From Waste to Styrene–Butadiene (SBR) Reuse: Developing PP/SBR/SEP Mixtures with Carbon Nanotubes for Antistatic Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Processing and Molding
- injection pressure: 1200 bar;
- temperature profile: 170 °C, 180 °C, 180 °C, 190 °C e 200 °C;
- mold temperature: 20 °C;
- mold cooling time: 25 s;
- holding pressure: 1000 bar.
2.3. Characterization of SBR
2.4. Characterization of Compounds
3. Results and Discussion
3.1. Characterization of SBR
3.2. Characterization of Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akhras, M.H.; Marschik, C.; Chung, C.N.; Traxler, I.; Kruta, K.; Kloiber, K.; Fischer, J. Assessment of property profile of post-industrial polypropylene recyclates through a multivariable recycling process. J. Appl. Polym. Sci. 2024, 141, e55731. [Google Scholar] [CrossRef]
- Zeng, S.F.; Zhang, H.R.; Li, Z.K.; Hu, C.Y.; Wang, Z.W. Effect of mechanical recycling on crystallization, mechanical, and rheological properties of recycled high-density polyethylene and reinforcement based on virgin high-density polyethylene. J. Appl. Polym. Sci. 2023, 141, e55097. [Google Scholar] [CrossRef]
- Kolluru, S.; Thakur, A.; Tamakuwala, D.; Kumar, V.V.; Ramakrishna, S.; Chandran, S. Sustainable recycling of polymers: A comprehensive review. Polym. Bull. 2024, 81, 9569–9610. [Google Scholar] [CrossRef]
- Ghosh, R.; Mani, C.; Krafczyk, R.; Schnell, R.; Paasche, A.; Talma, A.; Blume, A.; Dierkes, W.K. New Route of Tire Rubber Devulcanization Using Silanes. Polymers 2023, 15, 2848. [Google Scholar] [CrossRef]
- Innes, J.R.; Siddique, N.; Hebda, M.; Thompson, G.; Wang, X.; Coates, P.; Whiteside, B.; Benkreira, H.; Rose, P.C.; Lu, C.; et al. Micromechanical modeling of devulcanized ground tyre rubber, graphene platelets, and carbon black in recycled natural rubber blends. J. Appl. Polym. Sci. 2024, 140, e54435. [Google Scholar] [CrossRef]
- Zhang, T.; Asaro, L.; Gratton, M.; Hocine, N.A. An overview on waste rubber recycling by microwave devulcanization. J. Environ. Manag. 2024, 353, 120122. [Google Scholar] [CrossRef]
- Xiao, Z.; Pramanik, A.; Basak, A.K.; Prakash, C.; Shankar, S. Material recovery and recycling of waste tyres-A review. Clean. Mater. 2022, 5, 100115. [Google Scholar] [CrossRef]
- Formela, K.; Kuranska, M.; Barczewski, M. Recent Advances in Development of Waste–Based Polymer Materials: A Review. Polymers 2020, 14, 1050. [Google Scholar] [CrossRef]
- Luna, C.B.B.; Silva, D.F.; Araújo, E.M.; Melo, T.J.A.; Oliveira, A.D. Effect of SBS and SEBS–MA compatibilizing agents on the performance of Polystyrene/Rubber residue (SBR) mixtures. Matéria (Rio J.) 2016, 21, 632–646. [Google Scholar] [CrossRef]
- Formela, K. Strategies for compatibilization of polymer/waste tire rubber systems prepared via melt–blending. Adv. Ind. Eng. Polym. Res. 2023, 1, 1–16. [Google Scholar] [CrossRef]
- Valentini, F.; Pegoretti, A. End-of-life options of tyres. A review. Adv. Ind. Eng. Polym. Res. 2022, 5, 203–213. [Google Scholar] [CrossRef]
- Abadi, M.S.A.; Kusenberg, M.; Shirazi, H.M.; Goshayeshi, B.; Geem, K.M.V. Towards full recyclability of end–of-life tires: Challenges and opportunities. J. Clean. Prod. 2022, 374, 134036. [Google Scholar] [CrossRef]
- Dorigato, A.; Rigotti, D.; Fredi, G. Recent advances in the devulcanization technologies of industrially relevant sulfur-vulcanized elastomers. Adv. Ind. Eng. Polym. Res. 2023, 6, 288–309. [Google Scholar] [CrossRef]
- Statista–Plastic & Rubber. Synthetic Rubber Production Worldwide from 2000 to 2020. Available online: https://www.statista.com/statistics/280536/global-natural-rubber-production/ (accessed on 28 June 2024).
