A Three-Dimensional Modeling Approach for Carbon Nanotubes Filled Polymers Utilizing the Modified Nearest Neighbor Algorithm
Abstract
:1. Introduction
2. Establishment of the CNTs Filled Polymers Using the RVE Model
2.1. Generation of the CNTs Coordinates
2.2. Interference Judgment
- 1.
- AB and CD are coplanar.
- 2.
- AB and CD are noncoplanar.
- Randomly generate the 3D coordinates, length, and radius of the initial CNT within the spatial domain;
- Generate the spatial position coordinates, length, and radius of the second CNT using the modified NNA. Subsequently, assess the spatial relationship of the cylinder with the preceding one. In case of any interference, eliminate the newly generated cylinder and initiate the generation process again. Iterate this procedure until a non-interfering cylinder is produced. Finally, update the probability of generating the nearest distance;
- Increase the generation of additional cylinders in close proximity to the initial CNT;
- Repeat the preceding procedures iteratively until the desired volume fraction is attained.
2.3. Size of the RVE Model
2.4. Boundary Conditions
3. Simulation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Comparison of Interference Judgment Algorithms
A | B | C | D | d1 | d2 | d3 | |
---|---|---|---|---|---|---|---|
a | (0,0,0) | (0,2,0) | (1,1,0) | (−1,1,0) | 0 | 0 | 0 |
b | (0,0,0) | (1,3,0) | (2,3,0) | (3,0,0) | 0 | 1 | 1 |
c | (0,0,0) | (0,3,0) | (1,2,0) | (3,0,0) | 0 | 1 | 1 |
d | (0,0,0) | (0,2,0) | (1,1,1) | (−1,1,1) | 1 | 1 | 1 |
e | (0,0,0) | (1,0,0) | (2,1,1) | (3,2,1) | 1 | ||
f | (0,0,0) | (2,0,0) | (0,2,1) | (1,1,1) | 1 |
References
- Kausar, A.; Rafique, I.; Muhammad, B. Aerospace Application of Polymer Nanocomposite with Carbon Nanotube, Graphite, Graphene Oxide, and Nanoclay. Polym.-Plast. Technol. Eng. 2017, 56, 1438–1456. [Google Scholar] [CrossRef]
- Bora, P.; Bhuyan, C.; Borah, A.R.; Hazarika, S. Carbon Nanomaterials for Designing Next-Generation Membranes and Their Emerging Applications. Chem. Commun. 2023, 59, 11320–11336. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Xie, H.; Wang, Q.; Luo, G.; Liu, C. A Review of the Application and Performance of Carbon Nanotubes in Fuel Cells. J. Nanomater. 2015, 2015, 560392. [Google Scholar] [CrossRef]
- Spinelli, G.; Lamberti, P.; Tucci, V.; Vertuccio, L.; Guadagno, L. Experimental and Theoretical Study on Piezoresistive Properties of a Structural Resin Reinforced with Carbon Nanotubes for Strain Sensing and Damage Monitoring. Compos. Part B Eng. 2018, 145, 90–99. [Google Scholar] [CrossRef]
- Thomas, L.; Ramachandra, M. Advanced Materials for Wind Turbine Blade—A Review. Mater. Today Proc. 2018, 5, 2635–2640. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Dixit, A.R. A Review on the Mechanical Properties of Polymer Composites Reinforced by Carbon Nanotubes and Graphene. Carbon Lett. 2021, 31, 149–165. [Google Scholar] [CrossRef]
- Wu, Z.; Dong, J.; Teng, C.; Li, X.; Zhao, X.; Qin, X.; Ji, C.; Zhang, Q. Polyimide-Based Composites Reinforced by Carbon Nanotube-Grafted Carbon Fiber for Improved Thermal Conductivity and Mechanical Property. Compos. Commun. 2023, 39, 101543. [Google Scholar] [CrossRef]
- Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M.K. Prediction of Electrical Conductivity of Carbon Fiber-Carbon Nanotube-Reinforced Polymer Hybrid Composites. Compos. Part B Eng. 2019, 167, 728–735. [Google Scholar] [CrossRef]
- Liu, W.K.; Li, S.; Park, H.S. Eighty Years of the Finite Element Method: Birth, Evolution, and Future. Arch. Comput. Methods Eng. 2022, 29, 4431–4453. [Google Scholar] [CrossRef]
- Bhakta, A.K.; Jlassi, K.; Strzemiecka, B.; Benzarti, K.; Chehimi, M.M. Reinforced Polymers: The Emerging Role of Diazonium Modification of Fillers. In Aryl Diazonium Salts and Related Compounds; Chehimi, M.M., Pinson, J., Mousli, F., Eds.; Physical Chemistry in Action; Springer International Publishing: Cham, Switzerland, 2022; pp. 379–404. ISBN 978-3-031-04397-0. [Google Scholar]
- Kechit, H.; Belkhiri, S.; Bhakta, A.K.; Mekhalif, Z. Preparation of Silica-Carbon Nanotubes Colloidal Solutions: Application to Kevlar® Reinforcement. In Proceedings of the 4th International Symposium on Materials and Sustainable Development; Benmounah, A., Abadlia, M.T., Saidi, M., Zerizer, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 129–139. ISBN 978-3-030-43267-6. [Google Scholar]
- Detriche, S.; Bhakta, A.K.; N’Twali, P.; Delhalle, J.; Mekhalif, Z. Assessment of Catalyst Selectivity in Carbon-Nanotube Silylesterification. Appl. Sci. 2019, 10, 109. [Google Scholar] [CrossRef]
- Pandey, G.; Biswas, A. Estimating Electrical Conductivity of Multi-Scale Composites with Conductive Nanoparticles Using Bidirectional Time Marching Percolation Network Mapping. Comput. Mater. Sci. 2014, 89, 80–88. [Google Scholar] [CrossRef]
- Matos, M.A.S.; Pinho, S.T.; Tagarielli, V.L. Application of Machine Learning to Predict the Multiaxial Strain-Sensing Response of CNT-Polymer Composites. Carbon 2019, 146, 265–275. [Google Scholar] [CrossRef]
- Matos, M.A.S.; Tagarielli, V.L.; Baiz-Villafranca, P.M.; Pinho, S.T. Predictions of the Electro-Mechanical Response of Conductive CNT-Polymer Composites. J. Mech. Phys. Solids 2018, 114, 84–96. [Google Scholar] [CrossRef]
- Hu, N.; Masuda, Z.; Yan, C.; Yamamoto, G.; Fukunaga, H.; Hashida, T. The Electrical Properties of Polymer Nanocomposites with Carbon Nanotube Fillers. Nanotechnology 2008, 19, 215701. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Karube, Y.; Yan, C.; Masuda, Z.; Fukunaga, H. Tunneling Effect in a Polymer/Carbon Nanotube Nanocomposite Strain Sensor. Acta Mater. 2008, 56, 2929–2936. [Google Scholar] [CrossRef]
- Huang, K.; Tong, S.; Shi, X.; Wen, J.; Bi, X.; Li, A.; Zou, R.; Kong, W.; Yin, H.; Hu, W.; et al. The Numerical and Experimental Investigation of Piezoresistive Performance of Carbon Nanotube/Carbon Black/Polyvinylidene Fluoride Composite. Materials 2023, 16, 5581. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, X. A Numerical Investigation on Piezoresistive Behaviour of Carbon Nanotube/Polymer Composites: Mechanism and Optimizing Principle. Nanotechnology 2013, 24, 265704. [Google Scholar] [CrossRef]
- Alian, A.R.; Meguid, S.A. Multiscale Modeling of the Coupled Electromechanical Behavior of Multifunctional Nanocomposites. Compos. Struct. 2019, 208, 826–835. [Google Scholar] [CrossRef]
