Influence of Chitosan on the Viability of Encapsulated and Dehydrated Formulations of Vegetative Cells of Actinomycetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Substances
2.2. Microorganisms and Culture Conditions
2.3. Biomass Production
2.4. Immobilization of Actinomycetes in Calcium Alginate Beads
2.5. Immobilization of Actinomycetes in Chitosan Beads
2.6. Immobilization of Actinomycetes in the Calcium Alginate–Chitosan Composite
2.7. Encapsulation Efficiency and Viability of Immobilized Strains
2.8. Dehydration of Alginate–Chitosan Composites
2.9. Release of Actinomycetes from the Polymer Matrix
2.10. Exposure of Encapsulated Actinomycetes to Ultraviolet Radiation
2.11. Characterization of the Capsules
2.11.1. Chitosan Content in Alginate–Chitosan Composites
2.11.2. Porosity
2.11.3. Scanning Electron Microscopy (SEM)
2.11.4. Capsule Diameter and Sphericity Factor
2.11.5. FTIR Analysis
2.12. Statistic Analysis
3. Results
3.1. Biomass Yield
3.2. Size and Shape of Capsules and Composites Containing Immobilized Biomass
3.3. Encapsulation Efficiency
3.4. Chitosan Content in the Composites
3.5. Capsule Drying
3.6. Viability of Encapsulated and Dehydrated Strains
3.7. Preservation and Release of Biomass
3.8. FTIR Spectra
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinberg, G.; Gurr, S.J. Fungi, Fungicide Discovery and Global Food Security. Fungal Genet. Biol. 2020, 144, 103476. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Li, S.J.; Yan, J.; Tang, Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; Xu, B.L. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front. Microbiol. 2021, 12, 670135. [Google Scholar] [CrossRef]
- Gallegos-Morales, G.; Sánchez-Yáñez, J.M.; Hernández-Castillo, F.D.; Castro del Ángel, E.; Castillo-Reyes, F.; Jiménez-Pérez, O. Chitosan in the Protection of Agricultural Crops against Phytopathogens Agents. Hortic. Int. J. 2022, 6, 168–175. [Google Scholar] [CrossRef]
- Zamoum, M.; Goudjal, Y.; Sabaou, N.; Mathieu, F.; Zitouni, A. Development of Formulations Based on Streptomyces Rochei Strain PTL2 Spores for Biocontrol of Rhizoctonia Solani Damping-off of Tomato Seedlings. Biocontrol. Sci. Technol. 2017, 27, 723–738. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassileva, M.; Martos, V.; Garcia Del Moral, L.F.; Kowalska, J.; Tylkowski, B.; Malusá, E. Formulation of Microbial Inoculants by Encapsulation in Natural Polysaccharides: Focus on Beneficial Properties of Carrier Additives and Derivatives. Front. Plant Sci. 2020, 11, 270. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cano, B.; Mendoza-Meneses, C.J.; García-Trejo, J.F.; Macías-Bobadilla, G.; Aguirre-Becerra, H.; Soto-Zarazúa, G.M.; Feregrino-Pérez, A.A. Review and Perspectives of the Use of Alginate as a Polymer Matrix for Microorganisms Applied in Agro-Industry. Molecules 2022, 27, 4248. [Google Scholar] [CrossRef]
- Cuadros, T.R.; Erices, A.A.; Aguilera, J.M. Porous Matrix of Calcium Alginate/Gelatin with Enhanced Properties as Scaffold for Cell Culture. J. Mech. Behav. Biomed. Mater. 2015, 46, 331–342. [Google Scholar] [CrossRef]
- Bhowmick, S.; Shenouda, M.L.; Tschowri, N. Osmotic Stress Responses and the Biology of the Second Messenger C-Di-AMP in Streptomyces. microLife 2023, 4, uqad020. [Google Scholar] [CrossRef] [PubMed]
