolds for Bone Tissue Engineering. Biomaterials 2010, 31, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhou, Y.; Yu, Y.; Zhou, X.; Du, W.; Wan, M.; Fan, Y.; Zhou, X.; Xu, X.; Zheng, L. Evaluation of Chitosan Hydrogel for Sustained Delivery of VEGF for Odontogenic Differentiation of Dental Pulp Stem Cells. Stem Cells Int. 2019, 2019, 1515040. [Google Scholar] [CrossRef] [PubMed]
- Assaad, E.; Maire, M.; Lerouge, S. Injectable Thermosensitive Chitosan Hydrogels with Controlled Gelation Kinetics and Enhanced Mechanical Resistance. Carbohydr. Polym. 2015, 130, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Hou, X.; Cui, D.; Chen, W.; Yao, H.; Xiong, B.; Cai, L.; Zhang, H.; Jiang, L. A Berberine Hydrochloride-Carboxymethyl Chitosan Hydrogel Protects against Staphylococcus aureus Infection in a Rat Mastitis Model. Carbohydr. Polym. 2022, 278, 118910. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.A.; Rathbone, M.J. Overview of Controlled Release Mechanisms. In Fundamentals and Applications of Controlled Release Drug Delivery; Siepmann, J., Siegel, R.A., Rathbone, M.J., Eds.; Springer: Boston, MA, USA, 2012; pp. 19–43. ISBN 978-1-4614-0880-2. [Google Scholar]
- Wilson, C.G.; Crowley, P.J. Controlled Release in Oral Drug Delivery; Wilson, C.G., Crowley, P.J., Eds.; Springer: Boston, MA, USA, 2011; ISBN 978-1-4614-1003-4. [Google Scholar]
- Rasheed, A. Cyclodextrins as Drug Carrier Molecule: A Review. Sci. Pharm. 2008, 76, 567–598. [Google Scholar] [CrossRef]
- Chen, T.; Jiang, Y.; Wang, C.; Cai, Z.; Chen, H.; Zhu, J.; Tao, P.; Wu, M. The pH-Triggered Drug Release and Simultaneous Carrier Decomposition of Effervescent SiO2–Drug–Na2CO3 Composite Nanoparticles: To Improve the Antitumor Activity of Hydrophobic Drugs. RSC Adv. 2021, 11, 5335–5347. [Google Scholar] [CrossRef]
- Hu, C.; He, S.; Lee, Y.J.; He, Y.; Kong, E.M.; Li, H.; Anastasio, M.A.; Popescu, G. Live-Dead Assay on Unlabeled Cells Using Phase Imaging with Computational Specificity. Nat. Commun. 2022, 13, 713. [Google Scholar] [CrossRef] [PubMed]
Sample (g) | First Weighing (g) | Second Weighing (g) | Water Content (g) | WCD (%) |
---|---|---|---|---|
CS/CMCD (1:10) | 3.972 ± 0.005 | 1.211 ± 0.005 | 2.760 ± 0.001 | 69.5 |
CS/CMCD (1:8) | 3.567 ± 0.0005 | 1.198 ± 0.005 | 2.369 ± 0.001 | 66.4 |
CS/CMCD (1:6) | 3.248 ± 0.005 | 1.192 ± 0.005 | 2.056 ± 0.001 | 63.3 |
CS/CMCD (1:4) | 2.989 ± 0.005 | 1.172 ± 0.005 | 1.817 ± 0 | 60.1 |
CS/CMCD (1:2) | 0.937 ± 0.005 | 0.394 ± 0.005 | 0.539 ± 0.001 | 57.5 |
CS/CMCD (1:1) | 0.195 ± 0.005 | 0.112 ± 0.005 | 0.083 ± 0 | 42.4 |
Sample (mg) | Hydrogel Weight (mg) | Loaded Weight (mg) | Drug Weight (mg) | LC (%) | EE (%) |
---|---|---|---|---|---|
CS/CMCD (1:10) | 22.44 ± 5.38 | 325.36 ± 0.44 | 85.62 ± 0.14 | 103.06 ± 4.41 | 121.79 ± 5.21 |
CS/CMCD (1:8) | 18.6 ± 2.57 | 260.9 ± 4.17 | 242.3 ± 1.656 | 92.3 ± 0.86 | 100.7 ± 5.15 |
CS/CMCD (1:6) | 17.16 ± 1.01 | 297.64 ± 0.76 | 253.32 ± 4.07 | 95.42 ± 3.37 | 112.77 ± 1.98 |
CS/CMCD (1:4) | 16.80 ± 2.22 | 293.92 ± 4.00 | 248.7 ± 04.06 | 94.28 ± 3.30 | 111.42 ± 1.90 |
CS/CMCD (1:2) | 16.28 ± 1.06 | 286.44 ± 7.34 | 231.78 ± 0.38 | 91.91 ± 1.19 | 108.62 ± 3.77 |
CS/CMCD (1:1) | 15.55 ± 0.20 | 265.32 ± 0.23 | 221.34 ± 0.36 | 84.97 ± 1.05 | 100.42 ± 3.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clemence, B.F.; Xiao, L.; Yang, G. Oral Administration of Berberine Hydrochloride Based on Chitosan/Carboxymethyl-β-Cyclodextrin Hydrogel. Polymers 2024, 16, 2368. https://doi.org/10.3390/polym16162368
Clemence BF, Xiao L, Yang G. Oral Administration of Berberine Hydrochloride Based on Chitosan/Carboxymethyl-β-Cyclodextrin Hydrogel. Polymers. 2024; 16(16):2368. https://doi.org/10.3390/polym16162368
Chicago/Turabian StyleClemence, Bukatuka Futila, Lin Xiao, and Guang Yang. 2024. "Oral Administration of Berberine Hydrochloride Based on Chitosan/Carboxymethyl-β-Cyclodextrin Hydrogel" Polymers 16, no. 16: 2368. https://doi.org/10.3390/polym16162368
APA StyleClemence, B. F., Xiao, L., & Yang, G. (2024). Oral Administration of Berberine Hydrochloride Based on Chitosan/Carboxymethyl-β-Cyclodextrin Hydrogel. Polymers, 16(16), 2368. https://doi.org/10.3390/polym16162368