- Shen, M.; Han, B.; Ying, T.; Wang, J.; Zhou, L.; Xue, X.; Gao, Y.; Yang, Z. Micromechanical Modeling and Evaluation of CNTs Reinforced Magnesium Matrix Composites Based on Stress Softening Modified Constitutive Model. J. Magnes. Alloys 2024. [Google Scholar] [CrossRef]
- Gojny, F.; Wichmann, M.; Fiedler, B.; Schulte, K. Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study. Compos. Sci. Technol. 2005, 65, 2300–2313. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Wei, F. Controlled Synthesis of Ultralong Carbon Nanotubes with Perfect Structures and Extraordinary Properties. Acc. Chem. Res. 2017, 50, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Kavvadias, I.E.; Tsongas, K.; Bantilas, K.E.; Falara, M.G.; Thomoglou, A.K.; Gkountakou, F.I.; Elenas, A. Mechanical Characterization of MWCNT-Reinforced Cement Paste: Experimental and Multiscale Computational Investigation. Materials 2023, 16, 5379. [Google Scholar] [CrossRef] [PubMed]
- Arora, G.; Pathak, H. Experimental and Numerical Approach to Study Mechanical and Fracture Properties of High-Density Polyethylene Carbon Nanotubes Composite. Mater. Today Commun. 2020, 22, 100829. [Google Scholar] [CrossRef]
- Zeng, L.; Li, R.; Chen, Y. Experimental and simulational study on tensile mechanical property of carbon nanotubes/epoxy resin composite. Acta Mater. Compos. Sin. 2024, 41, 2909–2922. [Google Scholar] [CrossRef]
- Wang, W.; Dai, Y.; Zhang, C.; Gao, X.; Zhao, M. Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution. Materials 2016, 9, 624. [Google Scholar] [CrossRef]
- Xiao, H.; Song, G.; Li, H.; Sun, L. Improved Tensile Properties of Carbon Nanotube Modified Epoxy and Its Continuous Carbon Fiber Reinforced Composites. Polym. Compos. 2015, 36, 1664–1668. [Google Scholar] [CrossRef]
- Kubala, P.; Batys, P.; Barbasz, J.; Weroński, P.; Cieśla, M. Random Sequential Adsorption: An Efficient Tool for Investigating the Deposition of Macromolecules and Colloidal Particles. Adv. Colloid Interface Sci. 2022, 306, 102692. [Google Scholar] [CrossRef]
- Yang, L.; Yan, Y.; Ran, Z.; Liu, Y. A New Method for Generating Random Fibre Distributions for Fibre Reinforced Composites. Compos. Sci. Technol. 2013, 76, 14–20. [Google Scholar] [CrossRef]
- Vaughan, T.J.; McCarthy, C.T. A Combined Experimental–Numerical Approach for Generating Statistically Equivalent Fibre Distributions for High Strength Laminated Composite Materials. Compos. Sci. Technol. 2010, 70, 291–297. [Google Scholar] [CrossRef]
- Wagner, H.D.; Lourie, O.; Feldman, Y.; Tenne, R. Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix. Appl. Phys. Lett. 1998, 72, 188–190. [Google Scholar] [CrossRef]
- Dong, Y.; Pan, X.; Yang, X. A Culculation Method for Finding the Foot of Common Perpendciular of Lines on Different Places. J. Harbin Univ. Sci. Technol. 1990, 14, 84–88. [Google Scholar]
- Alian, A.R.; Meguid, S.A. Large-Scale Atomistic Simulations of CNT-Reinforced Thermoplastic Polymers. Compos. Struct. 2018, 191, 221–230. [Google Scholar] [CrossRef]
- Smit, R.J.M.; Brekelmans, W.A.M.; Meijer, H.E.H. Prediction of the Mechanical Behavior of Nonlinear Heterogeneous Systems by Multi-Level Finite Element Modeling. Comput. Methods Appl. Mech. Eng. 1998, 155, 181–192. [Google Scholar] [CrossRef]