- Zhang, G.; Tian, C.; Feng, H.; Tan, T.; Wang, R.; Zhang, L. Thermal Reprocessing and Closed–Loop Chemical Recycling of Styrene-Butadiene Rubber Enabled by Exchangeable and Cleavable Acetal Linkages. Macromol. Rapid Commun. 2022, 43, 2100887. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, Z.; Phule, A.D.; Zhao, Y.; Wen, S.; Zhang, Z.X. A Lightweight, Abrasion-Resistant Polybutadiene Rubber/Styrene Butadiene Rubber Foam Prepared by Three-Step Process for Footwear Outsole Applications. Macromol. Mater. Eng. 2022, 307, 2100702. [Google Scholar] [CrossRef]
- Goevert, D. The value of different recycling technologies for waste rubber tires in the circular economy—A review. Front. Sustain. 2023, 4, 1–11. [Google Scholar] [CrossRef]
- Wisniewska, P.; Wang, S.; Formrla, K. Waste tire rubber devulcanization technologies: State-of-the-art, limitations and future perspectives. Waste Manag. 2022, 150, 174–184. [Google Scholar] [CrossRef]
- Junior, A.J.A.; Saron, C. Mechanical recycling of expanded polystyrene and tire rubber waste as compatibilized and toughened blends. J. Appl. Polym. Sci. 2023, 140, e54267. [Google Scholar] [CrossRef]
- Soleimani, M.; Cree, D.; Olson, L.; Tabil, L.G.; Panigrahi, S. Fabrication of nonextruded recycled rubber–polyethylene composites. J. Appl. Polym. Sci. 2020, 137, 49067. [Google Scholar] [CrossRef]
- Rahmanir, M.; Adamian, A.; Sianaki, A.H. Effect of Waste Ground Rubber Tire Powder on Vibrational Damping Behavior and Static Mechanical Properties of Polypropylene Composite Plates: An Experimental Investigation. J. Mater. Eng. Perform. 2021, 30, 8529–8537. [Google Scholar] [CrossRef]
- Gschwendner, G.; Gitsas, A.; Gahleitner, M.; Moser, P.; Paulik, C. Correlations of single-point parameters of linear rheology and molecular weight distribution of polypropylene homo- and copolymers. Curr. Appl. Polym. Sci. 2024, 141, e55232. [Google Scholar] [CrossRef]
- Darweesh, M.H.; Stoll, B.; El–taweel, S.H. Compatibilization of polypropylene/high-density polyethylene blends using poly(propylene-co-ethylene). J. Appl. Polym. Sci. 2023, 140, e53687. [Google Scholar] [CrossRef]
- Ismail, H.; Awang, M.; Hazizan, M.A. Effect of Waste Tire Dust (WTD) Size on the Mechanical and Morphological Properties of Polypropylene/Waste Tire Dust (PP/WTD) Blends. Polym. -Plast. Technol. Eng. 2006, 45, 463–468. [Google Scholar] [CrossRef]
- Ciro, E.; Parra, J.; Zapata, M.; Murillo, E.A. Effect of the Recycled Rubber on the Properties of Recycled Rubber/Recycled Polypropylene Blends. Ing. Y Cienc. 2015, 11, 173–188. [Google Scholar] [CrossRef]
- Ong, H.R.; Iskandar, W.M.E.; Masiren, E.E.; Khan, M.M.R.; Ramli, R.; Halim, R.M.; Mohamed, M.K.A. The Influence of Waste Tire Powder on the Properties of Waste Tire Powder/Polypropylene Plastic Composite. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1092, 012003. [Google Scholar] [CrossRef]
- Luna, C.B.B.; Silva, F.S.; Ferreira, E.S.B.; Silva, A.L.; Wellen, R.M.R.; Araújo, E.M. Transforming vulcanized styrene–butadiene waste into valuable raw material: An opportunity for high-impact polypropylene production. Polym. Bull. 2024, 81, 423–447. [Google Scholar] [CrossRef]