- Baysal, K.; Aroguz, A.Z.; Adiguzel, Z.; Baysal, B.M. Chitosan/Alginate Crosslinked Hydrogels: Preparation, Characterization and Application for Cell Growth Purposes. Int. J. Biol. Macromol. 2013, 59, 342–348. [Google Scholar] [CrossRef]
- Hurtado, A.; Aljabali, A.A.A.; Mishra, V.; Tambuwala, M.M.; Serrano-Aroca, Á. Alginate: Enhancement Strategies for Advanced Applications. Int. J. Mol. Sci. 2022, 23, 4486. [Google Scholar] [CrossRef]
- Parsana, Y.; Yadav, M.; Kumar, S. Microencapsulation in the Chitosan-Coated Alginate-Inulin Matrix of Limosilactobacillus Reuteri SW23 and Lactobacillus Salivarius RBL50 and Their Characterization. Carbohydr. Polym. Technol. Appl. 2023, 5, 100285. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, S.; Pramanik, J.; Sivamaruthi, B.S.; Jayeoye, T.J.; Prajapati, B.G.; Chaiyasut, C. Chitosan-Based Composites: Development and Perspective in Food Preservation and Biomedical Applications. Polymers 2023, 15, 3150. [Google Scholar] [CrossRef] [PubMed]
- Singha, N.R.; Deb, M.; Chattopadhyay, P.K. 6—Chitin and Chitosan-Based Blends and Composites. In Biodegradable Polymers, Blends and Composites; Mavinkere Rangappa, S., Parameswaranpillai, J., Siengchin, S., Ramesh, M., Eds.; Woodhead Publishing: Sawston, UK, 2022; pp. 123–203. [Google Scholar] [CrossRef]
- Schaly, S.; Islam, P.; Abosalha, A.; Boyajian, J.L.; Shum-Tim, D.; Prakash, S. Alginate–Chitosan Hydrogel Formulations Sustain Baculovirus Delivery and VEGFA Expression which Promotes Angiogenesis for Wound Dressing Applications. Pharmaceuticals 2022, 15, 1382. [Google Scholar] [CrossRef] [PubMed]
- Joly, J.-P.; Aricov, L.; Balan, G.-A.; Popescu, E.I.; Mocanu, S.; Leonties, A.R.; Matei, I.; Marque, S.R.A.; Ionita, G. Formation of Alginate/Chitosan Interpenetrated Networks Revealed by EPR Spectroscopy. Gels 2023, 9, 231. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Gao, W.; Lai, J.C.K.; Leung, S.W. Functional Enhancement of Chitosan and Nanoparticles in Cell Culture, Tissue Engineering, and Pharmaceutical Applications. Front. Physiol. 2012, 3, 321. [Google Scholar] [CrossRef] [PubMed]
- Jurić, S.; Šegota, S.; Vinceković, M. Influence of Surface Morphology and Structure of Alginate Microparticles on the Bioactive Agents Release Behavior. Carbohydr. Polym. 2019, 218, 234–242. [Google Scholar] [CrossRef]
- Luo, W.; Liu, L.; Qi, G.; Yang, F.; Shi, X.; Zhao, X. Embedding Bacillus Velezensis NH-1 in Microcapsules for Biocontrol of Cucumber Fusarium Wilt. Appl. Environ. Microbiol. 2019, 85, e03128-18. [Google Scholar] [CrossRef]
- Tahtat, D.; Mahlous, M.; Benamer, S.; Khodja, A.N.; Oussedik-Oumehdi, H.; Laraba-Djebari, F. Oral Delivery of Insulin from Alginate/Chitosan Crosslinked by Glutaraldehyde. Int. J. Biol. Macromol. 2013, 58, 160–168. [Google Scholar] [CrossRef]
- Bustos, D.; Guzmán, L.; Valdés, O.; Muñoz-Vera, M.; Morales-Quintana, L.; Castro, R.I. Development and Evaluation of Cross-Linked Alginate–Chitosan–Abscisic Acid Blend Gel. Polymers 2023, 15, 3217. [Google Scholar] [CrossRef]
