Modified Wood Fibers Spontaneously Harvest Electricity from Moisture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Carbon Black Wood Preparation
2.2.2. MEG Preparation
2.3. Sample Preparation
3. Results
3.1. Electricity Generation of MEG
3.2. Power Generation Mechanism and Influencing Factors
3.3. Practical Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Zhang, Z.; Geng, L.; Yuan, T.; Liu, Y.; Guo, J.; Fang, L.; Qiu, J.; Wang, S. Solution-printable fullerene/TiS 2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energy Environ. Sci. 2018, 11, 1307–1317. [Google Scholar] [CrossRef]
- Østergaard, P.A.; Duic, N.; Noorollahi, Y.; Mikulcic, H.; Kalogirou, S. Sustainable development using renewable energy technology. Renew. Energy 2020, 146, 2430–2437. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, D.; Wang, C.; Fu, X.; Wu, G. Impact of coal power generation on the characteristics and risk of heavy metal pollution in nearby soil. Ecosyst. Health Sustain. 2020, 6, 1787092. [Google Scholar] [CrossRef]
- Maamoun, N.; Kennedy, R.; Jin, X.; Urpelainen, J. Identifying coal-fired power plants for early retirement. Renew. Sustain. Energy Rev. 2020, 126, 109833. [Google Scholar] [CrossRef]
- Edwards, M.W.; Schweitzer, R.D.; Shakespeare-Finch, J.; Byrne, A.; Gordon-King, K. Living with nuclear energy: A systematic review of the psychological consequences of nuclear power. Energy Res. Soc. Sci. 2019, 47, 1–15. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, M.; Shi, Q.; Wen, F.; Liu, L.; Dong, B.; Haroun, A.; Yang, Y.; Vachon, P.; Guo, X. Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem. EcoMat 2020, 2, e12058. [Google Scholar]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Wang, X.; Lin, F.; Wang, X.; Fang, S.; Tan, J.; Chu, W.; Rong, R.; Yin, J.; Zhang, Z.; Liu, Y. Hydrovoltaic technology: From mechanism to applications. Chem. Soc. Rev. 2022, 51, 4902–4927. [Google Scholar] [CrossRef]
- Xue, G.; Xu, Y.; Ding, T.; Li, J.; Yin, J.; Fei, W.; Cao, Y.; Yu, J.; Yuan, L.; Gong, L. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321. [Google Scholar] [CrossRef]
- Zhu, R.; Zhu, Y.; Chen, F.; Patterson, R.; Zhou, Y.; Wan, T.; Hu, L.; Wu, T.; Joshi, R.; Li, M. Boosting moisture induced electricity generation from graphene oxide through engineering oxygen-based functional groups. Nano Energy 2022, 94, 106942. [Google Scholar] [CrossRef]
- Sun, Z.; Wen, X.; Wang, L.; Ji, D.; Qin, X.; Yu, J.; Ramakrishna, S. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2022, 2, 32–46. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, H.; Yang, C.; Zhang, P.; Liao, Q.; Yao, H.; Shi, G.; Qu, L. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 2018, 9, 4166. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Ding, X.; Huang, Y.; Shao, C.; Song, L.; Gao, X.; Zhang, Z.; Qu, L. An efficient polymer moist-electric generator. Energy Environ. Sci. 2019, 12, 972–978. [Google Scholar] [CrossRef]
- Lyu, Q.; Peng, B.; Xie, Z.; Du, S.; Zhang, L.; Zhu, J. Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures. ACS Appl. Mater. Interfaces 2020, 12, 57373–57381. [Google Scholar] [CrossRef]
- Shen, D.; Duley, W.W.; Peng, P.; Xiao, M.; Feng, J.; Liu, L.; Zou, G.; Zhou, Y.N. Moisture-enabled electricity generation: From physics and materials to self-powered applications. Adv. Mater. 2020, 32, 2003722. [Google Scholar] [CrossRef]
- Xu, T.; Ding, X.; Cheng, H.; Han, G.; Qu, L. Moisture-Enabled Electricity from Hygroscopic Materials: A New Type of Clean Energy. Adv. Mater. 2023, 34, 2209661. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Xu, T.; Shao, C.; Han, Y.; Lu, B.; Zhang, Z.; Qu, L. Electric power generation using paper materials. J. Mater. Chem. A 2019, 7, 20574–20578. [Google Scholar] [CrossRef]
- Xu, C.; Fu, C.; Jiang, Z.; Yang, T.; Xin, M. Hygroelectric Generator Based on Antisymmetric Modification of Graphene Spheres with Ionic Hydrogels. ACS Appl. Nano Mater. 2023, 6, 5930–5938. [Google Scholar] [CrossRef]
- Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S.J.; Hu, L. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020, 5, 642–666. [Google Scholar] [CrossRef]
- Han, X.; Wang, Z.; Ding, L.; Chen, L.; Wang, F.; Pu, J.; Jiang, S. Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chin. Chem. Lett. 2021, 32, 3105–3108. [Google Scholar] [CrossRef]
- Tian, W.; Wang, X.; Ye, Y.; Wu, W.; Wang, Y.; Jiang, S.; Wang, J.; Han, X. Recent progress of biomass in conventional wood adhesives: A review. Green Chem. 2023, 25, 10304–10337. [Google Scholar] [CrossRef]
- Han, X.; Wang, J.; Wang, X.; Tian, W.; Dong, Y.; Jiang, S. Finite Element Analysis of Strengthening Mechanism of Ultrastrong and Tough Cellulosic Materials. Polymers 2022, 14, 4490. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Ding, L.; Tian, Z.; Song, Y.; Xiong, R.; Zhang, C.; Han, J.; Jiang, S. Potential new material for optical fiber: Preparation and characterization of transparent fiber based on natural cellulosic fiber and epoxy. Int. J. Biol. Macromol. 2023, 224, 1236–1243. [Google Scholar] [CrossRef]
- Nordin, A.H.; Wong, S.; Ngadi, N.; Zainol, M.M.; Abd Latif, N.A.F.; Nabgan, W. Surface functionalization of cellulose with polyethyleneimine and magnetic nanoparticles for efficient removal of anionic dye in wastewater. J. Environ. Chem. Eng. 2021, 9, 104639. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, Y.; Cheng, W.; Chen, W.; Wu, Y.; Yu, H. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 2021, 33, 2000619. [Google Scholar] [CrossRef]
- Cai, T.; Lan, L.; Peng, B.; Zhang, C.; Dai, S.; Zhang, C.; Ping, J.; Ying, Y. Bilayer wood membrane with aligned ion nanochannels for spontaneous moist-electric generation. Nano Lett. 2022, 22, 6476–6483. [Google Scholar] [CrossRef]
- Eun, J.; Jeon, S. Direct fabrication of high performance moisture-driven power generators using laser induced graphitization of sodium chloride-impregnated cellulose nanofiber films. Nano Energy 2022, 92, 106772. [Google Scholar] [CrossRef]
- Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: A review. Adv. Electron. Mater. 2015, 1, 1500017. [Google Scholar] [CrossRef]
- Wang, C.; Tang, S.; Li, B.; Fan, J.; Zhou, J. Construction of hierarchical and porous cellulosic wood with high mechanical strength towards directional Evaporation-driven electrical generation. Chem. Eng. J. 2023, 455, 140568. [Google Scholar] [CrossRef]
- Zhao, X.; Shen, D.; Duley, W.W.; Tan, C.; Zhou, Y.N. Water-Enabled Electricity Generation: A Perspective. Adv. Energy Sustain. Res. 2022, 3, 2100196. [Google Scholar] [CrossRef]
- Tan, J.; Wang, X.; Chu, W.; Fang, S.; Zheng, C.; Xue, M.; Wang, X.; Hu, T.; Guo, W. Harvesting Energy from Atmospheric Water: Grand Challenges in Continuous Electricity Generation. Adv. Mater. 2023, 34, 2211165. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, B.; Li, Z.; Fu, H. Advanced Design of High-Performance Moist-Electric Generators. Adv. Funct. Mater. 2023, 33, 2301420. [Google Scholar] [CrossRef]
- Fleischmann, S.; Zhang, Y.; Wang, X.; Cummings, P.T.; Wu, J.; Simon, P.; Gogotsi, Y.; Presser, V.; Augustyn, V. Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nat. Energy 2022, 7, 222–228. [Google Scholar] [CrossRef]
- Gueye, M.N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J.-P. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 2020, 108, 100616. [Google Scholar] [CrossRef]
- Zhou, J.; Hsieh, Y.-L. Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors. ACS Appl. Mater. Interfaces 2018, 10, 27902–27910. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Tao, Q.; El Ghazaly, A.; Fernandez-Rodriguez, J.; Persson, P.O.; Rosen, J.; Zhang, F. High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1. 33C MXene and PEDOT:PSS. Adv. Funct. Mater. 2018, 28, 1703808. [Google Scholar] [CrossRef]