- Arani, Z.K. A comprehensive review on polystyrene/waste rubber blends: Effective parameters on mechanical properties. Polym. Eng. Sci. 2024, 64, 988–1002. [Google Scholar] [CrossRef]
- Wang, Q.; Meng, Q.; Wang, T.; Guo, W. High-performance antistatic ethylene–vinyl acetate copolymer/high-density polyethylene composites with graphene nanoplatelets coated by polyaniline. J. Appl. Polym. Sci. 2017, 134, 45303. [Google Scholar] [CrossRef]
- Kosinski, S.; Pykowska, I.; Gonsior, M.; Krzyzanowski, P. Ionic liquids as antistatic additives for polymer composites–A review. Polym. Test. 2022, 112, 107649. [Google Scholar] [CrossRef]
- Manchado, M.A.L.; Biagiotti, J.; Kenny, J.M. Rheological behavior and processability of polypropylene blends with rubber ethylene propylene diene terpolymer. J. Appl. Polym. Sci. 2001, 81, 1–10. [Google Scholar] [CrossRef]
- Zattera, A.J.; Bianchi, O.; Zeni, M.; Ferreira, C.A. Characterization of Ethylene-Vinyl Acetate Copolymer (EVA) Residues. Polímeros 2005, 15, 73–78. [Google Scholar] [CrossRef]
- Lanyl, F.J.; Wenzke, N.; Kaschta, J.; Schubert, D.W. On the Determination of the Enthalpy of Fusion of α–Crystalline Isotactic Polypropylene Using Differential Scanning Calorimetry, X–Ray Diffraction, and Fourier–Transform Infrared Spectroscopy: An Old Story Revisited. Adv. Eng. Mater. 2020, 22, 1900796. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, J.Y.; Choi, J.M.; Kim, H.J.; Seo, B. Synthesis of Ionic Elastomer Based on Styrene-Butadiene Rubber Containing Methacrylic Acid. Elastomers Compos. 2013, 48, 46–54. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Zhou, Y.; Ke, C.; Lu, H. Compatibility of waste rubber powder/polystyrene blends by the addition of styrene grafted styrene butadiene rubber copolymer: Effect on morphology and properties. Polym. Bull. 2013, 70, 2829–2841. [Google Scholar] [CrossRef]
- Hirayama, D.; Saron, C. Chemical Modifications in Styrene–Butadiene Rubber after Microwave Devulcanization. Ind. Eng. Chem. Res. 2012, 51, 3975–3980. [Google Scholar] [CrossRef]
- Garcia, P.S.; Sousa, F.D.B.; Lima, J.A.; Cruz, S.A.; Scuracchio, C.H. Devulcanization of ground tire rubber: Physical and chemical changes after different microwave exposure times. Express Polym. Lett. 2015, 9, 1015–1026. [Google Scholar] [CrossRef]
- Massarotto, M.; Crespo, J.S.; Zattera, A.J.; Zeni, M. Characterization of Ground SBR Scraps from Shoe Industry. Mater. Res. 2008, 11, 81–84. [Google Scholar] [CrossRef]
- Bilgili, E.; Arastoopour, H.; Bernstein, B. Pulverization of rubber granulates using the solid state shear extrusion process: Part II. Powder characterization. Powder Technol. 2001, 115, 277–289. [Google Scholar] [CrossRef]
- Gonzaga, H.G.; Morais, C.R.S.; Cunha, C.T.C. Incorporation of SBR-r rubber waste into PVC/carbonate systems. Matéria (Rio J.) 2022, 27, 1–14. [Google Scholar] [CrossRef]
- Leblanc, J.L. Rubber–filler interactions and rheological properties in filled compounds. Prog. Polym. Sci. 2002, 27, 627–687. [Google Scholar] [CrossRef]