- Wang, G.; Wang, X.; Huang, L. Feasibility of Chitosan-Alginate (Chi-Alg) Hydrogel Used as Scaffold for Neural Tissue Engineering: A Pilot Study In Vitro. Biotechnol. Biotechnol. Equip. 2017, 31, 766–773. [Google Scholar] [CrossRef]
- Beltran-Vargas, N.E.; Peña-Mercado, E.; Sánchez-Gómez, C.; Garcia-Lorenzana, M.; Ruiz, J.-C.; Arroyo-Maya, I.; Huerta-Yepez, S.; Campos-Terán, J. Sodium Alginate/Chitosan Scaffolds for Cardiac Tissue Engineering: The Influence of Its Three-Dimensional Material Preparation and the Use of Gold Nanoparticles. Polymers 2022, 14, 3233. [Google Scholar] [CrossRef]
- Tummino, M.L.; Magnacca, G.; Cimino, D.; Laurenti, E.; Nisticò, R. The Innovation Comes from the Sea: Chitosan and Alginate Hybrid Gels and Films as Sustainable Materials for Wastewater Remediation. Int. J. Mol. Sci. 2020, 21, 550. [Google Scholar] [CrossRef]
- Nechita, P. Applications of Chitosan in Wastewater Treatment. In Biological Activities and Application of Marine Polysaccharides; Shalaby, E.A., Ed.; InTech: Orlando, FL, USA, 2017. [Google Scholar] [CrossRef]
- Ebrahimi-Zarandi, M.; Saberi Riseh, R.; Tarkka, M.T. Actinobacteria as Effective Biocontrol Agents against Plant Pathogens, an Overview on Their Role in Eliciting Plant Defense. Microorganisms 2022, 10, 1739. [Google Scholar] [CrossRef]
- Berninger, T.; González López, Ó.; Bejarano, A.; Preininger, C.; Sessitsch, A. Maintenance and Assessment of Cell Viability in Formulation of Non-sporulating Bacterial Inoculants. Microb. Biotechnol. 2018, 11, 277–301. [Google Scholar] [CrossRef]
- John, R.P.; Tyagi, R.D.; Brar, S.K.; Surampalli, R.Y.; Prévost, D. Bio-Encapsulation of Microbial Cells for Targeted Agricultural Delivery. Crit. Rev. Biotechnol. 2011, 31, 211–226. [Google Scholar] [CrossRef]
- Saberi-Riseh, R.; Moradi-Pour, M. A Novel Encapsulation of Streptomyces Fulvissimus Uts22 by Spray Drying and Its Biocontrol Efficiency against Gaeumannomyces Graminis, the Causal Agent of Take-all Disease in Wheat. Pest Manag. Sci. 2021, 77, 4357–4364. [Google Scholar] [CrossRef]
- Mancera-López, M.E.; Barrera-Cortés, J.; Mendoza-Serna, R.; Ariza-Castolo, A.; Santillan, R. Polymeric Encapsulate of Streptomyces Mycelium Resistant to Dehydration with Air Flow at Room Temperature. Polymers 2022, 15, 207. [Google Scholar] [CrossRef]
- Geor Malar, C.; Seenuvasan, M.; Kumar, K.S.; Kumar, A.; Parthiban, R. Review on Surface Modification of Nanocarriers to Overcome Diffusion Limitations: An Enzyme Immobilization Aspect. Biochem. Eng. J. 2020, 158, 107574. [Google Scholar] [CrossRef]
- Filippova, S.N.; Surgucheva, N.A.; Gal’chenko, V.F. Long-Term Storage of Collection Cultures of Actinobacteria. Microbiology 2012, 81, 630–637. [Google Scholar] [CrossRef]
- Santos, V.P.; Marques, N.S.S.; Maia, P.C.S.V.; de Lima, M.A.B.; Franco, L.d.O.; de Campos-Takaki, G.M. Seafood Waste as Attractive Source of Chitin and Chitosan Production and Their Applications. Int. J. Mol. Sci. 2020, 21, 4290. [Google Scholar] [CrossRef]
- Papagianni, M. Fungal Morphology and Metabolite Production in Submerged Mycelial Processes. Biotechnol. Adv. 2004, 22, 189–259. [Google Scholar] [CrossRef]
- Van Dissel, D.; Claessen, D.; Van Wezel, G.P. Morphogenesis of Streptomyces in Submerged Cultures. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 89, pp. 1–45. [Google Scholar] [CrossRef]