- Yang, S.; Tao, X.; Chen, W.; Mao, J.; Luo, H.; Lin, S.; Zhang, L.; Hao, J. Ionic Hydrogel for Efficient and Scalable Moisture-Electric Generation. Adv. Mater. 2022, 34, 2200693. [Google Scholar] [CrossRef]
- Hasan, M.M.; Islam, T.; Shah, S.S.; Awal, A.; Aziz, M.A.; Ahammad, A.S. Recent advances in carbon and metal based supramolecular technology for supercapacitor applications. Chem. Rec. 2022, 22, e202200041. [Google Scholar] [CrossRef]
- Guo, X.; Li, J.; Wang, F.; Zhang, J.H.; Zhang, J.; Shi, Y.; Pan, L. Application of conductive polymer hydrogels in flexible electronics. J. Polym. Sci. 2022, 60, 2635–2662. [Google Scholar] [CrossRef]
- Faramarzi, P.; Kim, B.; You, J.B.; Jeong, S.-H. CNT-functionalized electrospun fiber mat for a stretchable moisture-driven power generator. J. Mater. Chem. C 2023, 11, 2206–2216. [Google Scholar] [CrossRef]
- Liu, X.; Gao, H.; Ward, J.E.; Liu, X.; Yin, B.; Fu, T.; Chen, J.; Lovley, D.R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554. [Google Scholar] [CrossRef]
- Cheng, H.; Huang, Y.; Zhao, F.; Yang, C.; Zhang, P.; Jiang, L.; Shi, G.; Qu, L. Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 2018, 11, 2839–2845. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, H.; Yang, C.; Yao, H.; Li, C.; Qu, L. All-region-applicable, continuous power supply of graphene oxide composite. Energy Environ. Sci. 2019, 12, 1848–1856. [Google Scholar] [CrossRef]
- Kang, B.-C.; Park, S.-J.; Choi, H.-J.; Ha, T.-J. All-solution-processed wearable moist-electric generators based on engineered nanocomposites of carbon nanotube and gelatin incorporated with PEDOT:PSS interfacial blocking layer. Nano Energy 2022, 104, 107890. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.; Han, X.; Zhang, W.; Wang, Z.; Ma, X.; Li, M.; Li, C. Asymmetric ionic aerogel of biologic nanofibrils for harvesting electricity from moisture. Nano Energy 2020, 71, 104610. [Google Scholar] [CrossRef]
- Wang, H.; He, T.; Hao, X.; Huang, Y.; Yao, H.; Liu, F.; Cheng, H.; Qu, L. Moisture adsorption-desorption full cycle power generation. Nat. Commun. 2022, 13, 2524. [Google Scholar] [CrossRef]
- Joly, L.; Ybert, C.; Trizac, E.; Bocquet, L. Hydrodynamics within the electric double layer on slipping surfaces. Phys. Rev. Lett. 2004, 93, 257805. [Google Scholar] [CrossRef]
- Bazant, M.Z.; Storey, B.D.; Kornyshev, A.A. Double layer in ionic liquids: Overscreening versus crowding. Phys. Rev. Lett. 2011, 106, 046102. [Google Scholar] [CrossRef]
- Fruchtman, A. Electric field in a double layer and the imparted momentum. Phys. Rev. Lett. 2006, 96, 065002. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, Z.; Chen, J.; Chen, X.; Lin, X.; Yang, S.; Wu, K.; Fu, Q.; Deng, H. Double-gradient-structured composite aerogels for ultra-high-performance moisture energy harvesting. Energy Environ. Sci. 2023, 16, 3600–3611. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, J.; Bai, B.; Qiu, A.; Losic, D.; Shi, D.; Chen, M. Free-standing PEDOT/polyaniline conductive polymer hydrogel for flexible solid-state supercapacitors. Electrochim. Acta 2019, 322, 134769. [Google Scholar] [CrossRef]
- Zhao, F.; Liang, Y.; Cheng, H.; Jiang, L.; Qu, L. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 2016, 9, 912–916. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Han, X.; Peng, Y.; Yu, H.; Pu, J. Modified Wood Fibers Spontaneously Harvest Electricity from Moisture. Polymers 2024, 16, 260. https://doi.org/10.3390/polym16020260
Zhang T, Han X, Peng Y, Yu H, Pu J. Modified Wood Fibers Spontaneously Harvest Electricity from Moisture. Polymers. 2024; 16(2):260. https://doi.org/10.3390/polym16020260
Chicago/Turabian StyleZhang, Tao, Xuewen Han, Yukang Peng, Han Yu, and Junwen Pu. 2024. "Modified Wood Fibers Spontaneously Harvest Electricity from Moisture" Polymers 16, no. 2: 260. https://doi.org/10.3390/polym16020260
APA StyleZhang, T., Han, X., Peng, Y., Yu, H., & Pu, J. (2024). Modified Wood Fibers Spontaneously Harvest Electricity from Moisture. Polymers, 16(2), 260. https://doi.org/10.3390/polym16020260