- Gitman, I.M.; Askes, H.; Sluys, L.J. Coupled-Volume Multi-Scale Modelling of Quasi-Brittle Material. Eur. J. Mech.-A/Solids 2008, 27, 302–327. [Google Scholar] [CrossRef]
- Papanikos, P.; Nikolopoulos, D.D.; Tserpes, K.I. Equivalent Beams for Carbon Nanotubes. Comput. Mater. Sci. 2008, 43, 345–352. [Google Scholar] [CrossRef]
- Peng, J.; Wu, J.; Hwang, K.C.; Song, J.; Huang, Y. Can a Single-Wall Carbon Nanotube Be Modeled as a Thin Shell? J. Mech. Phys. Solids 2008, 56, 2213–2224. [Google Scholar] [CrossRef]
- Zaccardi, F.; Santonicola, M.G.; Laurenzi, S. Role of Interface Bonding on the Elastic Properties of Epoxy-Based Nanocomposites with Carbon Nanotubes Using Multiscale Analysis. Compos. Struct. 2021, 255, 113050. [Google Scholar] [CrossRef]
- Wernik, J.M.; Meguid, S.A. Multiscale Micromechanical Modeling of the Constitutive Response of Carbon Nanotube-Reinforced Structural Adhesives. Int. J. Solids Struct. 2014, 51, 2575–2589. [Google Scholar] [CrossRef]
- Alian, A.R.; Kundalwal, S.I.; Meguid, S.A. Multiscale Modeling of Carbon Nanotube Epoxy Composites. Polymer 2015, 70, 149–160. [Google Scholar] [CrossRef]
- Alian, A.R.; Meguid, S.A.; Kundalwal, S.I. Unraveling the Influence of Grain Boundaries on the Mechanical Properties of Polycrystalline Carbon Nanotubes. Carbon 2017, 125, 180–188. [Google Scholar] [CrossRef]
- Okereke, M.I.; Akpoyomare, A.I. A Virtual Framework for Prediction of Full-Field Elastic Response of Unidirectional Composites. Comput. Mater. Sci. 2013, 70, 82–99. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Zuo, Y.; Wang, W. Multiscale Analysis of the Highly Stretchable Carbon−Based Polymer Strain Sensor. Polymers 2023, 15, 1780. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, R.; Zeng, L.; Li, X.; Xi, Z.; Wang, K.; Li, Y. A Multifunctional Carbon Nanotube Reinforced Nanocomposite Modified via Soy Protein Isolate: A Study on Dispersion, Electrical and Mechanical Properties. Carbon 2020, 161, 350–358. [Google Scholar] [CrossRef]
Material | Young’s Modulus (GPa) | Poisson’s Ratio | Tensile Strength (GPa) |
---|---|---|---|
Epoxy resin | 2.538 | 0.3 | 0.0509 |
CNTs | 260 | 0.17 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yue, X.; Wang, Y.; Di, L.; Wang, W.; Wei, J.; Yu, F. A Three-Dimensional Modeling Approach for Carbon Nanotubes Filled Polymers Utilizing the Modified Nearest Neighbor Algorithm. Polymers 2024, 16, 2824. https://doi.org/10.3390/polym16192824
Wang J, Yue X, Wang Y, Di L, Wang W, Wei J, Yu F. A Three-Dimensional Modeling Approach for Carbon Nanotubes Filled Polymers Utilizing the Modified Nearest Neighbor Algorithm. Polymers. 2024; 16(19):2824. https://doi.org/10.3390/polym16192824
Chicago/Turabian StyleWang, Junpu, Xiaozhuang Yue, Yuxuan Wang, Liupeng Di, Wenzhi Wang, Jingchao Wei, and Fei Yu. 2024. "A Three-Dimensional Modeling Approach for Carbon Nanotubes Filled Polymers Utilizing the Modified Nearest Neighbor Algorithm" Polymers 16, no. 19: 2824. https://doi.org/10.3390/polym16192824
APA StyleWang, J., Yue, X., Wang, Y., Di, L., Wang, W., Wei, J., & Yu, F. (2024). A Three-Dimensional Modeling Approach for Carbon Nanotubes Filled Polymers Utilizing the Modified Nearest Neighbor Algorithm. Polymers, 16(19), 2824. https://doi.org/10.3390/polym16192824