- Garcia, L.G.S.; Guedes, G.M.D.M.; Da Silva, M.L.Q.; Castelo-Branco, D.S.C.M.; Sidrim, J.J.C.; Cordeiro, R.D.A.; Rocha, M.F.G.; Vieira, R.S.; Brilhante, R.S.N. Effect of the Molecular Weight of Chitosan on Its Antifungal Activity against Candida Spp. in Planktonic Cells and Biofilm. Carbohydr. Polym. 2018, 195, 662–669. [Google Scholar] [CrossRef]
- Narayana, K.J.P.; Prabhakar, P.; Vijayalakshmi, M.; Venkateswarlu, Y.; Krishna, P.S.J. Study on Bioactive Compounds from Streptomyces sp. ANU 6277. Pol. J. Microbiol. 2008, 57, 35–39. [Google Scholar]
- Tripathi, P.; Kumari, A.; Rath, P.; Kayastha, A.M. Immobilization of α-Amylase from Mung Beans (Vigna Radiata) on Amberlite MB 150 and Chitosan Beads: A Comparative Study. J. Mol. Catal. B Enzym. 2007, 49, 69–74. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, W. The Neutral Protease Immobilization: Physical Characterization of Sodium Alginate-Chitosan Gel Beads. Appl. Biochem. Biotechnol. 2022, 194, 2269–2283. [Google Scholar] [CrossRef]
- Erdélyi, L.; Fenyvesi, F.; Gál, B.; Haimhoffer, Á.; Vasvári, G.; Budai, I.; Remenyik, J.; Bereczki, I.; Fehér, P.; Ujhelyi, Z.; et al. Investigation of the Role and Effectiveness of Chitosan Coating on Probiotic Microcapsules. Polymers 2022, 14, 1664. [Google Scholar] [CrossRef]
- Gåserød, O.; Smidsrød, O.; Skjåk-Bræk, G. Microcapsules of Alginate-Chitosan—I: A quantitative study of the interaction between alginate and chitosan. Biomaterials 1998, 19, 1815–1825. [Google Scholar] [CrossRef]
- Devanshi, S.; Shah, K.R.; Arora, S.; Saxena, S.; Devanshi, S.; Shah, K.R.; Arora, S.; Saxena, S. Actinomycetes as An Environmental Scrubber. In Crude Oil—New Technologies and Recent Approaches; IntechOpen: Orlando, FL, USA, 2021. [Google Scholar] [CrossRef]
- Chan, E.-S. Preparation of Ca-Alginate Beads Containing High Oil Content: Influence of Process Variables on Encapsulation Efficiency and Bead Properties. Carbohydr. Polym. 2011, 84, 1267–1275. [Google Scholar] [CrossRef]
- Gholamian, S.; Nourani, M.; Bakhshi, N. Formation and Characterization of Calcium Alginate Hydrogel Beads Filled with Cumin Seeds Essential Oil. Food Chem. 2021, 338, 128143. [Google Scholar] [CrossRef]
- Arias, J.L.; Neira-Carrillo, A.; Arias, J.I.; Escobar, C.; Bodero, M.; David, M.; Fernández, M.S. Sulfated Polymers in Biological Mineralization: A Plausible Source for Bio-Inspired Engineering. J. Mater. Chem. 2004, 14, 2154–2160. [Google Scholar] [CrossRef]
- Grassmann, O.; Löbmann, P. Biomimetic Nucleation and Growth of CaCO3 in Hydrogels Incorporating Carboxylate Groups. Biomaterials 2004, 25, 277–282. [Google Scholar] [CrossRef]
- Daemi, H.; Barikani, M. Synthesis and Characterization of Calcium Alginate Nanoparticles, Sodium Homopolymannuronate Salt and Its Calcium Nanoparticles. Sci. Iran. 2012, 19, 2023–2028. [Google Scholar] [CrossRef]
- Fernandes Queiroz, M.; Melo, K.; Sabry, D.; Sassaki, G.; Rocha, H. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs 2014, 13, 141–158. [Google Scholar] [CrossRef]
- Meskelis, L.; Agondi, R.F.; Duarte, L.G.R.; De Carvalho, M.D.; Sato, A.C.K.; Picone, C.S.F. New Approaches for Modulation of Alginate-Chitosan Delivery Properties. Food Res. Int. 2024, 175, 113737. [Google Scholar] [CrossRef]