- Huang, D.G.; Zhou, W.B.; Liu, L.; Quan, S.Q.; He, Z.J.; Wan, J.B. Study on the determination of trace composition and impurity elements in kaolin with ICP-MS. Spectrosc. Spectr. Anal. 2009, 29, 504–508. [Google Scholar] [CrossRef]
- Heideman, G.; Datta, R.N.; Noordermeer, J.W.M.; Baarle, B.V. Activators in Accelerated Sulfur Vulcanization. Rubber Chem. Technol. 2004, 77, 512–541. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, H.; Shentu, B.; Chen, S.; Chen, M. Effect of titanium dioxide on the UV-C ageing behavior of silicone rubber. J. Appl. Polym. Sci. 2018, 135, 46099. [Google Scholar] [CrossRef]
- Zanchet, A.; Carli, L.N.; Giovanela, M.; Crespo, J.S.; Scuracchio, C.H.; Nunes, R.C.R. Characterization of Microwave-Devulcanized Composites of Ground SBR Scraps. J. Elastomers Plast. 2009, 41, 497–507. [Google Scholar] [CrossRef]
- Bhowmick, A.K.; Hall, M.M.; Benarey, H.A. Rubber Products Manufacturing Technology; Taylor & Francis Group: New York, NY, USA, 1994. [Google Scholar]
- Pistor, V.; Orgachi, F.G.; Fiorio, R.; Zattera, A.J.; Oliveira, P.J.; Scuracchio, C.H. Devulcanization of Ethylene-Propylene-Diene Polymer Residues (EPDM-r) by Microwaves. Polímeros 2010, 20, 165–169. [Google Scholar] [CrossRef]
- Scuracchio, C.H.; Waki, D.A.; Silva, M.L.C.P. Thermal analysis of ground tire rubber devulcanized by microwaves. J. Therm. Anal. Calorim. 2007, 87, 893–897. [Google Scholar] [CrossRef]
- Scuracchio, C.H.; Waki, D.A.; Bretas, R.E.S. Thermal and Rheological Characterization of Ground Tire Rubber Devulcanized by Microwaves. Polímeros 2006, 16, 46–52. [Google Scholar] [CrossRef]
- Garcia, P.S.; Lima, J.A.; Scuracchio, C.H.; Cruz, S.A. The effect of adding devulcanized rubber on the thermomechanical properties of recycled polypropylene. J. Appl. Polym. Sci. 2021, 138, 50703. [Google Scholar] [CrossRef]
- Billmeyer, F.W., Jr. Textbook of Polymer Science; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Uyor, U.O.; Popoola, P.A.; Popoola, O.M.; Aigbodion, V.S. A review of recent advances on the properties of polypropylene–carbon nanotubes composites. J. Thermoplast. Compos. Mater. 2023, 36, 3737–3770. [Google Scholar] [CrossRef]
- Yadav, R.; Tirumali, M.; Wang, X.; Naebe, M.; Kandasubramanian, B. Polymer composite for antistatic application in aerospace. Def. Technol. 2020, 16, 107–118. [Google Scholar] [CrossRef]
- Luna, C.B.B.; Silva, F.S.; Filho, E.A.S.; Dantas, L.V.M.; Schmitz, D.P.; Soares, B.G.; Wellen, R.M.R.; Araújo, E.M. Tuning multifunctional behavior of PLA/POE-g-GMA/MWCNT nanocomposites: Mechanical, rheological, thermal, thermomechanical, and electromagnetic Properties. J. Appl. Polym. Sci. 2024, 141, e55931. [Google Scholar] [CrossRef]
- Pascual, A.M.D.; Naffakh, M.; Marco, C.; Ellis, G. Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Compos. Part A Appl. Sci. Manuf. 2012, 43, 603–612. [Google Scholar] [CrossRef]
- Pang, H.; Xu, L.; Yan, D.X.; Li, Z.M. Conductive polymer composites with segregated structures. Prog. Polym. Sci. 2014, 39, 1908–1933. [Google Scholar] [CrossRef]
- Silva, T.F.; Menezes, F.; Montagna, L.S.; Lemes, A.P.; Passador, F.R. Synergistic effect of adding lignin and carbon black in poly(lactic acid). Polímeros 2020, 30, e2020002. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, S.; Luo, J.; Zhao, Y.; He, J.; Liu, C.; Chen, Z.; Yu, X. Research progress of antistatic-reinforced polymer materials: A review. Polym. Adv. Technol. 2023, 34, 1393–1404. [Google Scholar] [CrossRef]
- Abreu, F.O.M.S.; Forte, M.M.C.; Liberman, S.A. Morphology and Mechanical Properties of Polypropylenes/TPEs Blends. Polímeros 2006, 16, 71–78. [Google Scholar] [CrossRef]
- Mello, F.B.; Nachtigall, S.M.B.; Salles, C.A.; Amico, S.C. Compatibilization and mechanical properties of compression-molded polypropylene/high-impact polystyrene blends. Prog. Rubber Plast. Recycl. Technol. 2018, 34, 117–127. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Y.; Zhang, M.; Yu, W. Selective Localization of Multiwalled Carbon Nanotubes in Poly(ε-caprolactone)/Polylactide Blend. Biomacromolecules 2009, 10, 417–424. [Google Scholar] [CrossRef]
- Wang, X.F.; Zhang, Z.X.; LI, J.L.; Yang, J.H.; Wang, Y.; Zhang, J.H. Largely improved fracture toughness of an immiscible poly(L-lactide)/ethylene-co-vinyl acetate blend achieved by adding carbon nanotubes. RSC Adv. 2015, 5, 69522–69533. [Google Scholar] [CrossRef]
- Wang, Y.H.; Xu, X.L.; Dai, J.; Yang, J.H.; Huang, T.; Zhang, N.; Wang, Y.; Zhou, Z.W.; Zhang, J.H. Super toughened immiscible polycarbonate/poly(l-lactide) blend achieved by simultaneous addition of compatibilizer and carbon nanotubes. RSC Adv. 2014, 4, 59194–59203. [Google Scholar] [CrossRef]
- Ribeiro, V.F.; Junior, N.S.D.; Riegel, I.Z. Recovering Properties of Recycled HIPS Through Incorporation of SBS Triblock Copolymer. Polímeros 2012, 22, 186–192. [Google Scholar] [CrossRef]
- Da Silveira, P.H.P.M.; Santos, M.C.C.D.; Chaves, Y.S.; Ribeiro, M.P.; Marchi, B.Z.; Monteiro, S.N.; Gomes, A.V.; Tapanes, N.C.O.; Pereira, P.S.C.; Bastos, D.C. Characterization of thermo-mechanical and chemical properties of polypropylene/hemp fiber biocomposites: Impact of maleic anhydride compatibilizer and fiber content. Polymers 2023, 15, 3271. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, L.; Izadi-Vasafi, H.; Nikfar, N. Investigation of the morphological and mechanical properties of polyethylene terephthalate (PET)/Ethylene propylene diene rubber (EPDM) blends in the presence of multi-walled carbon nanotubes. J. Macromol. Sci. 2018, 57, 585–594. [Google Scholar] [CrossRef]
- Mertens, A.J.; Senthilvelan, S. Mechanical and tribological properties of carbon nanotube reinforced polypropylene composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2018, 232, 669–680. [Google Scholar] [CrossRef]
- Zytner, P.; Pal, A.K.; Mohanty, A.K.; Misra, M. Performance evaluation of biodegradable polymer PHBV and PBAT blends with adjustable melt flow behaviour, heat deflection temperature, and morphological transition. Can. J. Chem. Eng. 2024, 102, 2805–2817. [Google Scholar] [CrossRef]