- Mokeddem, A.; Benykhlef, S.; Bendaoudi, A.A.; Boudouaia, N.; Mahmoudi, H.; Bengharez, Z.; Topel, S.D.; Topel, Ö. Sodium Alginate-Based Composite Films for Effective Removal of Congo Red and Coralene Dark Red 2B Dyes: Kinetic, Isotherm and Thermodynamic Analysis. Water 2023, 15, 1709. [Google Scholar] [CrossRef]
- Zacchetti, B.; Smits, P.; Claessen, D. Dynamics of Pellet Fragmentation and Aggregation in Liquid-Grown Cultures of Streptomyces Lividans. Front. Microbiol. 2018, 9, 943. [Google Scholar] [CrossRef]
- Do Amaral Sobral, P.J.; Gebremariam, G.; Drudi, F.; De Aguiar Saldanha Pinheiro, A.C.; Romani, S.; Rocculi, P.; Dalla Rosa, M. Rheological and Viscoelastic Properties of Chitosan Solutions Prepared with Different Chitosan or Acetic Acid Concentrations. Foods 2022, 11, 2692. [Google Scholar] [CrossRef]
- Bamidele, O.P.; Emmambux, M.N. Encapsulation of Bioactive Compounds by “Extrusion” Technologies: A Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 3100–3118. [Google Scholar] [CrossRef]
- Ardean, C.; Davidescu, C.M.; Nemeş, N.S.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Duda-Seiman, D.; Musta, V. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int. J. Mol. Sci. 2021, 22, 7449. [Google Scholar] [CrossRef]
- Lee, E.T.; Song, J.; Lee, J.H.; Goo, B.G.; Park, J.K. Analysis of Molecular Structure and Topological Properties of Chitosan Isolated from Crab Shell and Mushroom. Int. J. Biol. Macromol. 2024, 266, 131047. [Google Scholar] [CrossRef]
- Potts, M. Desiccation Tolerance of Prokaryotes. Microbiol. Rev. 1994, 58, 755–805. [Google Scholar] [CrossRef]
- Pasparakis, G.; Bouropoulos, N. Swelling Studies and In Vitro Release of Verapamil from Calcium Alginate and Calcium Alginate–Chitosan Beads. Int. J. Pharm. 2006, 323, 34–42. [Google Scholar] [CrossRef]
- Conzatti, G.; Faucon, D.; Castel, M.; Ayadi, F.; Cavalie, S.; Tourrette, A. Alginate/Chitosan Polyelectrolyte Complexes: A Comparative Study of the Influence of the Drying Step on Physicochemical Properties. Carbohydr. Polym. 2017, 172, 142–151. [Google Scholar] [CrossRef]
- Albadran, H.A.; Chatzifragkou, A.; Khutoryanskiy, V.V.; Charalampopoulos, D. Stability of Probiotic Lactobacillus Plantarum in Dry Microcapsules under Accelerated Storage Conditions. Food Res. Int. 2015, 74, 208–216. [Google Scholar] [CrossRef]
- Kulig, D.; Zimoch-Korzycka, A.; Jarmoluk, A.; Marycz, K. Study on Alginate–Chitosan Complex Formed with Different Polymers Ratio. Polymers 2016, 8, 167. [Google Scholar] [CrossRef]
Composite | Step 1 | Step 2 |
---|---|---|
Blended | A 100 mL solution of sodium alginate (1.5% w/v) with suspended biomass was dripped into 400 mL of a solution 1 containing chitosan (0.8% w/v, pH 3.8) and CaCl2 (0.2 M) using a peristaltic pump and hypodermic needles (31 G × 8 mm and 20 G × 9.5 mm). The mixture was allowed to gel at 150 rpm for 60 min. | |
Coated | A 100 mL solution of sodium alginate (1.5% w/v) with suspended biomass was dripped into 400 mL of 0.1 M CaCl2 solution using a peristaltic pump and hypodermic needles (31 G × 8 mm and 20 G × 9.5 mm). The mixture was allowed to gel at 150 rpm for 60 min. | Calcium alginate capsules with immobilized biomass were immersed for 180 min at 150 rpm in 400 mL of a 0.8% (w/v) chitosan solution. This solution was prepared using distilled water acidified with 0.1% (w/v) acetic acid to a pH of 3.8. |