- Takemori, M.T. Towards an understanding of the heat distortion temperature of thermoplastics. Polym. Eng. Sci. 1979, 19, 1104–1109. [Google Scholar] [CrossRef]
- Fernández, J.H.; Cano, H.; Guerra, Y.; Polo, E.P.; Rojas, J.F.R.; Reyes, R.V.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920. [Google Scholar] [CrossRef]
Samples | PP (wt%) | SBRr (wt%) * | SEP (wt%) | MWCNT (phr) |
---|---|---|---|---|
PP | 100 | - | - | - |
PP/SEP | 90 | - | 10 | - |
PP/SBR | 70 | 30 | - | - |
PP/SBR/SEP | 60 | 30 | 10 | - |
PP/SBR/SEP/MWCNT | 60 | 30 | 10 | 0.5 |
PP/SBR/SEP/MWCNT | 60 | 30 | 10 | 1.0 |
PP/SBR/SEP/MWCNT | 60 | 30 | 10 | 1.5 |
PP/SBR/SEP/MWCNT | 60 | 30 | 10 | 2.0 |
Elements | Al2O3 | SiO2 | CaO | SO3 | ZnO | TiO2 | Others |
---|---|---|---|---|---|---|---|
Quantity (%) | 45.8 | 38.6 | 4.4 | 4.2 | 3.1 | 1.7 | 2.2 |
Compounds | ρ (Ω.cm) | σ (S/cm) |
---|---|---|
PP | 1.61 × 1010 | 6.21 × 10−11 |
PP/SEP | 1.51 × 1010 | 6.62 × 10−11 |
PP/SBR | 1.55 × 1010 | 6.45 × 10−11 |
PP/SBR/SEP | 1.56 × 1010 | 6.41 × 10−11 |
PP/SBR/SEP/MNWCNT (0.5) | 1.53 × 1010 | 6.53 × 10−11 |
PP/SBR/SEP/MNWCNT (1.0) | 1.57 × 1010 | 6.37 × 10−11 |
PP/SBR/SEP/MNWCNT (1.5) | 1.69 × 1007 | 5.92 × 10−08 |
PP/SBR/SEP/MNWCNT (2.0) | 2.21 × 1006 | 4.52 × 10−07 |
Samples | Tm (°C) | Tc (°C) | Xc (%) |
---|---|---|---|
PP | 162.3 | 117.9 | 43.2 |
PP/SEP | 161.8 | 117.8 | 41.7 |
PP/SBR | 161.4 | 120.4 | 40.9 |
PP/SBR/SEP | 162.5 | 121.3 | 44.1 |
PP/SBR/SEP/MNWCNT (0.5) | 161.5 | 118.2 | 35.2 |
PP/SBR/SEP/MNWCNT (1.0) | 161.8 | 118.9 | 37.2 |
PP/SBR/SEP/MNWCNT (1.5) | 161.9 | 119.2 | 41.6 |
PP/SBR/SEP/MNWCNT (2.0) | 162.2 | 119.7 | 37.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobrinho, E.D.d.M.; Ferreira, E.d.S.B.; da Silva, F.U.; Bezerra, E.B.; Wellen, R.M.R.; Araújo, E.M.; Luna, C.B.B. From Waste to Styrene–Butadiene (SBR) Reuse: Developing PP/SBR/SEP Mixtures with Carbon Nanotubes for Antistatic Application. Polymers 2024, 16, 2542. https://doi.org/10.3390/polym16172542
Sobrinho EDdM, Ferreira EdSB, da Silva FU, Bezerra EB, Wellen RMR, Araújo EM, Luna CBB. From Waste to Styrene–Butadiene (SBR) Reuse: Developing PP/SBR/SEP Mixtures with Carbon Nanotubes for Antistatic Application. Polymers. 2024; 16(17):2542. https://doi.org/10.3390/polym16172542
Chicago/Turabian StyleSobrinho, Edson Duarte de Melo, Eduardo da Silva Barbosa Ferreira, Flávio Urbano da Silva, Elieber Barros Bezerra, Renate Maria Ramos Wellen, Edcleide Maria Araújo, and Carlos Bruno Barreto Luna. 2024. "From Waste to Styrene–Butadiene (SBR) Reuse: Developing PP/SBR/SEP Mixtures with Carbon Nanotubes for Antistatic Application" Polymers 16, no. 17: 2542. https://doi.org/10.3390/polym16172542
APA StyleSobrinho, E. D. d. M., Ferreira, E. d. S. B., da Silva, F. U., Bezerra, E. B., Wellen, R. M. R., Araújo, E. M., & Luna, C. B. B. (2024). From Waste to Styrene–Butadiene (SBR) Reuse: Developing PP/SBR/SEP Mixtures with Carbon Nanotubes for Antistatic Application. Polymers, 16(17), 2542. https://doi.org/10.3390/polym16172542