Core-Shell | A 100 mL solution of sodium alginate (1.5% w/v) with suspended biomass was dripped into 400 mL of 0.03 M CaCl2 solution using a peristaltic pump and hypodermic needles (31 G × 8 mm and 20 G × 9.5 mm). The mixture was allowed to gel at 150 rpm for 60 min. | Calcium alginate capsules with immobilized biomass were immersed for 120 min at 150 rpm in 400 mL of a solution 1 containing chitosan (0.8% w/v, pH 3.8) and CaCl2 (0.2 M) |
Control | See Section 2.3 |
Polymer Matrix | Mean Diameter (mm) | Sphericity Factor | ||||
---|---|---|---|---|---|---|
pH | 3.8 | 5.5 | 6.5 | 3.8 | 5.5 | 6.5 |
Calcium alginate | 2.4 ± 0.0 b | 0.059 ± 0.044 ab | ||||
Chitosan | 4 ± 0.7 d | 0.045 ± 0.029 a | ||||
Composites | ||||||
Blended | 2.6 ± 0.1 c | 2.5 ± 0.2 c | 0.080 ± 0.062 ab | 0.073 ± 0.042 ab | ||
Coated | 2.1 ± 0.1 a | 2.3 ± 0.1 a | 0.112 ± 0.040 b | 0.077 ± 0.056 b | ||
Core-shell | 2.7 ± 0.1 c | 2.5 ± 0.1 c | 0.067 ± 0.036 ab | 0.080 ± 0.048 ab |
Composite Type | Chitosan in Capsules (%) (%w/w) | Alginate/Chitosan Ratio (w/w) | ||
---|---|---|---|---|
pH = 3.8 | pH = 5.5 | pH = 3.8 | pH = 5.5 | |
Blended | 90.4 ± 3.3 a | 71.7 ± 3.2 a | 0.52 | 0.65 |
Coated | 64.4 ± 1.5 b | 59 ± 3 b | 0.73 | 0.8 |
Core-shell | 74 ± 2 b | 61.6 ± 2.5 b | 0.64 | 0.76 |
pH | Strain | Calcium Alginate | Blend | Coated | Core-Shell | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Airflow (L min−1) → | fresh | 4 | 10 | fresh | 4 | 10 | fresh | 4 | 10 | fresh | 4 | 10 | |
3.8 | Streptomyces | ||||||||||||
S3 | 11.9 ± 0.5 | 0.5 ± 0.1 | 10.3 ± 0.6 | 9.3 ± 0.4 | 12 ± 0.7 | 13.8 ± 1.8 | |||||||
S6 | 5.4 ± 0.2 | 5.6 ± 0.1 | |||||||||||
5.5 | Streptomyces | ||||||||||||
S3 | 8.5 ± 0.4 | 8.9 ± 0.6 | 12.9 ± 0.6 | 9.4 ± 0.5 | 9.6 ± 0.1 | 8.1 ± 0.1 | 9.1 ± 0.5 | 8.6 ± 0.1 | 8.9 ± 0.1 | ||||
S6 | 9.1 ± 0.5 | 5.9 ± 0.5 | 0.3 ± 0.1 | ||||||||||
6.5 | Streptomyces | ||||||||||||
S3 | 8.9 ± 0.7 | 9 ± 0.1 | 16.5 ± 1.1 | ||||||||||
S6 | 10.9 ± 0.6 | 8.5 ± 0.4 | 14.1 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancera-López, M.E.; Barrera-Cortés, J. Influence of Chitosan on the Viability of Encapsulated and Dehydrated Formulations of Vegetative Cells of Actinomycetes. Polymers 2024, 16, 2691. https://doi.org/10.3390/polym16192691
Mancera-López ME, Barrera-Cortés J. Influence of Chitosan on the Viability of Encapsulated and Dehydrated Formulations of Vegetative Cells of Actinomycetes. Polymers. 2024; 16(19):2691. https://doi.org/10.3390/polym16192691
Chicago/Turabian StyleMancera-López, María Elena, and Josefina Barrera-Cortés. 2024. "Influence of Chitosan on the Viability of Encapsulated and Dehydrated Formulations of Vegetative Cells of Actinomycetes" Polymers 16, no. 19: 2691. https://doi.org/10.3390/polym16192691
APA StyleMancera-López, M. E., & Barrera-Cortés, J. (2024). Influence of Chitosan on the Viability of Encapsulated and Dehydrated Formulations of Vegetative Cells of Actinomycetes. Polymers, 16(19), 2691. https://doi.org/10.3390/polym16192691